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Administrivia

❖ HW1 was due this Friday

▪ Already out

▪ Everything you need has been covered

❖ HW2 to be released soon

▪ Due after break

▪ We expect you to look at it and try some of it (maybe implement 
one of the threading components) before the exam

▪ We do not expect you to work on it over break

❖ Travis still recovering from a stomach virus :(
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Administrivia

❖ Midterm Exam: Wednesday February 28th 7-9 pm in 
Towne 100

▪ Please contact Travis if you cannot make it at that time
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❖ Any questions?
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pollev.com/tqm
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Lecture Outline

❖ Condition Variables

❖ Intro to Caches
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Is there a data race here?

❖ Poll from last 
lecture

▪ race.cpp

❖ This code doesn’t 
have a data-race, 
but it still has a 
synchronization 
issue (via a race 
condition)

6
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Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a 
shared resource, with at least one write, that can cause 
the shared resource to enter an invalid or “unexpected” 
state.

❖ Race-Condition: Where the program has different 
behaviour depending on the ordering of concurrent 
threads. This can happen even if all accesses to shared 
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a 
race condition 

7
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Aside: sleep()

❖ unistd.h defines the function:

▪ Makes the calling thread sleep for the specified number of 
seconds, resuming execution afterwards

❖ Useful for manipulating scheduling for testing  and 
demonstration purposes

▪ Also for asynchronous/non-blocking I/O, but not covered in this 
course.

❖ Necessary for HW2 so that auto-graders work 
8

unsigned int sleep(unsigned int seconds);
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Thread Communication

❖ Sometimes threads may need to communicate with each 
other to know when they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some 
operation

▪ The consumer thread can only produce things once the producer 
has produced them 

9
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Naïve Solution

❖ Consider the example where a thread must wait to be 
notified before it can print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the 
consumer thread can print

❖ See spinning.cpp

❖ Alternative: Condition variables

10
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Condition Variables

❖ Variables that allow for a thread to wait until they are 
notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily 
release while waiting

▪ Once notified, the thread will re-acquire a lock and resume 
execution

11



CIT 5950, Spring 2024L08: Condition Variables & CachesUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

12

int pthread_cond_init(pthread_cond_t* cond,

                const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);
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pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition 
variable. Once unblocked (by one of the functions below), 
function will return and calling thread will have the mutex locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

❖ See cond.cpp
13

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

                pthread_mutex_t* mutex);
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example

14
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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If a thread can’t complete its action, or must wait for some change in 
state, it can “go to sleep” until someone wakes it up later.
It will release the lock implicitly when it goes to sleep
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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When a thread modifies state and then leaves the critical section, it can also call 
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock
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Aside: Things left out

❖ MANY things left out of this lecture

❖ Synchronization methods:

▪ Semaphores

▪ Monitors

❖ Concurrency properties

▪ ACID (databases)

▪ CAP theorem

❖ A lot more concurrency stuff covered in CIS 5050 ☺

20
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21
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Poll: how are you?

❖ Data Structures Review: I want to randomly generate a 
sequence of sorted numbers. To do this, we generate a 
random number and insert the number so that it remains 
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly 
generate an index and remove that index from the 
sequence until it is empty. Would this be faster on a 
LinkedList or an ArrayList? 

22

e.g. if I have sequence [5, 9, 23] and I randomly 
generate 12, I will insert 12 between 9 and 23

pollev.com/tqm
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Lecture Outline

❖ Condition Variables

❖ Intro to Caches

23
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Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

24
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Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to 
access

▪ We see this already with registers. Data in registers is stored on 
the chip and is faster to access than registers

25
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Memory Hierarchy

26

Each layer can be thought 

of as a “cache” of the layer 

below
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Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space 
goes up, but access times increase

27
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Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on 
performance

▪ It is important that data is quick to access to get better CPU 
utilization 28
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Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons, 
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the 
storage of data for increased performance. Data is usually 
either something frequently and/or recently used.

▪ Physical memory is a “Cache” of page frames which may be 
stored on disk. (Instead of going to disk, we can go to physical 
memory which is quicker to access)

29
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Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data 
oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish

30

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
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Cache Performance

❖ Accessing data in the cache allows for much better 
utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck: 
CPU would have to wait for data to come from memory.

❖ How is data loaded into a Cache?

31
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Cache Lines

❖ Imagine memory as a big array of data:

❖ we can split memory into 64-byte “lines” or “blocks”(64 
bytes on most architectures)

▪ This means bottom 6 bits of an address are the offset into a line

▪ The top 58 bits of the address specify the “line” number

❖ When we access data at an address, we bring the whole 
cache line (cache block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!
32

Access this data
Neighboring data brought into the cache
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Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines 
inside it.

❖ When we access data not in the cache, and the cache is 
full, we must evict an existing entry.

❖ When we access a line, we can do a quick calculation on 
the address to determine which entry in the cache we can 
store it in. (Depending on architecture, 1 to 12 possible 
slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the 
entries a line can be stored in

33
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Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a 
sequence of sorted numbers. To do this, we generate a 
random number and insert the number so that it remains 
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly 
generate an index and remove that index from the 
sequence until it is empty. Would this be faster on a 
LinkedList or an ArrayList? 

34
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Data Structure Memory Layout

❖ Important to understanding the poll questions, we 
understand the memory layout of these data structures

❖ ArrayList In C++:

35

int main() {

  vector<int> array_list {1, 2, 3};

  // … 

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data = 

1 2 3

stack:
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Data Structure Memory Layout

❖ Important to understanding the poll questions, we 
understand the memory layout of these data structures

❖ LinkedList In C++:

36

int main() {

  list<int> linked_list {1, 2, 3, 4};

  // … 

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail = 

head = 

stack:
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Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from 
spatial locality (and temporal locality from being iterated through 
in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your 
default in C++, Rust, etc should be a vector

▪ If you are doing something where performance matters, your best 
bet is to experiment try all options and analyze which is better.

37
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What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object, 
you have an instance of that object. If you declare it as a 
local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the 
memory model is slightly different. Instead, all object 
variables are object references, that refer to an object 
on the heap

38
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ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object 
variables are object references, that refer to an object on 
the heap

39

public class MemoryModel {

  public static void main(String[] args) {

    ArrayList l = new ArrayList({1, 2, 3}); 

   // … 

  }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data = 

1

2

3
heap:

stack:
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Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000

40
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Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional 
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or 
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

41

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/tqm
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Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional 
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or 
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

42

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

pollev.com/tqm
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Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take 
advantage of the cache

43
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Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches 
instructions. There is a separate cache for this
▪ which is why you may see something like L1I cache and L1D

cache, for Instructions and Data respectively

❖ Consider the following three fake objects linked in 
inheritance

44

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}
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Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 45

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> l = new ArrayList<A>(); 

    // … 

    for (A item : l) {

       item.compute();

    }

  }

}

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}
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Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

46

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> la = new ArrayList<A>();

    ArrayList<B> lb = new ArrayList<B>(); 

    ArrayList<C> lc = new ArrayList<C>(); 

    // … 

    for (A item : la) {

       item.compute();

    }

    for (B item : lb) {

       item.compute();

    }

    for (C item : lc) {

       item.compute();

    }

  }

}
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