
CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Threads
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

CV Kunjeti Lang Qin

Felix Sun Sean Chuang

Heyi Liu Serena Chen

Kevin Bernat Yuna Shao

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Administrivia

❖ HW1 is due this Friday

▪ Already out

▪ Everything you need has been covered

▪ Auto-grader should be out sometime today

❖ HW2 to be released over the weekend

❖ Check-in was due before lecture today

2

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

❖ Any questions? How is your Valentine’s day?

3

pollev.com/tqm

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Data Races Continued

❖ Locks & mutexes

❖ Liveness & deadlocks

❖ Condition Variables

4

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

❖ How many possible outputs does this code have?

5

pollev.com/tqm

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

❖ How many possible outputs does this code have?

6

pollev.com/tqm

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Data Races

❖ Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

▪ Means that the result of a program can vary depending on chance
(which thread ran first?)

7

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

8

if (!milk) {

 buy milk

}

! !

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

9

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

pollev.com/tqm

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

10

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other

possible scenarios

that result in

multiple milks

We can be interrupted

between checking note and

leaving note

pollev.com/tqm

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

❖ Example: two threads try to read from and write to the
same shared memory location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head
of the linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure!
11

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

❖ What is the
expected
output of
this code? Is
there a data-
race?

12

pollev.com/tqm

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Increment Data Race

❖ What seems like a single operation
is actually multiple operations in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread
while executing these three instructions?

❖ See total.cpp

▪ Data race between threads

❖ Reminder: Each thread has its own registers to work
with. Each thread would have its own R0

13

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

14

LOAD sum_total into R0

++sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 0

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

15

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 0

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

16

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 1

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

17

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 1

R0 = 1

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

18

LOAD sum_total into R0

ADD R0 R0 #1

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

❖ With this example, we could get 1 as an output instead of
2, even though we executed ++sum_total twice

19

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Data Races Continued

❖ Locks & mutexes

❖ Liveness & deadlocks

❖ Condition Variables

20

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

21
First concern we will be looking at with locks

These are

VERY

related

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Atomicity

❖ Atomicity: An operation or set of operations on some data
are atomic if the operation(s) are indivisible, that no other
operation(s) on that same data can interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of
data bases and ACID.

22

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

23

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

24

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.cpp

▪ Data race between threads

❖ See total_locking.cpp

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code
and to total?

▪ Likely slower than both– only 1 thread can increment at a time,
and must deal with checking the lock and switching between
threads

▪ One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

• See total_locking_better.cpp
25

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Is there a data race here?

❖ Does this code
have a data race?

▪ Can this program
enter an “invalid”
(unexpected or
error) state?

26

pollev.com/tqm

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a
shared resource, with at least one write, that can cause
the shared resource to enter an invalid or “unexpected”
state.

❖ Race-Condition: Where the program has different
behaviour depending on the ordering of concurrent
threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a
race condition

27

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Data Races Continued

❖ Locks & mutexes

❖ Liveness & deadlocks

❖ Condition Variables

28

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Liveness

❖ Liveness: A set of properties that ensure that threads
execute in a timely manner, despite any contention on
shared resources.

❖ When is called, the calling
thread blocks (stops executing) until it can acquire the
lock.

▪ What happens if the thread can never acquire the lock?

29

pthread_mutex_lock();

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Milk Example – Granularity & Liveness

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

▪ Code would still be live, but slower

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

30

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads
cannot acquire that lock

❖ See release_locks.cpp

▪ Example where locks are not released once critical section is
completed.

31

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two
locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.cpp

❖ Note: there are many algorithms for detecting/preventing
deadlocks

32

Neither thread can make progress

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it
has already acquired?

❖ See recursive_deadlock.cpp

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until
the lock is released

33

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked
if the thread already has locked it. These locks are called
recursive locks (sometimes called re-entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of
times it was acquired

❖ Has its uses, but generally discouraged.

34

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Data Races Continued

❖ Locks & mutexes

❖ Liveness & deadlocks

❖ Condition Variables

35

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Aside: sleep()

❖ unistd.h defines the function:

▪ Makes the calling thread sleep for the specified number of
seconds, resuming execution afterwards

❖ Useful for manipulating scheduling for testing and
demonstration purposes

▪ Also for asynchronous/non-blocking I/O, but not covered in this
course.

❖ Necessary for HW2 so that auto-graders work
36

unsigned int sleep(unsigned int seconds);

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Thread Communication

❖ Sometimes threads may need to communicate with each
other to know when they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some
operation

▪ The consumer thread can only produce things once the producer
has produced them

37

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Naïve Solution

❖ Consider the example where a thread must wait to be
notified before it can print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the
consumer thread can print

❖ See spinning.cpp

❖ Alternative: Condition variables

38

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are
notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily
release while waiting

▪ Once notified, the thread will re-acquire a lock and resume
execution

39

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

40

int pthread_cond_init(pthread_cond_t* cond,

 const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition
variable. Once unblocked (by one of the functions below),
function will return and calling thread will have the mutex locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

❖ See cond.cpp
41

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

 pthread_mutex_t* mutex);

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

42

Critical SectionEntrance Exit

sleeping
room

Waiting
room

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

43

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock

A thread enters the critical section by acquiring a lock

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

44

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

A thread can exit the critical section by acquiring a lock

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

45

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in
state, it can “go to sleep” until someone wakes it up later.
It will release the lock implicitly when it goes to sleep

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

46

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

When a thread modifies state and then leaves the critical section, it can also call
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

47

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock

CIT 5950, Spring 2024L06: ThreadsUniversity of Pennsylvania

Aside: Things left out

❖ MANY things left out of this lecture

❖ Synchronization methods:

▪ Semaphores

▪ Monitors

❖ Concurrency properties

▪ ACID (databases)

▪ CAP theorem

❖ A lot more concurrency stuff covered in CIS 5050☺

48

	Default Section
	Slide 1: Threads Computer Systems Programming, Spring 2024
	Slide 2: Administrivia
	Slide 3
	Slide 4: Lecture Outline
	Slide 5
	Slide 6
	Slide 7: Data Races
	Slide 8: Data Race Example
	Slide 9: Data Race Example
	Slide 10: Data Race Example
	Slide 11: Threads and Data Races
	Slide 12
	Slide 13: Increment Data Race
	Slide 14: Increment Data Race
	Slide 15: Increment Data Race
	Slide 16: Increment Data Race
	Slide 17: Increment Data Race
	Slide 18: Increment Data Race
	Slide 19: Increment Data Race
	Slide 20: Lecture Outline
	Slide 21: Synchronization
	Slide 22: Atomicity
	Slide 23: Lock Synchronization
	Slide 24: pthreads and Locks
	Slide 25: pthread Mutex Examples
	Slide 26: Is there a data race here?
	Slide 27: Race Condition vs Data Race
	Slide 28: Lecture Outline
	Slide 29: Liveness
	Slide 30: Milk Example – Granularity & Liveness
	Slide 31: Liveness Failure: Releasing locks
	Slide 32: Liveness Failure: Deadlocks
	Slide 33: Liveness Failure: Mutex Recursion
	Slide 34: Aside: Recursive Locks
	Slide 35: Lecture Outline
	Slide 36: Aside: sleep()
	Slide 37: Thread Communication
	Slide 38: Naïve Solution
	Slide 39: Condition Variables
	Slide 40: pthreads and condition variables
	Slide 41: pthreads and condition variables
	Slide 42: Condition Variable & Mutex Visualization
	Slide 43: Condition Variable & Mutex Visualization
	Slide 44: Condition Variable & Mutex Visualization
	Slide 45: Condition Variable & Mutex Visualization
	Slide 46: Condition Variable & Mutex Visualization
	Slide 47: Condition Variable & Mutex Visualization
	Slide 48: Aside: Things left out

