
CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Virtual Memory
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama  Lang Qin 

CV Kunjeti  Sean Chuang

Felix Sun  Serena Chen

Heyi Liu  Yuna Shao

Kevin Bernat



CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Any questions so far?

❖ Any questions, comments or concerns so far about 
anything?
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Upcoming Due Dates

❖ HW2 (Threads)

▪ Due a week from Thursday

❖ Midterm

▪ Exams still being graded

▪ A few makeups still happening
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Lecture Outline

❖ Pointers & Old Memory Model

❖ Problems with old memory model

❖ Virtual Memory High Level

❖ Page Replacement
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Memory

❖ Where all data, code, etc are 
stored for a program

❖ Broken up into several 
segments:

▪ The stack

▪ The heap

▪ The kernel

▪ Etc.

❖ Each “unit” of memory has an 
address
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OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata
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Memory as a giant  array

❖ In CIT 5930 we introduced memory as a giant array of 
bytes, with each byte having its own address:

❖ Our variables live in memory
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int main(int argc, char* argv[]) {

  char a = 'a';

  char b = 'b';

  return 0;

}

0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C 0x5D 0x5E

'a' 'b'

0x0 0x1 0x2
…
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Pointers

❖ Variables that store addresses 

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition:  type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address 

• Trying to access that data at that address will treat the data there as 
an int
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int *ptr;

type* name; type *name;

equivalent

POINTERS ARE EXTREMELY IMPORTANT 

IN C (and C++ to a lesser extent)
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Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:
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int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 595;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2
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Pointers as References

❖ The exact value stored in a pointer almost never matters, 
we treat them more like references

❖ In this class we will never hardcode in an address into a 
pointer. We will never do something like :

▪ Read as: "`ptr` contains the address 0x7fffff5194"

▪ *with the exception of NULL

❖ Instead, we write code that is more often like: 

▪ Read as: "`ptr` refers to the integer `example`"

▪ Or "`ptr` contains the address of the integer `example`"
9

int *ptr = 0x7fffff5194; 

int example = 5;

int *ptr = &a; 
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NULL

❖ NULL is a memory location that is guaranteed to be 
invalid
▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL 

causes a segmentation fault

❖ Useful as an indicator of an uninitialized (or currently 
unused) pointer or allocation error

▪ It’s better to cause a segfault than to allow the corruption of 
memory!
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int main(int argc, char** argv) {

  int* p = NULL;

  *p = 1;  // causes a segmentation fault

  return EXIT_SUCCESS;

}
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0x2001 a --

0x2002 b --

0x2003 c --

0x2004 ptr --

Pointer Example
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int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location

Initial values 

are garbage

In real code, you 

should always 

initialize variables
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0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr --

Pointer Example
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int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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x --

p --

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example
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int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example
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int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c 10

0x2004 ptr 0x2001

Pointer Example
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int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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❖ What does this code print?
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pollev.com/tqm

int main(int argc, char** argv) {

  int x {5};

  int y {10};

  int* z {&x};  

  *z += 1;

   x += 1;  

   z  = &y;  

  *z += 1;  

  cout << "x: " <<  x << endl;

  cout << "y: " <<  y << endl;

  cout << "z: " << *z << endl;

  return EXIT_SUCCESS;

}
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Lecture Outline

❖ Pointers & Old Memory Model

❖ Problems with old memory model

❖ Virtual Memory High Level

❖ Page Replacement
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Poll: how are you?

❖ What does this print for x
at all three points in
the code?

❖ Is the value of ptr the same
for all three spots?

❖ (yes this is C code not C++
you can assume it compiles)

18
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Review: Processes

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources
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OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP
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Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data
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Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking) 
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

…
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Memory (as we know it now)

❖ The CPU directly uses an address to access a location in 
memory
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CPU

0:

1:

2:

3:

4:

5:

...

data
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Problem 1: How does everything fit?

On a 64-bit machine, there are 264 
bytes, which is: 
18,446,744,073,709,551,616 Bytes 
(1.844 x 1019)
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Laptops usually have around 8GB which is
8,589,934,592 Bytes (8.589 x 109)

(Not to scale; physical memory is smaller than the 
period at the end of the sentence compared to the 
virtual address space.)

This is just one address space, 

consider multiple processes…
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Problem 2: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

…
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Problem 2: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

❖ What is stopping process B
from accessing A’s memory?

Process A 
using

Process A 
using

Process B 
using

Process B 
using

Process B 
using

Process A

Process B



CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Problem 3: How do we segment things

❖ A process’ address space contains
many different “segments”

❖ How do we keep track of which
segment is which and the permissions
each segment may have?

▪ (e.g., that Read-Only data can’t be written)
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OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP
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Lecture Outline

❖ Pointers & Old Memory Model

❖ Problems with old memory model

❖ Virtual Memory High Level

❖ Page Replacement

27
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Idea:

❖ We don’t need all processes to have their data in physical 
memory, just the ones that are currently running

❖ For the process’ that are currently running: we don’t need 
all of their data to be in physical memory, just the parts 
that are currently being used

❖ Data that isn’t currently stored in physical memory, can 
be stored elsewhere (disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

28
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Pages

❖ Memory can be split up into units called “pages”

29

Address space
Physical memory

Pages currently in use are stored 
in physical memory (RAM)

Pages not currently in use 
are stored on disk

Unused pages may 
not have any mapping

disk

 Ram may contain pages from 
other active processes
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This doesn’t work anymore

❖ The CPU directly uses an address to access a location in 
memory

30

CPU

0:

1:

2:

3:

4:

5:

...

data
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Indirection

❖ "Any problem in computer science can be solved by 
adding another level of indirection."

▪ David wheeler, inventor of the subroutine (e.g. functions)

❖ The ability to indirectly reference something using a 
name, reference or container instead of the value itself. A 
flexible mapping between a name and a thing allows 
chagcing the thing without notifying holders of the name.

▪ May add some work to use indirection

▪ Example: Phone numbers can be transferred to new phones

❖ Idea: instead of directly referring to physical memory, add 
a level of indirection 31
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Definitions

❖ Addressable Memory: the total amount of memory that 
can be theoretically be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is 
physically available on the computer

❖ Virtual Memory: An abstraction technique for making 
memory look larger than it is and hides many details from 
the programs.

32
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Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual 
addresses are translated into them by the MMU
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CPU

0:

1:

2:

3:

4:

5:

...
Virtual address 

(0x300)

data

MMU

Physical address 
(0x3)

Memory
Management
Unit
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Page Tables

❖ Virtual addresses can be converted into physical 
addresses via a page table.

❖ There is one page table per processes, managed by the 
MMU

34

More details about 

translation on Wednesday

Virtual page # Valid Physical Page Number

0 0 null

1 1 0

2 1 1

3 0 disk

Valid determines if the 

page is in physical memory

If a page is on disk, 

MMU will fetch it
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This doesn’t work anymore

❖ The CPU directly uses an address to access a location in 
memory

35

CPU

0:

1:

2:

3:

4:

5:

...

data
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Indirection

❖ "Any problem in computer science can be solved by 
adding another level of indirection."

▪ David wheeler, inventor of the subroutine (e.g. functions)

❖ The ability to indirectly reference something using a 
name, reference or container instead of the value itself. A 
flexible mapping between a name and a thing allows 
chagcing the thing without notifying holders of the name.

▪ May add some work to use indirection

▪ Example: Phone numbers can be transferred to new phones

❖ Idea: instead of directly referring to physical memory, add 
a level of indirection 36
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Idea:

❖ We don’t need all processes to have their data in physical 
memory, just the ones that are currently running

❖ For the process’ that are currently running: we don’t need 
all their data to be in physical memory, just the parts that 
are currently being used

❖ Data that isn’t currently stored in physical memory, can 
be stored elsewhere (disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

37
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Pages

❖ Memory can be split up into units called “pages”

38

Address space
Physical memory

Pages currently in use are stored 
in physical memory (RAM)

Pages not currently in use 
(but were used in the past) 
are stored on disk

Unused pages may 
not have any mapping

disk

 Ram may contain pages from 
other active processes

Pages are of fixed size ~4KB

4KB -> (4 * 1024 = 4096 bytes.)

Pages in physical memory 

are called “Page frames”

A page may not have an 

accompanying page frame 

until the page is used

(what the process thinks it has)
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Definitions

❖ Addressable Memory: the total amount of memory that 
can be theoretically be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is 
physically available on the computer

❖ Virtual Memory: An abstraction technique for making 
memory look larger than it is and hides many details from 
the programs.

39

Sometimes called “virtual memory” 

or the “virtual address space”

IT MAY OR MAY NOT 

EXIST ONHARDWARE

(like if that memory is 

never used)

Physical memory holds a subset of the addressable memory being used



CIT 5950, Spring 2024L12: Virtual MemoryUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual 
addresses are translated into them by the MMU

40

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address 

(0x300)

data

MMU

Physical address 
(0x3)

Memory
Management
Unit

THIS SLIDE IS KEY TO THE WHOLE IDEA
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Page Tables

❖ Virtual addresses can be converted into physical 
addresses via a page table.

❖ There is one page table per processes, managed by the 
MMU

41

More details about 

translation later

Virtual page # Valid Physical Page Number

0 0 null //page hasn’t been used yet

1 1 0

2 1 1

3 0 disk

Valid determines if the 

page is in physical memory

If a page is on disk, 

MMU will fetch it
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Page Fault Exception

❖ An Exception is a transfer of control to the OS kernel in 
response to some synchronous event (directly caused by 
what was just executed)

❖ In this case, writing to a memory location that is not in 
physical memory currently

User code Kernel code

Exception: page fault
Handle page fault: 
How it is handled 
depends on if this 
page has been 
handled before

Returns to running thread

Access a 
virtual page 
not in RAM
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Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical 
memory.

❖ If physical memory is full and we need to load in a  page, 
then we  choose a page in physical memory to store on 
disk in the swap file

❖ If we need to load in a page from disk, how do we decide 
which page in physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to 
disk. It takes a while to go to disk.

43

More details about page replacement later
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Paging 

❖ What happens if this process tries to access an address in 
page 3?

44

Address space
Physical memory

Pages currently in use are stored 
in physical memory (RAM)

Pages not currently in use 
(but were used in the past) 
are stored on disk

Unused pages may 
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm
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Paging 

❖ What happens if this process tries to access an address in 
page 3?

45

Address space
Physical memory

Pages currently in use are stored 
in physical memory (RAM)

Pages not currently in use 
(but were used in the past) 
are stored on disk

Unused pages may 
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

The MMU access the 

corresponding frame 

(frame 2)
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Paging 

❖ What happens if we need to load in page 1 and physical 
memory is full?
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Address space
Physical memory

Pages currently in use are stored 
in physical memory (RAM)

Pages not currently in use 
(but were used in the past) 
are stored on disk

Unused pages may 
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm
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Paging 

❖ What happens if we need to load in page 1 and physical 
memory is full?

47

Address space
Physical memory

Pages currently in use are stored 
in physical memory (RAM)

Pages not currently in use 
(but were used in the past) 
are stored on disk

Unused pages may 
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

We get a page fault,

the OS evicts a page

from a frame, loads in

new page into that 

frame
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Lecture Outline

❖ Pointers & Old Memory Model

❖ Problems with old memory model

❖ Virtual Memory High Level

❖ Page Replacement

48
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Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical 
memory.

❖ If we need to load in a page from disk, how do we decide 
which page in physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to 
disk. It takes a while to go to disk.

49
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Paging Replacement Algorithms

❖ Simple Algorithms:

▪ Random choice

• “dumbest” method, easy to implement

▪ FIFO

• Replace the page that has been in physical memory the longest

❖ Both could evict a page that is used frequently and would 
require going to disk to retrieve it again.

50
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(Theoretically) Optimal Algorithm

❖ If we knew the precise sequence of requests for pages in 
advance, we could optimize for smallest overall number 
of faults

▪ Always replace the page to be used at the farthest point in future

▪ Optimal (but unrealizable since it requires us to know the future)

❖ Off-line simulations can estimate the performance of a 
page replacement algorithm and can be used to measure 
how well the chosen scheme is doing

❖ Optimal algorithm can be approximated by using the past 
to predict the future

51
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Least Recently Used (LRU)

❖ Assume pages used recently will be used again soon

▪ Throw out page that has been unused for longest time

❖ Past is usually a good indicator for the future

❖ LRU has significant overhead: 

▪ A timestamp for each memory access that is updated in the page 
table

▪ Sorted list of pages by timestamp

52
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How to Implement LRU?

❖ Counter-based solution:

▪ Maintain a counter that gets incremented with each memory 
access 

▪ When we need to evict a page, pick the page with lowest counter

❖ List based solution

▪ Maintain a linked list of pages in memory

▪ On every memory access, move the accessed page to end

▪ Pick the front page to evict

❖ HashMap and LinkedList

▪ Maintain a hash map and a linked list

▪ The list acts the same as the list-based solution

▪ The HashMap has keys that are the page number, values that are 
pointers to the nodes in the linked list to support O(1) lookup 

53
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LRU Data Structure

❖ We can use a linked list to implement LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

54

Discuss

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used
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LRU Data Structure

❖ We can use a linked list to implement LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

55

Discuss

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used

O(n)

O(1)

O(1)

Is there a structure we know of that has O(1) lookup time?
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Chaining Hash Cache

❖ We can use a combination of two data structures:
▪ linked_list<page_info>

▪ hash_map<page_num, node*>

56

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used

list

key vlaue

0

0xFDEA

4312

75

13

O(1) lookup
O(1) remove
O(1) move to front

Implementing and coming up with
this was an interview question for me.
Full time position @ Microsoft 
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