
CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

C interop & Processes
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Logistics

❖ Exam grades posted Monday night

▪ Regrade requests opened 24 hours after grades are posted

▪ Will be open for a week (Tuesday 4/9 @ 11:59pm)

▪ Rember that we have the clobber policy, it is ok if the exam did
not go well.

❖ HW03 released: due Friday next week

▪ Recitation tomorrow will be helpful for understanding it
conceptually

❖ Project to be posted soon

▪ Partner sign up released Monday, due on Friday

▪ Code and specification posted soon

❖ Checkin to be released soon
2

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

❖ Any questions?

3

pollev.com/tqm

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Lecture Outline

❖ C++ & C Interop

▪ C Strings & Arrays w/ C++

❖ Processes & Fork

❖ stdin, stdout, stderr & File Descriptors

❖ Exec

❖ Pipe

4

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

POSIX

❖ POSIX – Portable Operating System Interface

▪ Supported on most operating systems

▪ Provides access to many features that are not available directly
from the C or C++ standard library

• If a language does support something that POSIX provides, it almost
certainly is done by calling these system calls

• Example: open(), read(), write(), close(), lseek()

❖ POSIX is implemented in C

▪ This means if any language wants to take advantage of these
features, it must know how to call C code

▪ C++ can interact with C code directly, with only a few changes

5

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

C Arrays

❖ Definition: type name[size]

▪ Allocates size*sizeof(type) bytes of contiguous memory

▪ Normal usage is a compile-time constant for size
(e.g. int scores[175];)

▪ Initially, array values are “garbage”

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

▪ The programmer will have to store the length in another variable
or hard-code it in

▪ Sometimes can store nullptr or a special value to mark the end
of an array.

6

type name[size]

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Pointer Arithmetic

❖ We can treat pointers as if they are C-style arrays.

▪ Note: not every pointer is necessarily an Array.

• An int* could point to an array of integers or only one integer

• In either case the “arr[i]” syntax will compile for all pointers.

7

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

for (int i = 0; i < size; i++) {

 sum += ptr[i];

}

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

C++ Arrays

❖ C arrays are considered dangerous, and not safe to use

▪ Length is not attached to the array

▪ There is no bounds checking

▪ Arrays are not readable code
Consider this CIS 5480 Example:
What do you think “commands”
represents?

❖ In our code, we will use C++ Arrays instead, but we need
to call C code that expects C arrays…

8

// example from CIS 5480

struct parsed_command {

 int num_commands;

 char*** commands;

};

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

C++ Arrays -> C array

❖ Can use .data() and .size() to convert to a C array

9

int sumAll(int* a, int size) {

 int i, sum = 0;

 for (i = 0; i < size; i++) {

 sum += a[i];

 }

 return sum;

}

int main(){

 array<int, 1024> arr{};

 sumAll(arr.data(), arr.size());

}

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

C++ Vector

❖ C++ Vector is a dynamically re-sizeable array

▪ If we need more (or less) elements, the “array” can grow or shrink
to accommodate for this

▪ C++ vector is implemented as an object that is just a wrapper
around a C-style array that is allocated on the heap.

• The internal C-style array is re-allocated whenever we need more
space.

10

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

C Strings (without Objects)

❖ Strings are central to C, very important for I/O

❖ In C, we don’t have Objects but we need strings

❖ If a string is just a sequence of characters, we can have
use array of characters as a string

❖ Example:

11

char str_arr[] = "Hello World!";

char *str_ptr = "Hello World!";

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

C-string “end” (Null Termination)

❖ Arrays don’t have a length, but we mark the end of a
string with the null terminator character.
▪ The null terminator has value 0x00 or '\0'

▪ Well formed strings MUST be null terminated

❖ Example:

▪ Takes up 6 characters, 5 for “Hello” and 1 for the null terminator

❖ strlen() takes in a c-string and returns the length (not
counting the null-terminator) 12

char str[] = "Hello";

address 0x2000 0x2001 0x2002 0x2003 0x2004 0x2005

value 'H' 'e' 'l' 'l' 'o' '\0'

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

C++ Strings

❖ C++ std::string is just an object that manages ("wraps
around") a C-string. Reallocating when necessary.

13

class string {

 public:

 string(const char* c_string) {

 length_ = strlen(c_string);

 capacity_ = length_ + 1;

 data_ = new char[capacity_];

 for (size_t i = 0; i <= length_; i++) {

 data_[i] = c_string[i]

 }

 }

 private:

 char* data_;

 size_t capacity_;

 size_t length_;

};

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

C++ Strings -> C Strings

❖ C++ Strings can grant access to the underlying C-String
through the function .c_str()

❖ This is useful for when interfacing with C code from C++:

14

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

 ...

 string fname{"foo.txt"};

 const char* fname_cstr = fname.c_str();

 int fd = open(fname_cstr, O_RDONLY);

 if (fd == -1) {

 perror("open failed");

 exit(EXIT_FAILURE);

 }

 ...

 close(fd);

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

❖ What does this code print?

15

pollev.com/tqm

int mystery(int* a, int size) {

 int sum = 0;

 for (size_t i = 0; i < size; i++) {

 sum += a[i];

 a[i] = sum;

 }

 return sum;

}

int main(){

 vector<int> vec{3, 4};

 mystery(vec.data(), vec.size());

 vec.push_back(5);

 for (auto& n : vec) {

 cout << n << endl;

 }

}

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Lecture Outline

❖ C++ & C Interop

❖ Processes & Fork

❖ stdin, stdout, stderr & File Descriptors

❖ Exec

❖ Pipe

16

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Review: Address Spaces

❖ A process has its own
address space

▪ Includes segments for different parts
of memory

▪ A process usually has one or more
threads

• A thread tracks its current state using
the stack pointer (SP) and program
counter (PC)

❖ New processes are created with:

17

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PCpid_t fork();

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the
parent

18

pid_t fork();

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

19

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

20

parent

OS

fork()

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

21

parent child

OS

clone

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

22

parent child

OS

child pid 0

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

fork() example

23

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 595;

} else {

 x = 593;

}

cout << x << endl;

Always prints "Hello"

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

fork() example

24

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 595;

} else {

 x = 593;

}

cout << x << endl;

Always prints "Hello"

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

fork() example

25

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 595;

} else {

 x = 593;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 595;

} else {

 x = 593;

}

cout << x << endl;

fork()

Child Process (PID = Y)Parent Process (PID = X)

Does NOT print "Hello"

fork_ret = Y fork_ret = 0

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

fork() example

26

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 595;

} else {

 x = 593;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 595;

} else {

 x = 593;

}

cout << x << endl;

fork()

Child Process (PID = Y)Parent Process (PID = X)

Always prints "593" Always prints "595"

fork_ret = Y fork_ret = 0

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait()
or waitpid().

27

void exit(int status);

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

❖ How many
numbers are
printed? What
number(s) get
printed from
each process?

28

pollev.com/tqm

int global_num = 1;

void function() {

 global_num++;

 cout << global_num << endl;

}

int main() {

 pid_t id = fork();

 if (id == 0) {

 function();

 id = fork();

 if (id == 0) {

 function();

 }

 return EXIT_SUCCESS;

 }

 global_num += 2;

 cout << global_num << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

❖ How many times is ":)" printed?

29

pollev.com/tqm

int main(int argc, char* argv[]) {

 for (int i = 0; i < 4; i++) {

 fork();

 }

 cout << ":)\n"; // "\n" is similar to endl

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

"join"-ing a Process

❖

▪ The “process equivalent” of pthread_join()

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter
wstatus

▪ options are optional, pass in 0 for default options in most
cases

▪ Returns process ID of child who was waited for or -1 on error

❖ Wait

▪ Equivalent of waitpid, but waits for ANY child

30

pid_t waitpid(pid_t pid, int *wstatus,

 int options);

pid_t wait(int *wstatus);

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Demo: fork_example

❖ See fork_example.cpp

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), waitpid() and exit()!

31

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Lecture Outline

❖ C++ & C Interop

❖ Processes & Fork

❖ stdin, stdout, stderr & File Descriptors

❖ Exec

❖ Pipe

32

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

stdout, stdin, stderr

❖ By default, there are three “files” open when a program
starts

▪ stdin: for reading terminal input typed by a user

• cin in C++

• System.in in Java

▪ stdout: the normal terminal output.

• cout in C++

• System.out in Java

▪ stderr: the terminal output for printing errors

• cerr in C++

• System.err in Java

33

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

stdout, stdin, stderr

❖ stdin, stdout, and stderr all have initial file descriptors
constants defined in unistd.h

▪ STDIN_FILENO -> 0

▪ STDOUT_FILENO -> 1

▪ STDERR_FILENO -> 2

❖ These will be open on default for a process

❖ Printing to stdout with cout will use
write(STDOUT_FILENO, …)

34

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

File Descriptor Table

❖ In addition to an address space, each process will have its
own file descriptor table managed by the OS

❖ The table is just an array, and the file descriptor is an
index into it.

35

Terminal input

Terminal output

Foo.txt

open("Foo.txt", O_RDWR);

0

1

2

3

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table
managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table
for the child

36

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table
managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table
for the child

37

fork()

parent child

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table
managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table
for the child

38

parent child

Child is unaffected by parent calling open!

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Gap Slide

❖ Gap slide to distinguish we are moving on to a new
example (that looks very similar to the previous one)

39

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is
associated with something other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to
the redirected output

❖ To do this: use dup2()

40

Terminal input

Terminal output

Foo.txt

0

1

2

3

printf is implemented using
write(STDOUT_FILENO

That’s why it is redirected
after changing stdout

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is
associated with something other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to
the redirected output

❖ To do this: use dup2()

41

Terminal input

Terminal output

Foo.txt

0

1

2

3

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Closing a file descriptor

❖ If we close a file descriptor, it only closes that descriptor,
not the file itself

❖ Other file descriptors to the same file will still be open

❖ use close()

42

Terminal input

Terminal output

Foo.txt

0

1

2

3

close(3);

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

❖ Given the following code, what is the contents of
"hello.txt" and what is printed to the terminal?

43

pollev.com/tqm

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Explanation

int fd = open("hello.txt", O_WRONLY);

printf("hi\n");

44

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Explanation

close(STDOUT_FILENO);

45

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Explanation

close(STDOUT_FILENO);

printf("?\n");

46

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

// errors! Nothing printed

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Explanation

dup2(fd, STDOUT_FILENO);

47

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Explanation

dup2(fd, STDOUT_FILENO);

printf("!\n");

48

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

!

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Explanation

close(fd);

49

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

!

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Explanation

printf("*\n");

50

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

!

*

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Lecture Outline

❖ C++ & C Interop

❖ Processes & Fork

❖ stdin, stdout, stderr & File Descriptors

❖ Exec

❖ Pipe

51

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the
specified program can run

52

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

execvp()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of
finding the command/program to run

❖ Argv is an array of char*, the same kind of argv that is
passed to main() in a C/C++ program

▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL/nullptr as the last entry of the array

❖ Returns -1 on error. Does NOT return on success

53

int execvp(const char *file,

 char* const argv[]);

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

54

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cpp

other.cpp

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Exec Demo

❖ See exec_example.cpp

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens if we open some files before exec?

▪ What happens if we replace stdout with a file?

❖ NOTE: When a process exits, then it will close all of its
open files by default

55

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Poll: how are you?

❖ In each of these, how often is ":)" printed? Assume
functions don’t fail

56

int main(int argc, char* argv[]) {

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"echo",

 "hello",

 NULL};

 execvp(argv[0], argv);

 }

 cout << ":)" << endl;

 return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 return EXIT_SUCCESS;

 }

 cout << ":)" << endl;

 return EXIT_SUCCESS;

}

pollev.com/tqm

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Lecture Outline

❖ C++ & C Interop

❖ Processes & Fork

❖ stdin, stdout, stderr & File Descriptors

❖ Exec

❖ Pipe

57

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Pipes

❖ Creates a unidirectional data channel for IPC

❖ Communication through file descriptors! // POSIX ☺

❖ Takes in an array of two integers, and sets each integer to
be a file descriptor corresponding to an “end” of the pipe

❖ pipefd[0] is the reading end of the pipe

❖ pipefd[1] is the writing end of the pipe

❖ In addition to copying memory, fork
copies the file descriptor table of parent

❖ Exec does NOT reset file descriptor table
58

int pipe(int pipefd[2]);

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Pipe Visualization

❖ A pipe can be thought of as a "file" that has distinct file
descriptors for reading and writing. This "file" only exists
as long as the pipe exists and is maintained by the OS.

▪ Data written to the pipe is stored in a
buffer until it is read from the pipe

59

Terminal input

Terminal output

Kernel

Pipe Buffer

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and
will not terminate until then

❖ Like reading from the terminal, just because there is
nothing in the pipe, does not mean nothing else will ever
come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH
60

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

❖ What does the parent print? What does the child print?
why? (assume pipe, close and fork succeed)

61

pollev.com/tqm

pipe_unidirect.cpp
on course website

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and
will not terminate until then

❖ Like reading from the terminal, just because there is
nothing in the pipe, does not mean nothing else will ever
come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH
62

CIT 5950, Spring 2024L19: Processes & C interopUniversity of Pennsylvania

That’s all!

❖ More on pipe in next lecture!

❖ Any questions?

63

	Default Section
	Slide 1: C interop & Processes Computer Systems Programming, Spring 2024
	Slide 2: Logistics
	Slide 3
	Slide 4: Lecture Outline
	Slide 5: POSIX
	Slide 6: C Arrays
	Slide 7: Pointer Arithmetic
	Slide 8: C++ Arrays
	Slide 9: C++ Arrays -> C array
	Slide 10: C++ Vector
	Slide 11: C Strings (without Objects)
	Slide 12: C-string “end” (Null Termination)
	Slide 13: C++ Strings
	Slide 14: C++ Strings -> C Strings
	Slide 15
	Slide 16: Lecture Outline
	Slide 17: Review: Address Spaces
	Slide 18: Creating New Processes
	Slide 19: fork() and Address Spaces
	Slide 20: fork()
	Slide 21: fork()
	Slide 22: fork()
	Slide 23: fork() example
	Slide 24: fork() example
	Slide 25: fork() example
	Slide 26: fork() example
	Slide 27: Exiting a Process
	Slide 28
	Slide 29
	Slide 30: "join"-ing a Process
	Slide 31: Demo: fork_example
	Slide 32: Lecture Outline
	Slide 33: stdout, stdin, stderr
	Slide 34: stdout, stdin, stderr
	Slide 35: File Descriptor Table
	Slide 36: File Descriptor Table: Per Process
	Slide 37: File Descriptor Table: Per Process
	Slide 38: File Descriptor Table: Per Process
	Slide 39: Gap Slide
	Slide 40: Redirecting stdin/out/err
	Slide 41: Redirecting stdin/out/err
	Slide 42: Closing a file descriptor
	Slide 43
	Slide 44: Explanation
	Slide 45: Explanation
	Slide 46: Explanation
	Slide 47: Explanation
	Slide 48: Explanation
	Slide 49: Explanation
	Slide 50: Explanation
	Slide 51: Lecture Outline
	Slide 52: exec*()
	Slide 53: execvp()
	Slide 54: Exec Visualization
	Slide 55: Exec Demo
	Slide 56: Poll: how are you?
	Slide 57: Lecture Outline
	Slide 58: Pipes
	Slide 59: Pipe Visualization
	Slide 60: Pipes & EOF
	Slide 61
	Slide 62: Pipes & EOF
	Slide 63: That’s all!

