University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Caches & Scheduling

Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang
Felix Sun Serena Chen
Heyi Liu Yuna Shao

Kevin Bernat

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Administrivia

+» HW1 was due this Friday

= Already out
= Everything you need has been covered

«+ HW2 to be released soon
® Due after break

= We expect you to look at it and try some of it (maybe implement
one of the threading components) before the exam

= We do not expect you to work on it over break

+ Travis still recovering from a stomach virus :(

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Administrivia

+ Midterm Exam: Wednesday February 28t 7-9 pm in
Towne 100

" Please contact Travis if you cannot make it at that time

+» Tentative Final Exam Time:
" Friday May 5t 3pm-5pm in Towne 100
= Not confirmed, but this is likely it

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Any questions?

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Lecture Outline

« Intro to Caches
+» Scheduling

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

» Data Structures Review: | want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

e.g. if | have sequence [5, 9, 23] and | randomly
generate 12, | will insert 12 between 9 and 23

» Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

University of Pennsylvania

Answer:

\/
0’0

\/
0’0

/7
A X4

| ran this in C++
on this laptop:

Terminology
" Vector == ArraylList
= List == LinkedList

On Element size from
100,000 -> 500,000

LO9: Caches & Scheduling

3500
3000
2500
2000

1500

Seconds

1000
500

3500
3000
2500

L2}
T 2000
@ 1500

(*a]

1000
500

CIT 5950, Spring 2024

C++ vector vs list (insert)

100000 200000 300000 400000 500000
Mumber of Elements
C++ vector vs list (remove)
100000 200000 300000 400000 500000

Element Size

University of Pennsylvania

L09: Caches & Scheduling

CIT 5950, Spring 2024

Data Access Time

» Data is stored on a physical piece of hardware

+ The distance data must travel on hardware affects how
long it takes for that data to be processed

» Example: data stored closer to the CPU is quicker to
access

= We see this already with registers. Data in registers is stored on
the chip and is faster to access than registers

CIT 5950, Spring 2024

University of Pennsylvania

Memory Hierarchy

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)

devices

storage 5.

L4:

LO9: Caches & Scheduling

below

LO:
ng“g‘s“ CPU registers hold words retrieved

L3:

L1 cache from the L1 cache.
L1:
{SRAM) L1 cache holds cache lines retrieved

from the L2 cache.

L2: L2 cache
(SRAM)

L2 cache holds cache lines
retrieved from L3 cache.

L3 cache
(SRAM)

L3 cache holds cache lines

Main memory
(DRAM)

retrieved from local disks.

Local secondary storage
(local disks)

Each layer can be thonght
of as a “cache” of the layer

Main memory holds disk blocks

Local disks hold files

retrieved from disks
on remote servers.

Remote secondary storage
(e.g., Web servers)

pective, Third Edition

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Memory Hierarchy so far

+ So far, we know of three places where we store data

" CPU Registers
- Small storage size
« Quick access time

" Physical Memory
- In-between registers and disk

= Disk
- Massive storage size
- Long access time

+ (Generally) as we go further from the CPU, storage space
goes up, but access times increase

10

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Processor Memory Gap

100,000
T0, 000 oo
§ TOOO0 -ooommmemcemenncemane e cecinenssenan s snenssnanessoesmanasscnsntaonnseesnsgiffoiconnncansonsascrasonssannsonsassansstonasss
«©
E
8
@ JOO poormnsmeroomaammnmssanasnsomuminanasinnsanannirasanires Mlasnnns dinnunarstabiatsninan s san xiss At s wani s he ma e st wns b
o
10 R R RN G A R e WD o L T S M B S o e B S A B S A R Mo ot o AR W e R R e 8 o e e S s s e ML b o e
1 T 1 T T T
1980 1985 1990 1995 2000 2005 2010
Year

+» Processor speed kept growing ~55% per year
+» Time to access memory didn’t grow as fast ~7% per year
+» Memory access would create a bottleneck on

performance

= |t is important that data is quick to access to get better CPU
utilization

11

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Cache

« Pronounced “cash”

+» English: A hidden storage space for equipment, weapons,
valuables, supplies, etc.

+» Computer: Memory with shorter access time used for the
storage of data for increased performance. Data is usually
either something frequently and/or recently used.

" Physical memory is a “Cache” of page frames which may be
stored on disk. (Instead of going to disk, we can go to physical
memory which is quicker to access)

12

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Cache vs Memory Relative Speed

+ Animation from Mike Acton’s Cppcon 2014 talk on “data
oriented design”.
" https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
® Animation starts at 30:30, ends 31:07 ish

The Battle of North Bridge -

13

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Cache Performance

+ Accessing data in the cache allows for much better
utilization of the CPU

+» Accessing data not in the cache can cause a bottleneck:
CPU would have to wait for data to come from memory.

+» How is data loaded into a Cache?

14

University of Pennsylvania

L09: Caches & Scheduling

CIT 5950, Spring 2024

Cache Lines

/

+» Imagine memory as a big array of data:

T Neighboring data brought into the cache
Access this data

/

+» we can split memory into 64-byte “lines” or “blocks” (64
bytes on most architectures)

® This means bottom 6 bits of an address are the offset into a line
" The top 58 bits of the address specify the “line” number

+» When we access data at an address, we bring the whole
cache line (cache block) into the L1 Cache

= Data next to address access is thus also brought into the cache!

15

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Cache Replacement Policy

+» Caches are small and can only hold so many cache lines
inside it.

» When we access data not in the cache, and the cache is
full, we must evict an existing entry.

- When we access a line, we can do a quick calculation on
the address to determine which entry in the cache we can
store it in. (Depending on architecture, 1 to 12 possible
slots in the cache)

" Cache’s typically follow an LRU (Least Recently Used) on the
entries a line can be stored in

16

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Back to the Poll Questions

» Data Structures Review: | want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

» Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

17

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Data Structure Memory Layout

+» Important to understanding the poll questions, we
understand the memory layout of these data structures

stack:
main’s stack frame
RS ArrayLISt In C++: array_list (object)
int main() { Length =3
vector<int> array list {1, 2, 3};
/) Capacity =3
J Data=|
//
/

heap: /

18

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Data Structure Memory Layout

+» Important to understanding the poll questions, we
understand the memory layout of these data structures

stack:
. . main’s stack frame
« LinkedList In C++: linked_list (object)
it mEakn) | Length = 4
list<int> linked list {1, 2, I
/S tail = /
) head = / \
N
/ \
™~ heap: \
/
N ’/
|~
/ 19

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Poll Question: Explanation

+ Vector wins in-part for a few reasons:
" Less memory allocations

" |ntegers are next to each other in memory, so they benefit from
spatial locality (and temporal locality from being iterated through
in order)

+» Does this mean you should always use vectors?

" No, there are still cases where you should use lists, but your
default in C++, Rust, etc should be a vector

" |f you are doing something where performance matters, your best
bet is to experiment try all options and analyze which is better.

20

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

What about other languages?

» In C++ (and C, Rust, Zig ...) when you declare an object,
you have an instance of that object. If you declare it as a
local variable, it exists on the stack

» In most other languages (including Java, Python, etc.), the
memory model is slightly different. Instead, all object
variables are object references, that refer to an object

on the heap

21

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

ArraylList in Java Memory Model

+ InJava, the memory model is slightly different. all object
variables are object references, that refer to an object on

the heap stack:
main’s stack frame
class MemoryModel { _ _
static void main(String[] args) { ArrayList (object ref)
ArrayList 1 = ArrayList ({1, 2, 31});
/o \
}
}
\
2]
heap: Length =3
5 Capacity =3
Data =
L
/

22

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Does Caching apply to Java?

+ | believe so, yes. Doing the same experiment in java got:

vector vs list (both insert & remove)

S0
20
70

« Note: did this on 60
smaller number of 20

elements. 0
50,000 -> 100,000 50000 60000 70000 80000 90000 100000

Number of Elements

Seconds

Java ArrayList Java LinkedList

23

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+ Let’s say | had a matrix (rectangular two-dimensional
array) of integers, and | want the sum of all integers in it

+ Would it be faster to traverse the matrix row-wise or
column-wise?
" row-wise (access all elements of the first row, then second)
= column:-wise (access all elements of the first column, ...)

1 |5 8 10
11 | 2 6 |9
14 112 |3 7

24

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+ Let’s say | had a matrix (rectangular two-dimensional
array) of integers, and | want the sum of all integers in it

+ Would it be faster to traverse the matrix row-wise or
column-wise?
" row-wise (access all elements of the first row, then second)
= column:-wise (access all elements of the first column, ...)

1 |5 8 10
11 | 2 6 |9
14 112 |3 7

Hint: Memory Representation in C & C++

1 |5 (8 10 | 11 | 2 6 |9 14 112 (3 |7 |0 15 | 13 | £

25

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Experiment Results

« | ran thisin C: Matrix Traversal

1800000
1600000
1400000
1200000
1000000
800000
600000
400000 __,-ﬂ"““’#'
200000

0

Axis Title

100 200 300 400 500 600 700 800 9S00 1000 1100 1200
Single Dimension. (100 -> 100 x 100 matrix)

——— Cache Traversal Row Cache Traversal Col

+» Row traversal is better since it means you can take
advantage of the cache

26

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Instruction Cache

+ The CPU not only has to fetch data, but it also fetches
instructions. There is a separate cache for this

" which is why you may see something like .1 I cache and L.1D
cache, for Instructions and Data respectively

+» Consider the following three fake objects linked in

inheritance class B extends A {
void compute () {
/.
}
class A { }
void compute () {
e class C extends A {
) void compute () {
} 7
}
}

27

University of Pennsylvania

L09: Caches & Scheduling

Instruction Cache

« Consider this code

CIT 5950, Spring 2024

class ICacheExample {
static void main(String[] args) {
ArrayList<A> 1 = ArrayList<A> () ;
/)
(A 1tem : 1) {
item.compute () ;

}

}

class A {
void compute ()

e

{

+» When we call item.compute that
could invoke A’s compute,
B’s compute or C's compute

*

D)

}

}

}

}

class B extends A {

void compute ()

e

{

class C extends A {

void compute ()

e

{

» Constantly calling different functions,

may not utilizes instruction cache well

28

University of Pennsylvania

Instruction Cache

+ Consider this code new code: makes it so we always do

L09: Caches & Scheduling

A.compute() -> B.compute() -> C.compute()

« Instruction Cache
is happier with this

rpublic class ICacheExample {

public static void main(String|]
ArrayList<A> la =
ArrayList 1lb =
ArrayList<C> 1lc =
/)
for (A i1tem : la) {
item.compute () ;
}
for (B item : 1lb) {
item.compute () ;
}
for (C i1tem : 1lc) {
item.compute () ;

}

CIT 5950, Spring 2024

new ArrayList<A>
new ArrayList
new ArrayList<C>

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Lecture Outline

« Intro to Caches
+» Scheduling

= FCFS
= SJF
= RR

" RR Variants

30

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

OS as the Scheduler

+» The scheduler is code that is part of the kernel (OS)

+» The scheduler runs when a thread:
= starts (“arrives to be scheduled”),
" Finishes
= Blocks (e.g., waiting on something, usually some form of 1/0)
" Has run for a certain amount of time

+ It is responsible for scheduling threads
® Choosing which one to run
" Deciding how long to run it

31

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Scheduler Terminology

+» The scheduler has a scheduling algorithm to decide what
runs next.

+ Algorithms are designed to consider many factors:
" Fairness: Every program gets to run
" Liveness: That “something” will eventually happen
" Throughput: amount of work completed over an interval of time
= Wait time: Average time a “task” is “alive” but not running
" Turnaround time: time between task being ready and completing

= Response time: time it takes between task being ready and when
it can take user input

" Ftc...

32

University of Pennsylvania LO9: Caches & Scheduling

Goals

+» The scheduler will have various things to prioritize
+» Some examples:
+ Minimizing wait time

" Get threads started as soon as possible
+» Minimizing latency

" Quick response times and task completions are preferred
% Maximizing throughput

" Do as much work as possible per unit of time
» Maximizing fairness

= Make sure every thread can execute fairly

+» These goals depend on the system and can conflict

CIT 5950, Spring 2024

33

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Scheduling: Other Considerations

» |t takes time to context switch between threads

" Could get more work done if thread switching is minimized

» Scheduling takes resources
= |t takes time to decide which thread to run next
= |t takes space to hold the required data structures

- Different tasks have different priorities
" Higher priority tasks should finish first

34

University of Pennsylvania

L09: Caches & Scheduling

CIT 5950, Spring 2024

Types of Scheduling Algorithms

—«< Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU
" First come first serve (FCFS)
= Shortest Job First (SJF)

+ Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready
= Round Robin

" Priority Round Robin

35

University of Pennsylvania LO9: Caches & Scheduling

CIT 5950, Spring 2024

First Come First Serve (FCFS)

» ldea: Whenever a thread is ready, schedule it to run until
it is finished (or blocks).

» Maintain a queue of ready threads

" Threads go to the back of the queue when it arrives or becomes
unblocked

" The thread at the front of the queue is the next to run

36

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Example of FCFS 1 CPU

Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

+» Example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

«» FCFS schedule:

| Job 1 | Job 2 | Job 3 |
0 24 27 30

» Total waiting time: 0+ 24 + 27 =51

» Average waiting time: 51/3 =17

» Total turnaround time: 24 + 27 + 30 =81
+» Average turnaround time: 81/3 = 27

37

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

<+ What are the advantages/disadvantages/concerns with
First Come First Serve

+» Things a scheduler should prioritize:
" Minimizing wait time
" Minimizing Latency
" Maximizing fairness
" Maximizing throughput
= Task priority
" Cost to schedule things
= Cost to context Switch

% Imagine we have 1 core, and tasks of various lengths... 38

L)

University of Pennsylvania LO9: Caches & Scheduling

FCFS Analysis

+» Advantages:
= Simple, low overhead
" Hard to screw up the implementation
= Each thread will DEFINITELY get to run eventually.

+» Disadvantages
= Doesn’t work well for interactive systems
" Throughput can be low due to long threads
= large fluctuations in average turn around time
" Priority not taken into considerations

CIT 5950, Spring 2024

39

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Shortest Job First (SJF)

» |dea: variation on FCFS, but have the tasks with the
smallest CPU-time requirement run first

= Arriving jobs are instead put into the queue depending on their
run time, shorter jobs being towards the front

= Scheduler selects the shortest job (15t in queue) and runs till
completion

40

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Example of SJF 1 CPU

Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

% Same example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

« FCFS schedule:
| Job 2 | Job 3 | Job 1 |
0 3 6 30

» Total waitingtime:6+0+3 =9

» Average waiting time: 3

» Total turnaround time:30+3 +6 =39
+ Average turnaround time: 39/3 =13

41

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

<+ What are the advantages/disadvantages/concerns with
Shortest Job First

+» Things a scheduler should prioritize:
" Minimizing wait time
" Minimizing Latency
" Maximizing fairness
" Maximizing throughput
= Task priority
" Cost to schedule things
= Cost to context Switch

% Imagine we have 1 core, and tasks of various lengths... a2

L)

University of Pennsylvania

L09: Caches & Scheduling

CIT 5950, Spring 2024

Types of Scheduling Algorithms

+» Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU
" First come first serve (FCFS)
= Shortest Job First (SJF)

—. + Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready
= Round Robin

" Priority Round Robin

44

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Round Robin

+ Sort of a preemptive version of FCFS
" Whenever a thread is ready, add it to the end of the queue.
" Run whatever job is at the front of the queue

» BUT only led it run for a fixed amount of time (quantum).
= |f it finishes before the time is up, schedule another thread to run

= |f time is up, then send the running thread back to the end of the
queue.

45

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Example of Round Robin

» Same example workload:

Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

- RR schedule with time quantum=2:

|Job 1l|Job 2|Job 3|Job 1l|Jo2|Jo3|Job 1| .. |Job 1|
0 2 4 6 8 9 10 12,14.. 30

- Total waiting time: (0+4+2)+(2+4)+(4+3) =19

= Counting time spent waiting between each “turn” a job has with the CPU

» Average waiting time: 19/3 (~6.33)
» Total turnaround time: 30+ 9+ 10 =49

» Average turnaround time: 49/3 (~16.33)

46

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

<+ What are the advantages/disadvantages/concerns with
Round Robin

+» Things a scheduler should prioritize:
" Minimizing wait time
" Minimizing Latency
" Maximizing fairness
" Maximizing throughput
= Task priority
" Cost to schedule things
= Cost to context Switch

% Imagine we have 1 core, and tasks of various lengths... 47

L)

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Round Robin Analysis

+» Advantages:
= Still relatively simple

= Can works for interactive systems

+» Disadvantages
" |f qguantum is too small, can spend a lot of time context switching
= |f qguantum is too large, approaches FCFS
= Still assumes all processes have the same priority.

« Rule of thumb:

" Choose a unit of time so that most jobs (80-90%) finish in one
usage of CPU time

48

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

RR Variant: Priority Round Robin

% Same idea as round robin, but with multiple queues for
different priority levels.

+ Scheduler chooses the first item in the highest priority
queue to run

+ Scheduler only schedules items in lower priorities if all
gueues with higher priority are empty.

49

CIT 5950, Spring 2024

University of Pennsylvania LO9: Caches & Scheduling

RR Variant: Multi Level Feedback

—= M- 10
fime quanitum
lncreases
as
MI—1: 12 priority level

/) desreases

Each priority level has a ready queue, and a time quantum

Thread enters highest priority queue initially, and lower queue with each
timer interrupt

If a thread voluntarily stops using CPU before time is up, it is moved to
the end of the current queue

Bottom queue is standard Round Robin

Thread in a given queue not scheduled until all higher queues are empty
50

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Multi Level Feedback Analysis

% Threads with high 1/0O bursts are preferred
= Makes higher utilization of the 1/O devices

" Good for interactive programs (keyboard, terminal, mouse is 1/0)

+» Threads that need the CPU a lot will sink to lower priority,
giving shorter threads a chance to run

+ Still have to be careful in choosing time quantum

+ Also have to be careful in choosing how many layers

51

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Multi Level Feedback Variants: Priority

+» Can assign tasks different priority levels upon initiation
that decide which queue it starts in

= E.g.the scheduler should have higher priority than
HelloWorld.java

» Update the priority based on recent CPU usage rather
than overall cpu usage of a task
= Makes sure that priority is consistent with recent behavior

» Many others that vary from system to system

52

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

Why did we talk about this?

+» Scheduling is fundamental towards how computer can
multi-task

+ This is a great example of how “systems” intersects with
algorithms :)

+ |t shows up occasionally in the real world :)

= Scheduling threads with priority with shared resources can cause
a priority inversion, potentially causing serious errors.

53

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

The Priority Inversion Problem

Priority order: T1 >T2 > T3 _
failed attempt to lock R lock(R) unlock(R)

T1

T2

lock(R) unlock(R)

s B N

T2 is causing a higher priority task T1 wait !

54

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

More

L)

>

L)

>

L)

*

o0

For those curious, there was a LOT left out

RTOS (Real Time Operating Systems)

" For real time applications

= CRITICAL that data and events meet defined time constraints
= Different focus in scheduling. Throughput is de-prioritized

Fair-share scheduling

" Equal distribution across different users instead of by processes

Etc.

55

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

A little exam practice

56

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:

1 // global variables
= Assume that "lock" has been initialized 2 |pthread mutex t lock;
3 int g = 0;
4 int k = 0;
+ Thread-1 executes line 8 while Z
. void funl () {
Thread'z eXGCUteS ||ne 21 7 pthread_mutex_lock(&lock);
Choose one: 8 g += 3;
= Could lead to a race condition ? pthread mutex_unlock(&lock)
. . - 10 k++;
= There is no possible race condition. 11 |
= The situation cannot occur. 19
13 | void fun2? (int a, int b) {
14 g += a;
+ Thread-1 executes line 15 while 15| a += b;
. 16 k = a;
Thread-2 executes line 15. 171y
Choose one: 12 a0
.. voi un3 (
" Could !ead toa rqce COI"IdItIOI"I.. . 20 pthread mutex lock(&lock);
= There is no possible race condition. 21| g=x+2;
= The situation cannot occur. 22 | pthread mutex unlock (&lock);
23 |}

57

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:

1 // global variables
= Assume that "lock" has been initialized 2 |pthread mutex t lock;
3 int g = 0;
4 int k = 0;
+ Thread-1 executes line 8 while Z
. void funl () {
Thread'z eXGCUteS ||ne 21 7 pthread_mutex_lock(&lock);
Choose one: 8 g += 3;
= Could lead to a race condition ? pthread mutex_unlock(&lock)
. . - 10 k++;
= There is no possible race condition. 11 |
The situation cannot occur. 19
13 | void fun2? (int a, int b) {
14 g += a;
+ Thread-1 executes line 15 while 15| a += b;
. 16 k = a;
Thread-2 executes line 15. 171y
Choose one: 12 a0
.. voi un3 (
=, Could !ead toa rqce COI"IdItIOI"I.. . 20 pthread mutex lock(&lock);
There is no possible race condition. 21| g=x+2;
" The situation cannot occur. 22 | pthread mutex unlock (&lock);
23 |}

58

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:

1 // global variables
= Assume that "lock" has been initialized 2 |pthread mutex t lock;
3 int g = 0;
4 int k = 0;
+ Thread-1 executes line 8 while Z
. void funl () {
Thread-2 executes line 14 ; pthread mutex lock (slock) ;
Choose one: 8 g += 3;
= Could lead to a race condition ? pthread mutex_unlock(&lock)
. . - 10 k++;
= There is no possible race condition. 11 |
= The situation cannot occur. 19
13 | void fun2? (int a, int b) {
14 g += a;
+ Thread-1 executes line 14 while 15| a += b;
. 16 k = a;
Thread-2 executes line 16. 171y
Choose one: 12 a0
.. voi un3 (
" Could !ead toa rqce COI"IdItIOI"I.. . 20 pthread mutex lock(&lock);
= There is no possible race condition. 21| g=x+2;
= The situation cannot occur. 22 | pthread mutex unlock (&lock);
23 |}

59

University of Pennsylvania LO9: Caches & Scheduling CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:

1 // global variables
= Assume that "lock" has been initialized 2 |pthread mutex t lock;
3 int g = 0;
4 int k = 0;
+ Thread-1 executes line 8 while Z
. void funl () {
Thread-2 executes line 14 ; pthread mutex lock (slock) ;
Choose one: 8 g += 3;
Could lead to a race condition ? pthread mutex_unlock(&lock)
. . - 10 k++;
" There is no possible race condition. 11 |
= The situation cannot occur. 19
13 | void fun2? (int a, int b) {
14 g += a;
+ Thread-1 executes line 14 while 15| a += b;
. 16 k = a;
Thread-2 executes line 16. 171y
Choose one: 12 a0
.. voi un3 (
Could !ead toa rqce COI"IdItIOI"I.. . 20 pthread mutex lock(&lock);
There is no possible race condition. 21| g=x+2;
= The situation cannot occur. 22 | pthread mutex unlock (&lock);
23 |}

60

	Default Section
	Slide 1: Caches & Scheduling Computer Systems Programming, Spring 2024
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4
	Slide 5: Lecture Outline
	Slide 6: Poll: how are you?
	Slide 7: Answer:
	Slide 8: Data Access Time
	Slide 9: Memory Hierarchy
	Slide 10: Memory Hierarchy so far
	Slide 11: Processor Memory Gap
	Slide 12: Cache
	Slide 13: Cache vs Memory Relative Speed
	Slide 14: Cache Performance
	Slide 15: Cache Lines
	Slide 16: Cache Replacement Policy
	Slide 17: Back to the Poll Questions
	Slide 18: Data Structure Memory Layout
	Slide 19: Data Structure Memory Layout
	Slide 20: Poll Question: Explanation
	Slide 21: What about other languages?
	Slide 22: ArrayList in Java Memory Model
	Slide 23: Does Caching apply to Java?
	Slide 24: Poll: how are you?
	Slide 25: Poll: how are you?
	Slide 26: Experiment Results
	Slide 27: Instruction Cache
	Slide 28: Instruction Cache
	Slide 29: Instruction Cache
	Slide 30: Lecture Outline
	Slide 31: OS as the Scheduler
	Slide 32: Scheduler Terminology
	Slide 33: Goals
	Slide 34: Scheduling: Other Considerations
	Slide 35: Types of Scheduling Algorithms
	Slide 36: First Come First Serve (FCFS)
	Slide 37: Example of FCFS
	Slide 38
	Slide 39: FCFS Analysis
	Slide 40: Shortest Job First (SJF)
	Slide 41: Example of SJF
	Slide 42
	Slide 44: Types of Scheduling Algorithms
	Slide 45: Round Robin
	Slide 46: Example of Round Robin
	Slide 47
	Slide 48: Round Robin Analysis
	Slide 49: RR Variant: Priority Round Robin
	Slide 50: RR Variant: Multi Level Feedback
	Slide 51: Multi Level Feedback Analysis
	Slide 52: Multi Level Feedback Variants: Priority
	Slide 53: Why did we talk about this?
	Slide 54: The Priority Inversion Problem
	Slide 55: More
	Slide 56: A little exam practice
	Slide 57: Threads & Mutex
	Slide 58: Threads & Mutex
	Slide 59: Threads & Mutex
	Slide 60: Threads & Mutex

