
CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Condition Variables & Caches
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Administrivia

❖ HW1 was due this Friday

▪ Already out

▪ Everything you need has been covered

❖ HW2 to be released soon

▪ Due after break

▪ We expect you to look at it and try some of it (maybe implement
one of the threading components) before the exam

▪ We do not expect you to work on it over break

❖ Travis still recovering from a stomach virus :(

2

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Administrivia

❖ Midterm Exam: Wednesday February 28th 7-9 pm in
Towne 100

▪ Please contact Travis if you cannot make it at that time

3

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

❖ Any questions?

4

pollev.com/tqm

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Lecture Outline

❖ Condition Variables

❖ Intro to Caches

5

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Is there a data race here?

❖ Poll from last
lecture

▪ race.cpp

❖ This code doesn’t
have a data-race,
but it still has a
synchronization
issue (via a race
condition)

6

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a
shared resource, with at least one write, that can cause
the shared resource to enter an invalid or “unexpected”
state.

❖ Race-Condition: Where the program has different
behaviour depending on the ordering of concurrent
threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a
race condition

7

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Aside: sleep()

❖ unistd.h defines the function:

▪ Makes the calling thread sleep for the specified number of
seconds, resuming execution afterwards

❖ Useful for manipulating scheduling for testing and
demonstration purposes

▪ Also for asynchronous/non-blocking I/O, but not covered in this
course.

❖ Necessary for HW2 so that auto-graders work 
8

unsigned int sleep(unsigned int seconds);

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Thread Communication

❖ Sometimes threads may need to communicate with each
other to know when they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some
operation

▪ The consumer thread can only produce things once the producer
has produced them

9

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Naïve Solution

❖ Consider the example where a thread must wait to be
notified before it can print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the
consumer thread can print

❖ See spinning.cpp

❖ Alternative: Condition variables

10

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are
notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily
release while waiting

▪ Once notified, the thread will re-acquire a lock and resume
execution

11

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

12

int pthread_cond_init(pthread_cond_t* cond,

 const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition
variable. Once unblocked (by one of the functions below),
function will return and calling thread will have the mutex locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

❖ See cond.cpp
13

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

 pthread_mutex_t* mutex);

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

14

Critical SectionEntrance Exit

sleeping
room

Waiting
room

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

15

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock

A thread enters the critical section by acquiring a lock

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

16

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

A thread can exit the critical section by acquiring a lock

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

17

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in
state, it can “go to sleep” until someone wakes it up later.
It will release the lock implicitly when it goes to sleep

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

18

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

When a thread modifies state and then leaves the critical section, it can also call
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

19

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Aside: Things left out

❖ MANY things left out of this lecture

❖ Synchronization methods:

▪ Semaphores

▪ Monitors

❖ Concurrency properties

▪ ACID (databases)

▪ CAP theorem

❖ A lot more concurrency stuff covered in CIS 5050 ☺

20

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

21

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Poll: how are you?

❖ Data Structures Review: I want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

22

e.g. if I have sequence [5, 9, 23] and I randomly
generate 12, I will insert 12 between 9 and 23

pollev.com/tqm

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Lecture Outline

❖ Condition Variables

❖ Intro to Caches

23

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

24

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to
access

▪ We see this already with registers. Data in registers is stored on
the chip and is faster to access than registers

25

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Memory Hierarchy

26

Each layer can be thought

of as a “cache” of the layer

below

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space
goes up, but access times increase

27

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on
performance

▪ It is important that data is quick to access to get better CPU
utilization 28

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons,
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the
storage of data for increased performance. Data is usually
either something frequently and/or recently used.

▪ Physical memory is a “Cache” of page frames which may be
stored on disk. (Instead of going to disk, we can go to physical
memory which is quicker to access)

29

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data
oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish

30

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Cache Performance

❖ Accessing data in the cache allows for much better
utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck:
CPU would have to wait for data to come from memory.

❖ How is data loaded into a Cache?

31

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Cache Lines

❖ Imagine memory as a big array of data:

❖ we can split memory into 64-byte “lines” or “blocks”(64
bytes on most architectures)

▪ This means bottom 6 bits of an address are the offset into a line

▪ The top 58 bits of the address specify the “line” number

❖ When we access data at an address, we bring the whole
cache line (cache block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!
32

Access this data
Neighboring data brought into the cache

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines
inside it.

❖ When we access data not in the cache, and the cache is
full, we must evict an existing entry.

❖ When we access a line, we can do a quick calculation on
the address to determine which entry in the cache we can
store it in. (Depending on architecture, 1 to 12 possible
slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the
entries a line can be stored in

33

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

34

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we
understand the memory layout of these data structures

❖ ArrayList In C++:

35

int main() {

 vector<int> array_list {1, 2, 3};

 // …

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data =

1 2 3

stack:

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we
understand the memory layout of these data structures

❖ LinkedList In C++:

36

int main() {

 list<int> linked_list {1, 2, 3, 4};

 // …

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail =

head =

stack:

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from
spatial locality (and temporal locality from being iterated through
in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your
default in C++, Rust, etc should be a vector

▪ If you are doing something where performance matters, your best
bet is to experiment try all options and analyze which is better.

37

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object,
you have an instance of that object. If you declare it as a
local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the
memory model is slightly different. Instead, all object
variables are object references, that refer to an object
on the heap

38

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object
variables are object references, that refer to an object on
the heap

39

public class MemoryModel {

 public static void main(String[] args) {

 ArrayList l = new ArrayList({1, 2, 3});

 // …

 }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data =

1

2

3
heap:

stack:

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000

40

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

41

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/tqm

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

42

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

pollev.com/tqm

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take
advantage of the cache

43

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches
instructions. There is a separate cache for this
▪ which is why you may see something like L1I cache and L1D

cache, for Instructions and Data respectively

❖ Consider the following three fake objects linked in
inheritance

44

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 45

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> l = new ArrayList<A>();

 // …

 for (A item : l) {

 item.compute();

 }

 }

}

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

46

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> la = new ArrayList<A>();

 ArrayList lb = new ArrayList();

 ArrayList<C> lc = new ArrayList<C>();

 // …

 for (A item : la) {

 item.compute();

 }

 for (B item : lb) {

 item.compute();

 }

 for (C item : lc) {

 item.compute();

 }

 }

}

	Default Section
	Slide 1: Condition Variables & Caches Computer Systems Programming, Spring 2024
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4
	Slide 5: Lecture Outline
	Slide 6: Is there a data race here?
	Slide 7: Race Condition vs Data Race
	Slide 8: Aside: sleep()
	Slide 9: Thread Communication
	Slide 10: Naïve Solution
	Slide 11: Condition Variables
	Slide 12: pthreads and condition variables
	Slide 13: pthreads and condition variables
	Slide 14: Condition Variable & Mutex Visualization
	Slide 15: Condition Variable & Mutex Visualization
	Slide 16: Condition Variable & Mutex Visualization
	Slide 17: Condition Variable & Mutex Visualization
	Slide 18: Condition Variable & Mutex Visualization
	Slide 19: Condition Variable & Mutex Visualization
	Slide 20: Aside: Things left out
	Slide 21
	Slide 22: Poll: how are you?
	Slide 23: Lecture Outline
	Slide 24: Answer:
	Slide 25: Data Access Time
	Slide 26: Memory Hierarchy
	Slide 27: Memory Hierarchy so far
	Slide 28: Processor Memory Gap
	Slide 29: Cache
	Slide 30: Cache vs Memory Relative Speed
	Slide 31: Cache Performance
	Slide 32: Cache Lines
	Slide 33: Cache Replacement Policy
	Slide 34: Back to the Poll Questions
	Slide 35: Data Structure Memory Layout
	Slide 36: Data Structure Memory Layout
	Slide 37: Poll Question: Explanation
	Slide 38: What about other languages?
	Slide 39: ArrayList in Java Memory Model
	Slide 40: Does Caching apply to Java?
	Slide 41: Poll: how are you?
	Slide 42: Poll: how are you?
	Slide 43: Experiment Results
	Slide 44: Instruction Cache
	Slide 45: Instruction Cache
	Slide 46: Instruction Cache

