
CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Caches & Scheduling
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Administrivia

❖ HW1 was due this Friday

▪ Already out

▪ Everything you need has been covered

❖ HW2 to be released soon

▪ Due after break

▪ We expect you to look at it and try some of it (maybe implement
one of the threading components) before the exam

▪ We do not expect you to work on it over break

❖ Travis still recovering from a stomach virus :(

2

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Administrivia

❖ Midterm Exam: Wednesday February 28th 7-9 pm in
Towne 100

▪ Please contact Travis if you cannot make it at that time

❖ Tentative Final Exam Time:

▪ Friday May 5th 3pm-5pm in Towne 100

▪ Not confirmed, but this is likely it

3

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

❖ Any questions?

4

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Lecture Outline

❖ Intro to Caches

❖ Scheduling

5

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Poll: how are you?

❖ Data Structures Review: I want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

6

e.g. if I have sequence [5, 9, 23] and I randomly
generate 12, I will insert 12 between 9 and 23

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

7

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to
access

▪ We see this already with registers. Data in registers is stored on
the chip and is faster to access than registers

8

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Memory Hierarchy

9

Each layer can be thought

of as a “cache” of the layer

below

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space
goes up, but access times increase

10

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on
performance

▪ It is important that data is quick to access to get better CPU
utilization 11

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons,
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the
storage of data for increased performance. Data is usually
either something frequently and/or recently used.

▪ Physical memory is a “Cache” of page frames which may be
stored on disk. (Instead of going to disk, we can go to physical
memory which is quicker to access)

12

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data
oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish

13

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Cache Performance

❖ Accessing data in the cache allows for much better
utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck:
CPU would have to wait for data to come from memory.

❖ How is data loaded into a Cache?

14

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Cache Lines

❖ Imagine memory as a big array of data:

❖ we can split memory into 64-byte “lines” or “blocks”(64
bytes on most architectures)

▪ This means bottom 6 bits of an address are the offset into a line

▪ The top 58 bits of the address specify the “line” number

❖ When we access data at an address, we bring the whole
cache line (cache block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!
15

Access this data
Neighboring data brought into the cache

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines
inside it.

❖ When we access data not in the cache, and the cache is
full, we must evict an existing entry.

❖ When we access a line, we can do a quick calculation on
the address to determine which entry in the cache we can
store it in. (Depending on architecture, 1 to 12 possible
slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the
entries a line can be stored in

16

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

17

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we
understand the memory layout of these data structures

❖ ArrayList In C++:

18

int main() {

 vector<int> array_list {1, 2, 3};

 // …

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data =

1 2 3

stack:

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we
understand the memory layout of these data structures

❖ LinkedList In C++:

19

int main() {

 list<int> linked_list {1, 2, 3, 4};

 // …

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail =

head =

stack:

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from
spatial locality (and temporal locality from being iterated through
in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your
default in C++, Rust, etc should be a vector

▪ If you are doing something where performance matters, your best
bet is to experiment try all options and analyze which is better.

20

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object,
you have an instance of that object. If you declare it as a
local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the
memory model is slightly different. Instead, all object
variables are object references, that refer to an object
on the heap

21

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object
variables are object references, that refer to an object on
the heap

22

public class MemoryModel {

 public static void main(String[] args) {

 ArrayList l = new ArrayList({1, 2, 3});

 // …

 }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data =

1

2

3
heap:

stack:

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000

23

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

24

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

25

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take
advantage of the cache

26

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches
instructions. There is a separate cache for this
▪ which is why you may see something like L1I cache and L1D

cache, for Instructions and Data respectively

❖ Consider the following three fake objects linked in
inheritance

27

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 28

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> l = new ArrayList<A>();

 // …

 for (A item : l) {

 item.compute();

 }

 }

}

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

29

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> la = new ArrayList<A>();

 ArrayList lb = new ArrayList();

 ArrayList<C> lc = new ArrayList<C>();

 // …

 for (A item : la) {

 item.compute();

 }

 for (B item : lb) {

 item.compute();

 }

 for (C item : lc) {

 item.compute();

 }

 }

}

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Lecture Outline

❖ Intro to Caches

❖ Scheduling

▪ FCFS

▪ SJF

▪ RR

▪ RR Variants

30

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

OS as the Scheduler

❖ The scheduler is code that is part of the kernel (OS)

❖ The scheduler runs when a thread:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling threads

▪ Choosing which one to run

▪ Deciding how long to run it

31

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Scheduler Terminology

❖ The scheduler has a scheduling algorithm to decide what
runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: amount of work completed over an interval of time

▪ Wait time: Average time a “task” is “alive” but not running

▪ Turnaround time: time between task being ready and completing

▪ Response time: time it takes between task being ready and when
it can take user input

▪ Etc…

32

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Goals

❖ The scheduler will have various things to prioritize

❖ Some examples:

❖ Minimizing wait time

▪ Get threads started as soon as possible

❖ Minimizing latency

▪ Quick response times and task completions are preferred

❖ Maximizing throughput

▪ Do as much work as possible per unit of time

❖ Maximizing fairness

▪ Make sure every thread can execute fairly

❖ These goals depend on the system and can conflict
33

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Scheduling: Other Considerations

❖ It takes time to context switch between threads

▪ Could get more work done if thread switching is minimized

❖ Scheduling takes resources

▪ It takes time to decide which thread to run next

▪ It takes space to hold the required data structures

❖ Different tasks have different priorities

▪ Higher priority tasks should finish first

34

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

35

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

First Come First Serve (FCFS)

❖ Idea: Whenever a thread is ready, schedule it to run until
it is finished (or blocks).

❖ Maintain a queue of ready threads

▪ Threads go to the back of the queue when it arrives or becomes
unblocked

▪ The thread at the front of the queue is the next to run

36

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Example of FCFS

37

❖ Example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
 | Job 1 | Job 2 | Job 3 |

 0 24 27 30

❖ Total waiting time: 0 + 24 + 27 = 51

❖ Average waiting time: 51/3 = 17

❖ Total turnaround time: 24 + 27 + 30 = 81

❖ Average turnaround time: 81/3 = 27

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
First Come First Serve

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 38

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

FCFS Analysis

❖ Advantages:

▪ Simple, low overhead

▪ Hard to screw up the implementation

▪ Each thread will DEFINITELY get to run eventually.

❖ Disadvantages

▪ Doesn’t work well for interactive systems

▪ Throughput can be low due to long threads

▪ Large fluctuations in average turn around time

▪ Priority not taken into considerations

39

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Shortest Job First (SJF)

❖ Idea: variation on FCFS, but have the tasks with the
smallest CPU-time requirement run first

▪ Arriving jobs are instead put into the queue depending on their
run time, shorter jobs being towards the front

▪ Scheduler selects the shortest job (1st in queue) and runs till
completion

40

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Example of SJF

41

❖ Same example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
 | Job 2 | Job 3 | Job 1 |

 0 3 6 30

❖ Total waiting time: 6 + 0 + 3 = 9

❖ Average waiting time: 3

❖ Total turnaround time: 30 + 3 + 6 = 39

❖ Average turnaround time: 39/3 = 13

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
Shortest Job First

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 42

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

44

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Round Robin

❖ Sort of a preemptive version of FCFS

▪ Whenever a thread is ready, add it to the end of the queue.

▪ Run whatever job is at the front of the queue

❖ BUT only led it run for a fixed amount of time (quantum).

▪ If it finishes before the time is up, schedule another thread to run

▪ If time is up, then send the running thread back to the end of the
queue.

45

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Example of Round Robin

46

❖ Same example workload:

Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

❖ RR schedule with time quantum=2:
 |Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| … |Job 1|

 0 2 4 6 8 9 10 12,14… 30

❖ Total waiting time: (0 + 4 + 2) + (2 + 4) + (4 + 3) = 19
▪ Counting time spent waiting between each “turn” a job has with the CPU

❖ Average waiting time: 19/3 (~6.33)

❖ Total turnaround time: 30 + 9 + 10 = 49

❖ Average turnaround time: 49/3 (~16.33)

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
Round Robin

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 47

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Round Robin Analysis

❖ Advantages:

▪ Still relatively simple

▪ Can works for interactive systems

❖ Disadvantages

▪ If quantum is too small, can spend a lot of time context switching

▪ If quantum is too large, approaches FCFS

▪ Still assumes all processes have the same priority.

❖ Rule of thumb:

▪ Choose a unit of time so that most jobs (80-90%) finish in one
usage of CPU time

48

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

RR Variant: Priority Round Robin

❖ Same idea as round robin, but with multiple queues for
different priority levels.

❖ Scheduler chooses the first item in the highest priority
queue to run

❖ Scheduler only schedules items in lower priorities if all
queues with higher priority are empty.

49

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

RR Variant: Multi Level Feedback

50

❖ Each priority level has a ready queue, and a time quantum

❖ Thread enters highest priority queue initially, and lower queue with each
timer interrupt

❖ If a thread voluntarily stops using CPU before time is up, it is moved to
the end of the current queue

❖ Bottom queue is standard Round Robin

❖ Thread in a given queue not scheduled until all higher queues are empty

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Multi Level Feedback Analysis

❖ Threads with high I/O bursts are preferred

▪ Makes higher utilization of the I/O devices

▪ Good for interactive programs (keyboard, terminal, mouse is I/O)

❖ Threads that need the CPU a lot will sink to lower priority,
giving shorter threads a chance to run

❖ Still have to be careful in choosing time quantum

❖ Also have to be careful in choosing how many layers

51

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Multi Level Feedback Variants: Priority

❖ Can assign tasks different priority levels upon initiation
that decide which queue it starts in

▪ E.g. the scheduler should have higher priority than
HelloWorld.java

❖ Update the priority based on recent CPU usage rather
than overall cpu usage of a task

▪ Makes sure that priority is consistent with recent behavior

❖ Many others that vary from system to system

52

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Why did we talk about this?

❖ Scheduling is fundamental towards how computer can
multi-task

❖ This is a great example of how “systems” intersects with
algorithms :)

❖ It shows up occasionally in the real world :)

▪ Scheduling threads with priority with shared resources can cause
a priority inversion, potentially causing serious errors.

53

What really happened on Mars Rover Pathfinder, Mike Jones.
http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

54

The Priority Inversion Problem

T1

T2

T3

failed attempt to lock R lock(R) unlock(R)

lock(R) unlock(R)

Priority order: T1 > T2 > T3

T2 is causing a higher priority task T1 wait !

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

More

❖ For those curious, there was a LOT left out

❖ RTOS (Real Time Operating Systems)

▪ For real time applications

▪ CRITICAL that data and events meet defined time constraints

▪ Different focus in scheduling. Throughput is de-prioritized

❖ Fair-share scheduling

▪ Equal distribution across different users instead of by processes

❖ Etc.
55

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

A little exam practice

56

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

58

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

59

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIT 5950, Spring 2024L09: Caches & SchedulingUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

	Default Section
	Slide 1: Caches & Scheduling Computer Systems Programming, Spring 2024
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4
	Slide 5: Lecture Outline
	Slide 6: Poll: how are you?
	Slide 7: Answer:
	Slide 8: Data Access Time
	Slide 9: Memory Hierarchy
	Slide 10: Memory Hierarchy so far
	Slide 11: Processor Memory Gap
	Slide 12: Cache
	Slide 13: Cache vs Memory Relative Speed
	Slide 14: Cache Performance
	Slide 15: Cache Lines
	Slide 16: Cache Replacement Policy
	Slide 17: Back to the Poll Questions
	Slide 18: Data Structure Memory Layout
	Slide 19: Data Structure Memory Layout
	Slide 20: Poll Question: Explanation
	Slide 21: What about other languages?
	Slide 22: ArrayList in Java Memory Model
	Slide 23: Does Caching apply to Java?
	Slide 24: Poll: how are you?
	Slide 25: Poll: how are you?
	Slide 26: Experiment Results
	Slide 27: Instruction Cache
	Slide 28: Instruction Cache
	Slide 29: Instruction Cache
	Slide 30: Lecture Outline
	Slide 31: OS as the Scheduler
	Slide 32: Scheduler Terminology
	Slide 33: Goals
	Slide 34: Scheduling: Other Considerations
	Slide 35: Types of Scheduling Algorithms
	Slide 36: First Come First Serve (FCFS)
	Slide 37: Example of FCFS
	Slide 38
	Slide 39: FCFS Analysis
	Slide 40: Shortest Job First (SJF)
	Slide 41: Example of SJF
	Slide 42
	Slide 44: Types of Scheduling Algorithms
	Slide 45: Round Robin
	Slide 46: Example of Round Robin
	Slide 47
	Slide 48: Round Robin Analysis
	Slide 49: RR Variant: Priority Round Robin
	Slide 50: RR Variant: Multi Level Feedback
	Slide 51: Multi Level Feedback Analysis
	Slide 52: Multi Level Feedback Variants: Priority
	Slide 53: Why did we talk about this?
	Slide 54: The Priority Inversion Problem
	Slide 55: More
	Slide 56: A little exam practice
	Slide 57: Threads & Mutex
	Slide 58: Threads & Mutex
	Slide 59: Threads & Mutex
	Slide 60: Threads & Mutex

