
CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Virtual Memory Details
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Any questions so far?

❖ Why do we store data in physical memory? Why don’t we
store all of the pages and data in disk?

2

pollev.com/tqm

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Any questions so far?

❖ On a 32-bit machine, one address space is 4 GB. If we
have 8 GB of RAM installed, is it possible to "run out" of
physical memory? How?

3

pollev.com/tqm

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Any questions so far?

❖ Any questions, comments or concerns so far about
anything?

4

pollev.com/tqm

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Upcoming Due Dates

❖ HW2 (Threads)

▪ Due a week from Thursday

❖ Midterm

▪ Exams still being graded

▪ A few makeups still happening

5

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Lecture Outline

❖ Review

❖ Virtual Memory Details

6

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Idea:

❖ We don’t need all processes to have their data in physical
memory, just the ones that are currently running

❖ For the process’ that are currently running: we don’t need
all of their data to be in physical memory, just the parts
that are currently being used

❖ Data that isn’t currently stored in physical memory, can
be stored elsewhere (disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

7

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Definitions

❖ Addressable Memory: the total amount of memory that
can be theoretically be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is
physically available on the computer

❖ Virtual Memory: An abstraction technique for making
memory look larger than it is and hides many details from
the programs.

8

IT MAY NOT EXIST

ON REAL HARDWARE

Sometimes called “virtual memory”

or “virtual address space”

Adding Addressable Memory + Physical Memory doesn’t make sense

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Pages

❖ Memory can be split up into units called “pages”

9

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
are stored on disk

Unused pages may
not have any mapping

disk

 Ram may contain pages from
other active processes

Pages are fixed size chunks ~4KB

(4 * 1024 = 4096 bytes)

Pages on physical storage

are called a “Page Frame”

e.g., a Virtual page may not

have an accompanying page

frame until the page is used

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Unused Pages

On a 64-bit machine, there are 264
bytes, which is:
18,446,744,073,709,551,616 Bytes
(1.844 x 1019)

10

Laptops usually have around 8GB which is
8,589,934,592 Bytes (8.589 x 109)

(Not to scale; physical memory is smaller than the
period at the end of the sentence compared to the
virtual address space.)

As I write this slide, PowerPoint is using 212.7MB
which is: 223,032,115 Bytes (2.230 x 107)

Some programs don’t need 264 bytes,
so several pages may never be used

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

This doesn’t work anymore

❖ The CPU directly uses an address to access a location in
memory

11

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual
addresses are translated into them by the MMU

12

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Page Tables

❖ Virtual addresses can be converted into physical
addresses via a page table.

❖ There is one page table per process, managed by the
MMU. Has one entry per virtual page.

13

More details about

translation on Wednesday

Virtual page # Valid Physical Page Number

0 0 null

1 1 0

2 1 1

3 0 disk

Valid determines if the

page is in physical memory

If a page is on disk,

MMU will fetch it

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Page Replacement

❖ We don’t have space to store all active pages in physical
memory.

❖ If we need to load in a page from disk, how do we decide
which page in physical memory to “evict”

▪ Have a page replacement algorithm (e.g. LRU)

❖ Goal: Minimize the number of times we have to go to
disk. It takes a while to go to disk.

14

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Lecture Outline

❖ Review

❖ Virtual Memory Details

15

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Aside: Bits

❖ We represent data on the computer in binary
representation (base 2)

❖ A bit is a single “digit” in a binary representation.

❖ A bit is either a 0 or a 1

❖ In decimal -> 13

▪ (1 * 101) + (3 * 100)

❖ In binary -> 0b1101

▪ (1 * 23) + (1 * 22) + (0 * 21) + (1 * 20) -> 8 + 4 + 0 + 1 -> 13

❖ In decimal -> 243

❖ In binary -> 0b11110011 16

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Hexadecimal

❖ Base 16 representation of numbers

❖ Allows us to represent binary with
fewer characters

▪ 0b11110011 == 0xF3
 ^ binary ^ hex

17

Decimal Binary Hex

0 0000 0x0

1 0001 0x1

2 0010 0x2

3 0011 0x3

4 0100 0x4

5 0101 0x5

6 0110 0x6

7 0111 0x7

8 1000 0x8

9 1001 0x9

10 1010 0xA

11 1011 0xB

12 1100 0xC

13 1101 0xD

14 1110 0xE

15 1111 0xF

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Pages & Frames Details

❖ A page is typically 4 KiB -> 212 -> 4096 bytes

❖ If physical memory is 32 KiB, how many page frames are
there?

❖ If addressable memory for a single process consists of 64
KiB bytes, how many pages are there for one process?

❖ If there is one page table per process, how many entries
should there be in a single page table?

18

pollev.com/tqm

A. 5 B. 4 C. 32 D. 8 E. We’re lost…

A. 64 B. 16 C. 20 D. 6 E. We’re lost…

A. 6 B. 8 C. 16 D. 5 E. We’re lost…

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Addresses

❖ Virtual Address:

▪ Used to refer to a location in a virtual address space.

▪ Generated by the CPU and used by our programs

❖ Physical Address

▪ Refers to a location on physical memory

▪ Virtual addresses are converted to physical addresses

20

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ If there are 16 pages, how
many bits would you need
to represent the number of
pages?

❖ If there are 8 pages frames,
how many bits would we
need to represent the
number of page frames?

21

A. 4 2

B. 4 3

C. 3 3

D. 5 3

E. We’re lost…

pollev.com/tqm

Page bits Frame bits

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Steps For Translation

❖ Derive the virtual page number from a virtual address

❖ Look up the virtual page number in the page table

▪ Handle the case where the virtual page doesn’t correspond to a
physical page frame

❖ Construct the physical address

23

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Address Translation: Virtual Page Number

❖ A virtual address is composed of two parts relevant for
translating:

▪ Virtual Page Number length = bits to represent number of pages

▪ Page offset length = bits to represent number of bytes in a page

❖ The virtual page number determines which page we want
to access

❖ The page offset determines which location within a page
we want to access.

▪ Remember that a page is many bytes (~4KiB -> 4096 bytes)

24

Virtual Page Number Page Offset

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Page Offset

❖ This idea of Virtual Memory abstracts things on the level
of Pages (4096 bytes == 212 bytes)

❖ On almost every machine, memory is byte-addressable
meaning that each byte in memory has its own address

❖ How many different addresses correspond to the same
page?

❖ How many bits are needed in an address to specify where
in the page the address is referring to?

25

4096 addresses to a single page

12 bits

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Virtual Address High Level View

❖ High level view:

▪ Each page starts at a multiple of 4096 (0X1000)

▪ If we take an address and add 4096
(0x1000) we get the same offset
but into the next page

26

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x0595

0x1595

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Address Translation: Virtual Page Number

❖ A virtual address is composed of two parts relevant for
translating:

▪ Virtual Page Number length = bits to represent number of pages

▪ Page offset length = bits to represent number of bytes in a page

❖ Example address: 0x1234

▪ What is the page number?

▪ What is the offset?

▪ Reminder: there are 16 virtual pages, and a page is 4096 bytes

27

Virtual Page Number Page Offset

pollev.com/tqm

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Address Translation: Virtual Page Number

❖ A virtual address is composed of two parts relevant for
translating:

▪ Virtual Page Number length = bits to represent number of pages

▪ Page offset length = bits to represent number of bytes in a page

❖ Example address: 0x1234

▪ What is the page number?

▪ What is the offset?

▪ Reminder: there are 16 virtual pages, and a page is 4096 bytes

28

Virtual Page Number Page Offset

pollev.com/tqm

0001 0010 0011 0100

0001 -> 0x1

0010 0011 0100 -> 0x234

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Address Translation: Lookup & Combining

❖ Once we have the page number, we can look up in our
page table to find the corresponding physical page
number.

▪ For now, we will assume there is an associate page frame

❖ With the physical page number, combine it with the page
offset to get the physical address

▪ Since we only need 3 bits to represent the physical page number,
we only 15 bits for the address (as opposed to 16).

▪ In our example, with 0x1234, our physical address is 0x5234 29

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x5

… … …

Physical Page Number Page Offset

Translation
Done!

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Page Faults

❖ What if we accessed a page whose page frame was not in
physical memory?

❖ In this example, Virtual page 0x0 and 0x3

30

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x0

0x2 1 0x5

0x3 0 Disk

… … …

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Page Fault Exception

❖ An exception is a transfer of control to the OS kernel in
response to some event

❖ In this case, writing to a memory location that is not in
physical memory currently

User code Kernel code

Exception: page fault
Handle page fault:
How it is handled
depends on if this
page has been
handled before

Returns to running thread

Access a
virtual page
not in RAM

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Page Faults

❖ In this example, Virtual page 0x3, whose frame is on disk
(page 0x3 handled before, but was evicted at some point)

▪ MMU fetches the page from disk

▪ Evicts an old page from physical memory if necessary

• Uses LRU or some page replacement algorithm

• Writes the contents of the evicted page back to disk

▪ Store the previously fetched page to physical memory
32

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x0

0x2 1 0x5

0x3 0 Disk

… … …

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Page Faults

❖ In this example, Virtual page 0x0, which has never been
accessed before

▪ Evict an old page if necessary

▪ Claim an empty frame and use it as the frame for our virtual page

33

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x0

0x2 1 0x5

0x3 0 Disk

… … …

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ There are 16 pages, 4 frames, and after starting from an
empty page table, the following memory accesses are
made in the listed order:

▪ 0x4321, 0x1FEE, 0x1FEF, 0x2FFF, 0x3000, 0x400F

❖ If we are using Least Recently Used (LRU) for our
replacement policy, what page would be evicted if we
access memory address 0x5234

34

pollev.com/tqm

A. 0x4

B. 0x3

C. 0x2

D. 0x1

E. Nothing is evicted

CIT 5950, Spring 2024L13: Virtual Memory DetailsUniversity of Pennsylvania

Details left out

❖ Virtual Memory

▪ COW Fork (Copy On Write)

▪ Details about shared process memory

▪ Transition Lookaside Buffers (TLB)

❖ Memory Hierarchy

▪ Cache Associativity

▪ Writing Policies

▪ DRAM vs SRAM

❖ A bunch of details that would be system-specific

36

	Default Section
	Slide 1: Virtual Memory Details Computer Systems Programming, Spring 2024
	Slide 2: Any questions so far?
	Slide 3: Any questions so far?
	Slide 4: Any questions so far?
	Slide 5: Upcoming Due Dates
	Slide 6: Lecture Outline
	Slide 7: Idea:
	Slide 8: Definitions
	Slide 9: Pages
	Slide 10: Unused Pages
	Slide 11: This doesn’t work anymore
	Slide 12: Virtual Address Translation
	Slide 13: Page Tables
	Slide 14: Page Replacement
	Slide 15: Lecture Outline
	Slide 16: Aside: Bits
	Slide 17: Hexadecimal
	Slide 18: Pages & Frames Details
	Slide 20: Addresses
	Slide 21: One way to read() n bytes
	Slide 23: Steps For Translation
	Slide 24: Address Translation: Virtual Page Number
	Slide 25: Page Offset
	Slide 26: Virtual Address High Level View
	Slide 27: Address Translation: Virtual Page Number
	Slide 28: Address Translation: Virtual Page Number
	Slide 29: Address Translation: Lookup & Combining
	Slide 30: Page Faults
	Slide 31: Page Fault Exception
	Slide 32: Page Faults
	Slide 33: Page Faults
	Slide 34: One way to read() n bytes
	Slide 36: Details left out

