University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Processes & Threads
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

CV Kunjeti Lang Qin
Felix Sun Sean Chuang
Heyi Liu Serena Chen

Kevin Bernat Yuna Shao

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Any questions?

University of Pennsylvania LO5: Processes & Threads

Administrivia

+» HW1 is due a week from Friday
= Already out

= Everything you need has been covered

= Recitation tomorrow will help with it

+ Course schedule about to change a lot
" Topics are the same

" Ordering and Homework assignments will not be

CIT 5950, Spring 2024

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Lecture Outline

+ Processes Review
« pthreads

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Definition: Process

» Definition: An instance of a program _

that is being executed SP=> StiCk
(or is ready for execution)

I

» Consists of: Shared Libraries

= Memory (code, heap, stack, etc) t

= Registers used to manage execution Heap (malloc/free)
(stack pointer, program counter, ...)

Read/Write Segments

= Other resources 151G, HLo5

[=X Read-Only Segments

* This isw't guite true it
more in a future lecture

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Process

Operating System

OS: Protection System

+» OS isolates process from each other
® Each process seems to have exclusive use of
memory and the processor.
« Thisis anillusion

« More on Memory when we talk about virtual
memory later in the course

O
<3
s
&u‘)
o€
o S

Process B
(untrusted)
Process C
(untrusted)
Process D
(untrusted)

= OS permits controlled sharing between

processes 0N
- E.g. through files, the network, etc. (trusted)

+» OS isolates itself from processes

= Moust prevent processes from accessing the HW (trUSted)

hardware directly

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Creating New Processes

+« |p1d t fork();

" Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

- *almost everything

" The new process has a separate virtual address space from the
parent

" Returnsapid t whichisan integer type.

University of Pennsylvania

fork () and Address Spaces

Fork causes the OS
to clone the
address space

" The copies of the
memory segments are
(nearly) identical

" The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

LO5: Processes & Threads

Stack

SP=

CIT 5950, Spring 2024

Shared Libraries

1

Shared Libraries

Heap (malloc/free)

1

Read/Write Segment
.data, .bss

Heap (malloc/free)

Read-Only Segment
.text, .rodata

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

PARENT

fork ()

CHILD

University of Pennsylvania LO5: Processes & Threads

fork ()

+« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
- Child receives a 0

CIT 5950, Spring 2024

University of Pennsylvania LO5: Processes & Threads

fork ()

+« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
- Child receives a 0

clone

-~

ON}

CIT 5950, Spring 2024

10

University of Pennsylvania LO5: Processes & Threads

fork ()

+« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid child pid
» Child receives a 0

CIT 5950, Spring 2024

11

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Terminating Processes

« Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate
= Returning from the main routine
= Calling the exit function

« vold exit (int status)
" Terminates with an exit status of status
"= Convention: normal return status is O, nonzero on error

= Another way to explicitly set the exit status is to return an integer
value from the main routine

« exitis called once but never returns

12

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

"simple" fork () example

fork () ;
cout << "Hello!\n";
exit (EXIT SUCCESS);

+» What does this print?

13

CIT 5950, Spring 2024

University of Pennsylvania LO5: Processes & Threads

"simple" fork () example

int x = 3;

fork () ;

X++;

cout << x << endl;
exit (EXIT SUCCESS);

+» What does this print?

Prints "4\n" twice, once from each process.
Each process has separate memory, and thus
their own independent copy of X

14

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Process States (incomplete)

’0

L)

» From a programmer’s perspective, we can think of a
process as being in one of three states

Running / Ready

L)

0’0

" Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

’0

« Blocked

" Process execution is suspended and will not be scheduled until
some resource we are waiting on is ready

*

Terminated

D)

%

" Process is stopped permanently 15

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

OS: The Scheduler

+» When switching between processes, the OS will run
some kernel code called the “Scheduler’

» The scheduler runs when a process:
= starts (“arrives to be scheduled”),
= Finishes
= Blocks (e.g., waiting on something, usually some form of I/O)
= Has run for a certain amount of time

+ Itis responsible for scheduling processes
= Choosing which one to run
= Deciding how long to run it

16

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Scheduler Considerations

+» The scheduler has a scheduling algorithm to decide
what runs next.

» Algorithms are designed to consider many factors:

= Fairness: Every program gets to run

= Liveness: That “something” will eventually happen

= Throughput: Number of “tasks” completed over an interval of
time

= Wait time: Average time a “task” is “alive” but not running

A lot more...

. More on this later. For now: think of scheduling as
non-deterministic, details handled by the OS.

17

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

fork () example

—npid t fork ret = fork();

if (fork ret == 0) {
cout << "Child\n");
} else {
cout << "Parent\n";

18

University of Pennsylvania

LO5: Processes & Threads

CIT 5950, Spring 2024

fork () example

Parent Process (PID = X)
—npid t fork ret = fork();

Child Process (PID =Y)

-quid_t fork ret = fork();
if (fork ret == 0) { if (fork ret == 0) {
cout << "Child\n"); cout << "Child\n");
} else { } else {
cout << "Parent\n'"; cout << "Parent\n'";
} }
fork ()

19

University of Pennsylvania

LO5: Processes & Threads

CIT 5950, Spring 2024

fork () example

Parent Process (PID = X)
—npid t fork ret = fork();

Child Process (PID =Y)

-quid_t fork ret = fork();
if (fork ret == 0) { if (fork ret == 0) {
cout << "Child\n"); cout << "Child\n");
} else { } else {
cout << "Parent\n'"; cout << "Parent\n'";
} }

fork_ret =Y

fork ret = 0
pid t fork ret = fork(); pid t fork ret = fork();
if (fork ret == 0) { if (fork_ret == 0) {
cout << "Child\n"); = cout << "Child\n");
} else { } else {
= cout << "Parent\n"; cout << "Parent\n";
} }
Prints "Parent” : : , ints "Child"
Which prints first? Prints "Chilo

Non-deterministic

20

University of Pennsylvania

Another fork () example

LO5: Processes & Threads

int x{};

1f (fork ret == 0)
x = 3800;

} else {
x = 2400;

}

cout << x << endl;

_Lpid_t fork ret = fork();

{

CIT 5950, Spring 2024

21

University of Pennsylvania

LO5: Processes & Threads

Another fork () example

Parent Process (PID = X)

Child Process (PID =Y)

_Lpid_t fork ret = fork();
int x{};

1f (fork ret == 0) {
x = 3800;

} else {
x = 2400;

}

cout << x << endl;

CIT 5950, Spring 2024

-q‘pid_t fork ret = fork();
int x{};

1f (fork ret == 0) {
x = 3800;

} else {
x = 2400;

}

cout << x << endl;

fork ()

22

University of Pennsylvania

LO5: Processes & Threads

CIT 5950, Spring 2024

Another fork () example

Parent Process (PID = X)

int x{};

1f (fork ret == 0)
x = 3800;

} else {

—p x = 2400;

}

cout << x << endl;

pid t fork ret = fork();

{

Child Process (PID =Y)

#X

X

}

cout

fork ret

Always prints "2400"

pid_
int x{};

1f (fork ret == 0) {
= 3800;

} else {

= 2400;

t fork ret = fork();

<< x << endl;

fork ()

fork ret = 0

Always prints "3800"

Rewminder: Processes have their own address space
(and thus, copies of their own variables)

Order is still nondeterministicll

23

University of Pennsylvania

LO5: Processes & Threads

CIT 5950, Spring 2024

more fork () example

Parent Process (PID = X)

—ppid t fork ret = fork();

1f (fork ret == 0) {
cout << "I’'m child\n";

} else {

cout << "Hello!\n";

cout << "I’'m parent\n";

}

—>

Child Process (PID =Y)

pid t fork ret = fork();
1f (fork ret == 0) {

cout << "I’'m child\n";
} else {

cout << "Hello!\n";
cout << "I'm parent\n";

}

fsrk()

24

University of Pennsylvania

LO5: Processes & Threads

CIT 5950, Spring 2024

more fork () example
Parent Process (PID = X) Child Process (PID =Y)

pid t fork ret = fork();

pid t fork ret = fork();

1f (fork ret == 0) { 1f (fork ret == 0) {
cout << "I'm child\n"; I cout << "I’'m child\n";
} else { } else {

=P cout << "Hello!\n";
cout << "I’'m parent\n";

} }

cout << "Hello!\n";
cout << "I'm parent\n";

. fSrk()
Always prints

Always prints “I’'m Child"
(lHe”O!H y p

and
“I'm parent”

What is ordering of printing?

Order is still (partially) vondeterministicll

25

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

fork () example

Parent Process (PID = X) Child Process (PID =Y)
pid_t fork ret = fork(); pid t fork ret = fork();
1f (fork ret == 0) { — 1f (fork ret == 0) {
printf ("I'm Child\n"); printf ("I'm Child\n");
} else { } else {
printf ("Hello!\n"); printf ("Hello!\n");
printf ("I'm Parent\n"); printf ("I'm Parent\n");
} }
fork () Con context switch

What are the possible ordering of outputs? +o child at ANY +ime

1. 2. 3. Within a process, must
"Hello!" "Hello!" I'm Child™ 1 follow segquential logic.
"I'm Parent" | | "I'm Child" "Hello!" (6\@\, "Hello" MUST be
"I'm Child" "I'm Parent" | | "I'm Parent"” printed before "T'm

parent”)

26

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

- Are the following outputs p055|ble?

(pid t fork ret = fork(); Sequence 1: Sequence 2:
if (fork ret == 0) { Hi 1 Hi 3
fork ret = fork(); -

if (fork ret == 0) { B¥e Hl !
cout << "Hi 3!" << endl; Hi 2 Hi 2
} else { Bye Bye
cout << "Hi 2!" << endl; Bye Bye
} Hi 3 Bye
} else {
cout << "Hi 1!" << endl;
}
cout << "Bye" << endl; l\'
B. No Yes
Hint 1: there are three processes
| | | C. Yes No
Hint 20 Each prints out +wice
“Hi” and “Bye” D. Yes Yes

E. We're lost...

27

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

- Are the following outputs p055|ble?

p;dé firk Eet - ;foik() Sequence 1: Sequence 2:
1 or re == . .

— H
fork ret = fork(); gl 1 H% i
if (fork ret == 0) { ye N

cout << "Hi 3!" << endl; Hi 2 Hi 2
} else { Bye [+ #, Bye
cout << "Hi 2!" << endl; Bye “1]j2” Bye
} Hi 3| yusthe Bye
Joelse | | before a “Bye”
cout << "H1 1!" << endl;
}
cout << "Bye" << endl; l\'
B. Yes
Hint 1: there are three processes
| | | C. Yes No
Hint 20 Each prints out +wice
“Hi” and “Bye” D. Yes Yes
Hint 2: Events within a single process
Yol E. We're lost...

are “ordered wormally” 28

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

- Are the following outputs p055|ble?

(pid_t fork_ret = fork(); Sequence 1: Sequence 2:
if (fork ret == 0) { Hi 1 Hi 3 OK
fork ret = fork(); . w
if (fork ret == 0) { Bye Hi 1 Each “hi
cout << "Hi1i 3!" << endl; Hi 2 Hi 2 comes
} else { Bye Bye before a
cout << "Hi 2!" << endl; Bye Bye ‘“bye”
} Hi 3 Bye
} else { Order
cout << "Hi 1!" << endl; ACYr 0SS
} rocesses
cout << "Bye" << endl; A' f}(ﬂ’
4 No Yes auaranteed
mt 1: there are three processes
. . . C. Yes No
Hint 20 Each prints out +wice
“Hi” and “Bye” D. Yes Yes

mt 3: Bvents within a single process
Hint 3 p @,, P E. We're lost...
are “ordered normally 29

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Lecture Outline

+ Processes Review
+ pthreads

30

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

31

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Introducing Threads

+ Separate the concept of a process from the “thread of
execution”

" Threads are contained within a process

= Usually called a thread, this is a sequential execution stream
within a process

— thread

« In most modern OS’s:

" Threads are the unit of scheduling.

32

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

= A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

33

University of Pennsylvania

LO5: Processes & Threads

Threads vs. Processes

OS kernel [protected]

Stack

parent

!

I

Shared Libraries

I

fork ()

A 4

CIT 5950, Spring 2024

OS kernel [protected]

OS kernel [protected]

Stack

parent

Stack. g

!

I

!

I

Shared Libraries

Shared Libraries

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

34

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Threads vs. Processes

pthread create()

35

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Threads

+» Threads are like lightweight processes
" They execute concurrently like processes
- Multiple threads can run simultaneously on multiple CPUs/cores

= Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

— But, they can interfere with each other — need synchronization for shared
resources

- Each thread has its own stack

+» Analogy: restaurant kitchen
= Kitchen is process
" Chefs are threads

36

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Single-Threaded Address Spaces

_ +~ Before creating a thread

Stack

P = 1Pa“°-“t " One thread of execution running
in the address space
- One PC, stack, SP
t " That main thread invokes a
Shared Libraries function to create a new thread
t - Typically pthread create ()

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
o = .text, .rodata

pakent

37

LO5: Processes & Threads

CIT 5950, Spring 2024

University of Pennsylvania

Multi-threaded Address Spaces

_ + After creating a thread

Stack

parent

SP

pakent

|

Stack 4

Py =

!
I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Pty =

patent

Read-Only Segments
.text, .rodata

" Two threads of execution running
in the address space

« Original thread (parent) and new
thread (child)

- New stack created for child thread

« Child thread has its own values of
the PC and SP

= Both threads share the other
segments (code, heap, globals)

- They can cooperatively modify
shared data

38

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads

" Declaredinpthread.h
-+ Not part of the C/C++ language

" To enable support for multithreading, must include —-pthread
flag when compiling and linking with gcc command

« gt+t+ —g -Wall -std=c++23 -pthread -o main main.c

" Implemented in C
- Must deal with C programming practices and style

39

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Creating and Terminating Threads

Output parameter.
aives us a “thread descriptor”

e [int pthread create (/ |
pthread_t* thread, Function pointer!

const pthread attr t* attr, Takes & returus vold*
void* (*start routine) (void*) / to allow “generics” in C

vo1d* arqg) ;e— Argument for the +thread fumctioy

\

= Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

= Returns 0 on success and an error number on error (can check
against error constants) &' start_routine

comfmmc
" The new thread runs start routine (arg)

»

»

pthread_create parent

40

University of Pennsylvania LO5: Processes & Threads

CIT 5950, Spring 2024

What To Do After Forking Threads?

& [int pthread join(pthread t thread, void** retval);]

= Waits for the thread specified by thread to terminate
" The thread equivalent of waitpid ()

" The exit status of the terminated thread is placgd in **retval
Parent thread waits for child fart_routine

\@
+hread +o exit, 9ets +he child’s / \ continunes

return value, and child +hread is
; create parent joiv
cleaned up

41

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Thread Example

+» See cthreads.cpp

"= How do you properly handle memory management?
« Who allocates and deallocates memory?
- How long do you want memory to stick around?

42

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

What To Do After Forking Threads?

& [int pthread join(pthread t thread, void** retval);]

= Waits for the thread specified by thread to terminate
" The thread equivalent of waitpid ()

" The exit status of the terminated thread is plaﬁ%@g in *@*retval

Parent thread waits for child \@ evrT

thread +to exit, gets the child’s / \ continues

return value, and child thread is g
/ arent

cleaned up WGM@ F Joln

oo [int pthread detach(pthread t thread);]

= Mark thread specified by thread as detached — it will clean up

its resources as soon as it terminates _
Start _rountive

Detach a thread. A > X
Thread is cleaned up whew it is D\&\/' continues
finished creote parent] detach

43

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Thread Examples

+» See cthreads.cpp

"= How do you properly handle memory management?
« Who allocates and deallocates memory?
- How long do you want memory to stick around?

+ Seeexit thread.cpp

" Do we need to join every thread we create?

44

University of Pennsylvania LO5: Processes & Threads CIT 5950, Spring 2024

Discuss

+» What gets printed?

rvoid* thrd fn (void* arg) {
int* ptr = reinterpret cast<int*>(arg);
cout << *ptr << endl;

int main () {
pthread t thdl{};
pthread t thd2{};

int x = 1;
pthread create (&thdl, nullptr, thrd fn, &x);
X = 23

pthread create (&thd2, nullptr, thrd fn, &x);

pthread join(thdl, nullptr);
pthread join(thd2, nullptr);

45

	Default Section
	Slide 1: Processes & Threads Computer Systems Programming, Spring 2024
	Slide 2
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Definition: Process
	Slide 6: OS: Protection System
	Slide 7: Creating New Processes
	Slide 8: fork() and Address Spaces
	Slide 9: fork()
	Slide 10: fork()
	Slide 11: fork()
	Slide 12: Terminating Processes
	Slide 13: "simple" fork() example
	Slide 14: "simple" fork() example
	Slide 15: Process States (incomplete)
	Slide 16: OS: The Scheduler
	Slide 17: Scheduler Considerations
	Slide 18: fork() example
	Slide 19: fork() example
	Slide 20: fork() example
	Slide 21: Another fork() example
	Slide 22: Another fork() example
	Slide 23: Another fork() example
	Slide 24: more fork() example
	Slide 25: more fork() example
	Slide 26: fork() example
	Slide 27: Polling Question
	Slide 28: Polling Question
	Slide 29: Polling Question
	Slide 30: Lecture Outline
	Slide 31
	Slide 32: Introducing Threads
	Slide 33: Threads vs. Processes
	Slide 34: Threads vs. Processes
	Slide 35: Threads vs. Processes
	Slide 36: Threads
	Slide 37: Single-Threaded Address Spaces
	Slide 38: Multi-threaded Address Spaces
	Slide 39: POSIX Threads (pthreads)
	Slide 40: Creating and Terminating Threads
	Slide 41: What To Do After Forking Threads?
	Slide 42: Thread Example
	Slide 43: What To Do After Forking Threads?
	Slide 44: Thread Examples
	Slide 45: Polling Question

