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Administrivia

❖ HW1 was due this Friday

▪ Already out

▪ Everything you need has been covered

❖ HW2 to be released soon

▪ Due after break

▪ We expect you to look at it and try some of it (maybe implement 
one of the threading components) before the exam

▪ We do not expect you to work on it over break

❖ Travis still recovering from a stomach virus :(

2



CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Administrivia

❖ Midterm Exam: Wednesday February 28th 7-9 pm in 
Towne 100

▪ Please contact Travis if you cannot make it at that time

❖ Tentative Final Exam Time:

▪ Friday May 5th 3pm-5pm in Towne 100

▪ Not confirmed, but this is likely it
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❖ Any questions?
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Lecture Outline

❖ Intro to Caches

❖ Scheduling
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Poll: how are you?

❖ Data Structures Review: I want to randomly generate a 
sequence of sorted numbers. To do this, we generate a 
random number and insert the number so that it remains 
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly 
generate an index and remove that index from the 
sequence until it is empty. Would this be faster on a 
LinkedList or an ArrayList? 
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e.g. if I have sequence [5, 9, 23] and I randomly 
generate 12, I will insert 12 between 9 and 23

pollev.com/tqm
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Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

7
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Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to 
access

▪ We see this already with registers. Data in registers is stored on 
the chip and is faster to access than registers
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Memory Hierarchy

9

Each layer can be thought 

of as a “cache” of the layer 

below
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Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space 
goes up, but access times increase

10
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Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on 
performance

▪ It is important that data is quick to access to get better CPU 
utilization 11
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Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons, 
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the 
storage of data for increased performance. Data is usually 
either something frequently and/or recently used.

▪ Physical memory is a “Cache” of page frames which may be 
stored on disk. (Instead of going to disk, we can go to physical 
memory which is quicker to access)
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Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data 
oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish
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https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
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Cache Performance

❖ Accessing data in the cache allows for much better 
utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck: 
CPU would have to wait for data to come from memory.

❖ How is data loaded into a Cache?

14
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Cache Lines

❖ Imagine memory as a big array of data:

❖ we can split memory into 64-byte “lines” or “blocks”(64 
bytes on most architectures)

▪ This means bottom 6 bits of an address are the offset into a line

▪ The top 58 bits of the address specify the “line” number

❖ When we access data at an address, we bring the whole 
cache line (cache block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!
15

Access this data
Neighboring data brought into the cache
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Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines 
inside it.

❖ When we access data not in the cache, and the cache is 
full, we must evict an existing entry.

❖ When we access a line, we can do a quick calculation on 
the address to determine which entry in the cache we can 
store it in. (Depending on architecture, 1 to 12 possible 
slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the 
entries a line can be stored in

16
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Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a 
sequence of sorted numbers. To do this, we generate a 
random number and insert the number so that it remains 
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly 
generate an index and remove that index from the 
sequence until it is empty. Would this be faster on a 
LinkedList or an ArrayList? 

17



CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we 
understand the memory layout of these data structures

❖ ArrayList In C++:

18

int main() {

  vector<int> array_list {1, 2, 3};

  // … 

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data = 

1 2 3

stack:
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Data Structure Memory Layout

❖ Important to understanding the poll questions, we 
understand the memory layout of these data structures

❖ LinkedList In C++:

19

int main() {

  list<int> linked_list {1, 2, 3, 4};

  // … 

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail = 

head = 

stack:
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Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from 
spatial locality (and temporal locality from being iterated through 
in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your 
default in C++, Rust, etc should be a vector

▪ If you are doing something where performance matters, your best 
bet is to experiment try all options and analyze which is better.

20
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What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object, 
you have an instance of that object. If you declare it as a 
local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the 
memory model is slightly different. Instead, all object 
variables are object references, that refer to an object 
on the heap

21
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ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object 
variables are object references, that refer to an object on 
the heap

22

public class MemoryModel {

  public static void main(String[] args) {

    ArrayList l = new ArrayList({1, 2, 3}); 

   // … 

  }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data = 

1

2

3
heap:

stack:
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Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000

23
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Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional 
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or 
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

24

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/tqm
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Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional 
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or 
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

25

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

pollev.com/tqm
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Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take 
advantage of the cache

26
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Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches 
instructions. There is a separate cache for this
▪ which is why you may see something like L1I cache and L1D

cache, for Instructions and Data respectively

❖ Consider the following three fake objects linked in 
inheritance

27

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}
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Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 28

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> l = new ArrayList<A>(); 

    // … 

    for (A item : l) {

       item.compute();

    }

  }

}

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}
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Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

29

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> la = new ArrayList<A>();

    ArrayList<B> lb = new ArrayList<B>(); 

    ArrayList<C> lc = new ArrayList<C>(); 

    // … 

    for (A item : la) {

       item.compute();

    }

    for (B item : lb) {

       item.compute();

    }

    for (C item : lc) {

       item.compute();

    }

  }

}
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Lecture Outline

❖ Intro to Caches

❖ Scheduling

▪ FCFS

▪ SJF

▪ RR

▪ RR Variants

30



CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

OS as the Scheduler

❖ The scheduler is code that is part of the kernel (OS)

❖ The scheduler runs when a thread:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling threads

▪ Choosing which one to run

▪ Deciding how long to run it

31
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Scheduler Terminology

❖ The scheduler has a scheduling algorithm to decide what 
runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: amount of work completed over an interval of time

▪ Wait time: Average time a “task” is “alive” but not running

▪ Turnaround time: time between task being ready and completing

▪ Response time: time it takes between task being ready and when 
it can take user input

▪ Etc…

32
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Goals

❖ The scheduler will have various things to prioritize

❖ Some examples:

❖ Minimizing wait time

▪ Get threads started as soon as possible

❖ Minimizing latency

▪ Quick response times and task completions are preferred

❖ Maximizing throughput

▪ Do as much work as possible per unit of time

❖ Maximizing fairness

▪ Make sure every thread can execute fairly

❖ These goals depend on the system and can conflict 
33
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Scheduling: Other Considerations

❖ It takes time to context switch between threads

▪ Could get more work done if thread switching is minimized

❖ Scheduling takes resources

▪ It takes time to decide which thread to run next

▪ It takes space to hold the required data structures 

❖ Different tasks have different priorities

▪ Higher priority tasks should finish first

34
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Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run 
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given 
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

35
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First Come First Serve (FCFS)

❖ Idea: Whenever a thread is ready, schedule it to run until 
it is finished (or blocks).

❖ Maintain a queue of ready threads

▪ Threads go to the back of the queue when it arrives or becomes 
unblocked

▪ The thread at the front of the queue is the next to run

36
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Example of FCFS

37

❖ Example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
      |  Job 1                |  Job 2  |  Job 3  |

     0                      24        27        30

❖ Total waiting time: 0 + 24 + 27 = 51

❖ Average waiting time: 51/3 = 17

❖ Total turnaround time: 24 + 27 + 30 = 81

❖ Average turnaround time: 81/3 = 27

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2
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❖ What are the advantages/disadvantages/concerns with
First Come First Serve

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 38

pollev.com/tqm
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FCFS Analysis

❖ Advantages:

▪ Simple, low overhead

▪ Hard to screw up the implementation

▪ Each thread will DEFINITELY get to run eventually.

❖ Disadvantages

▪ Doesn’t work well for interactive systems

▪ Throughput can be low due to long threads

▪ Large fluctuations in average turn around time

▪ Priority not taken into considerations

39
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Shortest Job First (SJF)

❖ Idea: variation on FCFS, but have the tasks with the 
smallest CPU-time requirement run first

▪ Arriving jobs are instead put into the queue depending on their 
run time, shorter jobs being towards the front

▪ Scheduler selects the shortest job (1st in queue) and runs till 
completion

40



CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Example of SJF

41

❖ Same example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
      | Job 2 | Job 3  |  Job 1                |  

   0       3        6                       30

❖ Total waiting time: 6 + 0 + 3  = 9

❖ Average waiting time: 3

❖ Total turnaround time: 30 + 3 + 6 = 39

❖ Average turnaround time: 39/3 = 13

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2
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❖ What are the advantages/disadvantages/concerns with
Shortest Job First

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 42

pollev.com/tqm



CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run 
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given 
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

44
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Round Robin

❖ Sort of a preemptive version of FCFS

▪ Whenever a thread is ready, add it to the end of the queue.

▪ Run whatever job is at the front of the queue

❖ BUT only led it run for a fixed amount of time (quantum). 

▪ If it finishes before the time is up, schedule another thread to run

▪ If time is up, then send the running thread back to the end of the 
queue.

45
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Example of Round Robin

46

❖ Same example workload:

Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

❖ RR schedule with time quantum=2:
      |Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| …    |Job 1|

   0     2     4    6     8   9   10    12,14…       30

❖ Total waiting time: (0 + 4 + 2) + (2 + 4) + (4 + 3)  = 19
▪ Counting time spent waiting between each “turn” a job has with the CPU

❖ Average waiting time: 19/3 (~6.33)

❖ Total turnaround time: 30 + 9 + 10 = 49

❖ Average turnaround time: 49/3 (~16.33)
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❖ What are the advantages/disadvantages/concerns with
Round Robin

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 47

pollev.com/tqm
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Round Robin Analysis

❖ Advantages:

▪ Still relatively simple

▪ Can works for interactive systems 

❖ Disadvantages

▪ If quantum is too small, can spend a lot of time context switching

▪ If quantum is too large, approaches FCFS

▪ Still assumes all processes have the same priority.

❖ Rule of thumb:

▪ Choose a unit of time so that most jobs (80-90%) finish in one 
usage of CPU time

48
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RR Variant: Priority Round Robin

❖ Same idea as round robin, but with multiple queues for 
different priority levels.

❖ Scheduler chooses the first item in the highest priority 
queue to run

❖ Scheduler only schedules items in lower priorities if all 
queues with higher priority are empty.

49
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RR Variant: Multi Level Feedback

50

❖ Each priority level has a ready queue, and a time quantum

❖ Thread enters highest priority queue initially, and lower queue with each 
timer interrupt

❖ If a thread voluntarily stops using CPU before time is up, it is moved to 
the end of the current queue

❖ Bottom queue is standard Round Robin

❖ Thread in a given queue not scheduled until all higher queues are empty
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Multi Level Feedback Analysis

❖ Threads with high I/O bursts are preferred

▪ Makes higher utilization of the I/O devices

▪ Good for interactive programs (keyboard, terminal, mouse is I/O)

❖ Threads that need the CPU a lot will sink to lower priority, 
giving shorter threads a chance to run

❖ Still have to be careful in choosing time quantum

❖ Also have to be careful in choosing how many layers

51
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Multi Level Feedback Variants: Priority

❖ Can assign tasks different priority levels upon initiation 
that decide which queue it starts in

▪ E.g. the scheduler should have higher priority than 
HelloWorld.java

❖ Update the priority based on recent CPU usage rather 
than overall cpu usage of a task

▪ Makes sure that priority is consistent with recent behavior

❖ Many others that vary from system to system

52
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Why did we talk about this?

❖ Scheduling is fundamental towards how computer can 
multi-task

❖ This is a great example of how “systems” intersects with 
algorithms :)

❖ It shows up occasionally in the real world :)

▪ Scheduling threads with priority with shared resources can cause 
a priority inversion, potentially causing serious errors.

53

What really happened on Mars Rover Pathfinder, Mike Jones. 
http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html
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54

The Priority Inversion Problem

T1

T2

T3

failed attempt to lock R lock(R) unlock(R)

lock(R) unlock(R)

Priority order: T1 > T2 > T3

T2 is causing a higher priority task T1 wait !
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More

❖ For those curious, there was a LOT left out

❖ RTOS (Real Time Operating Systems)

▪ For real time applications

▪ CRITICAL that data and events meet defined time constraints

▪ Different focus in scheduling. Throughput is de-prioritized

❖ Fair-share scheduling

▪ Equal distribution across different users instead of by processes

❖ Etc.
55
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A little exam practice

56
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Threads & Mutex

❖ The code below has three functions that could be executed in separate 
threads. Note that these are not thread entry points, just functions used by 
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm
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Threads & Mutex

❖ The code below has three functions that could be executed in separate 
threads. Note that these are not thread entry points, just functions used by 
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

58

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm
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Threads & Mutex

❖ The code below has three functions that could be executed in separate 
threads. Note that these are not thread entry points, just functions used by 
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.
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// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}
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Threads & Mutex

❖ The code below has three functions that could be executed in separate 
threads. Note that these are not thread entry points, just functions used by 
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.
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// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}
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