
CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Virtual Memory
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Any questions so far?

❖ Any questions, comments or concerns so far about
anything?

2

pollev.com/tqm

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Upcoming Due Dates

❖ HW2 (Threads)

▪ Due a week from Thursday

❖ Midterm

▪ Exams still being graded

▪ A few makeups still happening

3

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Lecture Outline

❖ Pointers & Old Memory Model

❖ Problems with old memory model

❖ Virtual Memory High Level

❖ Page Replacement

4

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Memory

❖ Where all data, code, etc are
stored for a program

❖ Broken up into several
segments:

▪ The stack

▪ The heap

▪ The kernel

▪ Etc.

❖ Each “unit” of memory has an
address

5

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Memory as a giant array

❖ In CIT 5930 we introduced memory as a giant array of
bytes, with each byte having its own address:

❖ Our variables live in memory

6

int main(int argc, char* argv[]) {

 char a = 'a';

 char b = 'b';

 return 0;

}

0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C 0x5D 0x5E

'a' 'b'

0x0 0x1 0x2
…

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Pointers

❖ Variables that store addresses

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition: type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address

• Trying to access that data at that address will treat the data there as
an int

7

int *ptr;

type* name; type *name;

equivalent

POINTERS ARE EXTREMELY IMPORTANT

IN C (and C++ to a lesser extent)

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:

8

int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 595;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Pointers as References

❖ The exact value stored in a pointer almost never matters,
we treat them more like references

❖ In this class we will never hardcode in an address into a
pointer. We will never do something like :

▪ Read as: "`ptr` contains the address 0x7fffff5194"

▪ *with the exception of NULL

❖ Instead, we write code that is more often like:

▪ Read as: "`ptr` refers to the integer `example`"

▪ Or "`ptr` contains the address of the integer `example`"
9

int *ptr = 0x7fffff5194;

int example = 5;

int *ptr = &a;

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

NULL

❖ NULL is a memory location that is guaranteed to be
invalid
▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL

causes a segmentation fault

❖ Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error

▪ It’s better to cause a segfault than to allow the corruption of
memory!

10

int main(int argc, char** argv) {

 int* p = NULL;

 *p = 1; // causes a segmentation fault

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

0x2001 a --

0x2002 b --

0x2003 c --

0x2004 ptr --

Pointer Example

11

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

Initial values

are garbage

In real code, you

should always

initialize variables

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr --

Pointer Example

12

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

x --

p --

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

13

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

14

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c 10

0x2004 ptr 0x2001

Pointer Example

15

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

❖ What does this code print?

16

pollev.com/tqm

int main(int argc, char** argv) {

 int x {5};

 int y {10};

 int* z {&x};

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 cout << "x: " << x << endl;

 cout << "y: " << y << endl;

 cout << "z: " << *z << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Lecture Outline

❖ Pointers & Old Memory Model

❖ Problems with old memory model

❖ Virtual Memory High Level

❖ Page Replacement

17

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Poll: how are you?

❖ What does this print for x
at all three points in
the code?

❖ Is the value of ptr the same
for all three spots?

❖ (yes this is C code not C++
you can assume it compiles)

18

pollev.com/tqm

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Review: Processes

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

19

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Memory (as we know it now)

❖ The CPU directly uses an address to access a location in
memory

22

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Problem 1: How does everything fit?

On a 64-bit machine, there are 264
bytes, which is:
18,446,744,073,709,551,616 Bytes
(1.844 x 1019)

23

Laptops usually have around 8GB which is
8,589,934,592 Bytes (8.589 x 109)

(Not to scale; physical memory is smaller than the
period at the end of the sentence compared to the
virtual address space.)

This is just one address space,

consider multiple processes…

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Problem 2: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Problem 2: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

❖ What is stopping process B
from accessing A’s memory?

Process A
using

Process A
using

Process B
using

Process B
using

Process B
using

Process A

Process B

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Problem 3: How do we segment things

❖ A process’ address space contains
many different “segments”

❖ How do we keep track of which
segment is which and the permissions
each segment may have?

▪ (e.g., that Read-Only data can’t be written)

26

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Lecture Outline

❖ Pointers & Old Memory Model

❖ Problems with old memory model

❖ Virtual Memory High Level

❖ Page Replacement

27

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Idea:

❖ We don’t need all processes to have their data in physical
memory, just the ones that are currently running

❖ For the process’ that are currently running: we don’t need
all of their data to be in physical memory, just the parts
that are currently being used

❖ Data that isn’t currently stored in physical memory, can
be stored elsewhere (disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

28

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Pages

❖ Memory can be split up into units called “pages”

29

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
are stored on disk

Unused pages may
not have any mapping

disk

 Ram may contain pages from
other active processes

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

This doesn’t work anymore

❖ The CPU directly uses an address to access a location in
memory

30

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Indirection

❖ "Any problem in computer science can be solved by
adding another level of indirection."

▪ David wheeler, inventor of the subroutine (e.g. functions)

❖ The ability to indirectly reference something using a
name, reference or container instead of the value itself. A
flexible mapping between a name and a thing allows
chagcing the thing without notifying holders of the name.

▪ May add some work to use indirection

▪ Example: Phone numbers can be transferred to new phones

❖ Idea: instead of directly referring to physical memory, add
a level of indirection 31

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Definitions

❖ Addressable Memory: the total amount of memory that
can be theoretically be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is
physically available on the computer

❖ Virtual Memory: An abstraction technique for making
memory look larger than it is and hides many details from
the programs.

32

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual
addresses are translated into them by the MMU

33

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Page Tables

❖ Virtual addresses can be converted into physical
addresses via a page table.

❖ There is one page table per processes, managed by the
MMU

34

More details about

translation on Wednesday

Virtual page # Valid Physical Page Number

0 0 null

1 1 0

2 1 1

3 0 disk

Valid determines if the

page is in physical memory

If a page is on disk,

MMU will fetch it

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

This doesn’t work anymore

❖ The CPU directly uses an address to access a location in
memory

35

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Indirection

❖ "Any problem in computer science can be solved by
adding another level of indirection."

▪ David wheeler, inventor of the subroutine (e.g. functions)

❖ The ability to indirectly reference something using a
name, reference or container instead of the value itself. A
flexible mapping between a name and a thing allows
chagcing the thing without notifying holders of the name.

▪ May add some work to use indirection

▪ Example: Phone numbers can be transferred to new phones

❖ Idea: instead of directly referring to physical memory, add
a level of indirection 36

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Idea:

❖ We don’t need all processes to have their data in physical
memory, just the ones that are currently running

❖ For the process’ that are currently running: we don’t need
all their data to be in physical memory, just the parts that
are currently being used

❖ Data that isn’t currently stored in physical memory, can
be stored elsewhere (disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

37

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Pages

❖ Memory can be split up into units called “pages”

38

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

 Ram may contain pages from
other active processes

Pages are of fixed size ~4KB

4KB -> (4 * 1024 = 4096 bytes.)

Pages in physical memory

are called “Page frames”

A page may not have an

accompanying page frame

until the page is used

(what the process thinks it has)

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Definitions

❖ Addressable Memory: the total amount of memory that
can be theoretically be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is
physically available on the computer

❖ Virtual Memory: An abstraction technique for making
memory look larger than it is and hides many details from
the programs.

39

Sometimes called “virtual memory”

or the “virtual address space”

IT MAY OR MAY NOT

EXIST ONHARDWARE

(like if that memory is

never used)

Physical memory holds a subset of the addressable memory being used

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual
addresses are translated into them by the MMU

40

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

THIS SLIDE IS KEY TO THE WHOLE IDEA

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Page Tables

❖ Virtual addresses can be converted into physical
addresses via a page table.

❖ There is one page table per processes, managed by the
MMU

41

More details about

translation later

Virtual page # Valid Physical Page Number

0 0 null //page hasn’t been used yet

1 1 0

2 1 1

3 0 disk

Valid determines if the

page is in physical memory

If a page is on disk,

MMU will fetch it

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Page Fault Exception

❖ An Exception is a transfer of control to the OS kernel in
response to some synchronous event (directly caused by
what was just executed)

❖ In this case, writing to a memory location that is not in
physical memory currently

User code Kernel code

Exception: page fault
Handle page fault:
How it is handled
depends on if this
page has been
handled before

Returns to running thread

Access a
virtual page
not in RAM

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical
memory.

❖ If physical memory is full and we need to load in a page,
then we choose a page in physical memory to store on
disk in the swap file

❖ If we need to load in a page from disk, how do we decide
which page in physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to
disk. It takes a while to go to disk.

43

More details about page replacement later

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Paging

❖ What happens if this process tries to access an address in
page 3?

44

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Paging

❖ What happens if this process tries to access an address in
page 3?

45

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

The MMU access the

corresponding frame

(frame 2)

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Paging

❖ What happens if we need to load in page 1 and physical
memory is full?

46

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Paging

❖ What happens if we need to load in page 1 and physical
memory is full?

47

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

We get a page fault,

the OS evicts a page

from a frame, loads in

new page into that

frame

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Lecture Outline

❖ Pointers & Old Memory Model

❖ Problems with old memory model

❖ Virtual Memory High Level

❖ Page Replacement

48

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical
memory.

❖ If we need to load in a page from disk, how do we decide
which page in physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to
disk. It takes a while to go to disk.

49

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Paging Replacement Algorithms

❖ Simple Algorithms:

▪ Random choice

• “dumbest” method, easy to implement

▪ FIFO

• Replace the page that has been in physical memory the longest

❖ Both could evict a page that is used frequently and would
require going to disk to retrieve it again.

50

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

(Theoretically) Optimal Algorithm

❖ If we knew the precise sequence of requests for pages in
advance, we could optimize for smallest overall number
of faults

▪ Always replace the page to be used at the farthest point in future

▪ Optimal (but unrealizable since it requires us to know the future)

❖ Off-line simulations can estimate the performance of a
page replacement algorithm and can be used to measure
how well the chosen scheme is doing

❖ Optimal algorithm can be approximated by using the past
to predict the future

51

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Least Recently Used (LRU)

❖ Assume pages used recently will be used again soon

▪ Throw out page that has been unused for longest time

❖ Past is usually a good indicator for the future

❖ LRU has significant overhead:

▪ A timestamp for each memory access that is updated in the page
table

▪ Sorted list of pages by timestamp

52

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

How to Implement LRU?

❖ Counter-based solution:

▪ Maintain a counter that gets incremented with each memory
access

▪ When we need to evict a page, pick the page with lowest counter

❖ List based solution

▪ Maintain a linked list of pages in memory

▪ On every memory access, move the accessed page to end

▪ Pick the front page to evict

❖ HashMap and LinkedList

▪ Maintain a hash map and a linked list

▪ The list acts the same as the list-based solution

▪ The HashMap has keys that are the page number, values that are
pointers to the nodes in the linked list to support O(1) lookup

53

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

LRU Data Structure

❖ We can use a linked list to implement LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

54

Discuss

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

LRU Data Structure

❖ We can use a linked list to implement LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

55

Discuss

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used

O(n)

O(1)

O(1)

Is there a structure we know of that has O(1) lookup time?

CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Chaining Hash Cache

❖ We can use a combination of two data structures:
▪ linked_list<page_info>

▪ hash_map<page_num, node*>

56

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used

list

key vlaue

0

0xFDEA

4312

75

13

O(1) lookup
O(1) remove
O(1) move to front

Implementing and coming up with
this was an interview question for me.
Full time position @ Microsoft

	Default Section
	Slide 1: Virtual Memory Computer Systems Programming, Spring 2024
	Slide 2: Any questions so far?
	Slide 3: Upcoming Due Dates
	Slide 4: Lecture Outline
	Slide 5: Memory
	Slide 6: Memory as a giant array
	Slide 7: Pointers
	Slide 8: Pointer Operators
	Slide 9: Pointers as References
	Slide 10: NULL
	Slide 11: Pointer Example
	Slide 12: Pointer Example
	Slide 13: Pointer Example
	Slide 14: Pointer Example
	Slide 15: Pointer Example
	Slide 16
	Slide 17: Lecture Outline
	Slide 18: Poll: how are you?
	Slide 19: Review: Processes
	Slide 20: Multiprocessing: The Illusion
	Slide 21: Multiprocessing: The (Traditional) Reality
	Slide 22: Memory (as we know it now)
	Slide 23: Problem 1: How does everything fit?
	Slide 24: Problem 2: Sharing Memory
	Slide 25: Problem 2: Sharing Memory
	Slide 26: Problem 3: How do we segment things
	Slide 27: Lecture Outline
	Slide 28: Idea:
	Slide 29: Pages
	Slide 30: This doesn’t work anymore
	Slide 31: Indirection
	Slide 32: Definitions
	Slide 33: Virtual Address Translation
	Slide 34: Page Tables
	Slide 35: This doesn’t work anymore
	Slide 36: Indirection
	Slide 37: Idea:
	Slide 38: Pages
	Slide 39: Definitions
	Slide 40: Virtual Address Translation
	Slide 41: Page Tables
	Slide 42: Page Fault Exception
	Slide 43: Problem: Paging Replacement
	Slide 44: Paging
	Slide 45: Paging
	Slide 46: Paging
	Slide 47: Paging
	Slide 48: Lecture Outline
	Slide 49: Problem: Paging Replacement
	Slide 50: Paging Replacement Algorithms
	Slide 51: (Theoretically) Optimal Algorithm
	Slide 52: Least Recently Used (LRU)
	Slide 53: How to Implement LRU?
	Slide 54: LRU Data Structure
	Slide 55: LRU Data Structure
	Slide 56: Chaining Hash Cache

