
CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Project Overview & pipe()
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Logistics

❖ Exam grades posted Monday night

▪ Regrade Requests open till Tuesday 4/9 @ 11:59pm)

▪ Rember that we have the clobber policy, it is ok if the exam did
not go well.

❖ HW03 due Friday this week

▪ Recitation last week had an overview of what it is doing

▪ Autograder is posted

❖ Project code posted

▪ Due May 1st @ 11:59pm

▪ There is a component that is graded by hand

▪ Git repositories to be created soon

▪ Beginning of this lecture helps with setup.

❖ Checkin released, due before Wednesday’s lecture 2

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

❖ Any questions?

3

pollev.com/tqm

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Lecture Outline

❖ Project Overview

❖ Refresher

▪ stdin, stdout, stderr & File Descriptors

▪ Exec

❖ Pipe

❖ Unix Shell

4

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Project: Multi-threaded Search Server

❖ Components:

▪ Read files and store them into an index

▪ Setup a TCP Server Socket

▪ Read & Parse HTTP Requests

▪ Handle HTTP Requests & send the appropriate response back

❖ Demo:

▪ Setting up

▪ Searching

▪ URL & URI

5

If you normally only look at the
slides, you should probably watch
this part of the lecture recording.

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Lecture Outline

❖ Project Overview

❖ Refresher

▪ stdin, stdout, stderr & File Descriptors

▪ Exec

❖ Pipe

❖ Unix Shell

6

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Lecture Outline

❖ C++ & C Interop

❖ Processes & Fork

❖ stdin, stdout, stderr & File Descriptors

❖ Exec

❖ Pipe

7

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

stdout, stdin, stderr

❖ By default, there are three “files” open when a program
starts

▪ stdin: for reading terminal input typed by a user

• cin in C++

• System.in in Java

▪ stdout: the normal terminal output.

• cout in C++

• System.out in Java

▪ stderr: the terminal output for printing errors

• cerr in C++

• System.err in Java

8

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

stdout, stdin, stderr

❖ stdin, stdout, and stderr all have initial file descriptors
constants defined in unistd.h

▪ STDIN_FILENO -> 0

▪ STDOUT_FILENO -> 1

▪ STDERR_FILENO -> 2

❖ These will be open on default for a process

❖ Printing to stdout with cout will use
write(STDOUT_FILENO, …)

9

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

File Descriptor Table

❖ In addition to an address space, each process will have its
own file descriptor table managed by the OS

❖ The table is just an array, and the file descriptor is an
index into it.

10

Terminal input

Terminal output

Foo.txt

open("Foo.txt", O_RDWR);

0

1

2

3

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table
managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table
for the child

11

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table
managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table
for the child

12

fork()

parent child

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table
managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table
for the child

13

parent child

Child is unaffected by parent calling open!

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Gap Slide

❖ Gap slide to distinguish we are moving on to a new
example (that looks very similar to the previous one)

14

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is
associated with something other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to
the redirected output

❖ To do this: use dup2()

15

Terminal input

Terminal output

Foo.txt

0

1

2

3

printf is implemented using
write(STDOUT_FILENO

That’s why it is redirected
after changing stdout

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is
associated with something other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to
the redirected output

❖ To do this: use dup2()

16

Terminal input

Terminal output

Foo.txt

0

1

2

3

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Closing a file descriptor

❖ If we close a file descriptor, it only closes that descriptor,
not the file itself

❖ Other file descriptors to the same file will still be open

❖ use close()

17

Terminal input

Terminal output

Foo.txt

0

1

2

3

close(3);

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the
specified program can run

18

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

execvp()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of
finding the command/program to run

❖ Argv is an array of char*, the same kind of argv that is
passed to main() in a C/C++ program

▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL/nullptr as the last entry of the array

❖ Returns -1 on error. Does NOT return on success

19

int execvp(const char *file,

 char* const argv[]);

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

20

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cpp

other.cpp

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Exec Demo

❖ See exec_example.cpp

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens if we open some files before exec?

▪ What happens if we replace stdout with a file?

❖ NOTE: When a process exits, then it will close all of its
open files by default

21

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Any questions so far?

22

pollev.com/tqm

int main(int argc, char* argv[]) {

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"g++-12", "-o",

 "hello","hello.cpp", NULL};

 execvp(clang_argv[0], clang_argv);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execvp(hello_argv[0], hello_argv);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ g++-12 is a C++
compiler

▪ I want to compile
and run hello.cpp

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Any questions so far?

23

pollev.com/tqm

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ g++-12 is a C++
compiler

▪ I want to compile
and run hello.cpp

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

main()

fork()

fork()

exit()

execvp(compile hello_world)

execvp(run hello_world)

exit()

exit()

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Lecture Outline

❖ Project Overview

❖ Refresher

▪ stdin, stdout, stderr & File Descriptors

▪ Exec

❖ Pipe

❖ Unix Shell

24

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Pipes

❖ Creates a unidirectional data channel for IPC

❖ Communication through file descriptors! // POSIX ☺

❖ Takes in an array of two integers, and sets each integer to
be a file descriptor corresponding to an “end” of the pipe

❖ pipefd[0] is the reading end of the pipe

❖ pipefd[1] is the writing end of the pipe

❖ In addition to copying memory, fork
copies the file descriptor table of parent

❖ Exec does NOT reset file descriptor table
25

int pipe(int pipefd[2]);

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Pipe Visualization

❖ A pipe can be thought of as a "file" that has distinct file
descriptors for reading and writing. This "file" only exists
as long as the pipe exists and is maintained by the OS.

▪ Data written to the pipe is stored in a
buffer until it is read from the pipe

26

Terminal input

Terminal output

Kernel

Pipe Buffer

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and
will not terminate until then

❖ Like reading from the terminal, just because there is
nothing in the pipe, does not mean nothing else will ever
come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH
27

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

❖ What does the parent print? What does the child print?
why? (assume pipe, close and fork succeed)

28

pollev.com/tqm

pipe_unidirect.cpp
on course website

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and
will not terminate until then

❖ Like reading from the terminal, just because there is
nothing in the pipe, does not mean nothing else will ever
come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH
29

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Exec & Pipe Demo

❖ See io_autograder.c

▪ How could we take advantage of exec and pipe to do something
useful?

▪ Combine usage of fork and exec so our program can do multiple
things

30

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ First:
 we compile the program with the gcc command

31

Overall parent

Running main()

Terminal

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ First:
 we compile the program with the gcc command

32

Overall parent

Running main()

Terminal

fork()

child

execvp("gcc", …);

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ First:
 we compile the program with the gcc command

33

Overall parent

Running main()

Terminal

fork()

child

execvp("gcc", …);

waitpid()

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

34

Overall parent

Running main()

Terminal

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

35

Overall parent

Running main()

Terminal

Kernel

Pipe BufferOne pipe to get input
to user program (numbers.cc)

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

36

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer
One pipe to get the output
from user program

One pipe to get input
to user program (numbers.cc)

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

37

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Fork to create the process
that willrun the student’s code

fork()

child

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

38

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
close write end of in_pipe

fork()

child

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

39

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
redirect so stdin refers to
read end of in_pipe

fork()

child

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

40

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
Close other access to
read end of in_pipe

fork()

child

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

41

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
Close read end of out_pipe

fork()

child

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

42

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
Redirect stdout to refer to the
write end of out_pipe

fork()

child

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

43

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

Child:
Close other access to
write end of out_pipe

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

44

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

Parent:
close read end of in_pipe

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

45

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

Parent:
close write end of out_pipe

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

46

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

DONE*
(with pipe setup)

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

io_autograder.cpp Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

47

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

Child: exec’s student code
parent: sends in input &
 reads student output

execvp("./numbers", …);

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Lecture Outline

❖ Project Overview

❖ Refresher

▪ stdin, stdout, stderr & File Descriptors

▪ Exec

❖ Pipe

❖ Unix Shell

48

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Unix Shell

❖ A user level process that reads in commands

▪ This is the terminal you use to compile, and run your code

❖ Commands can either specify one of our programs to run
or specify one of the already installed programs

▪ Other programs can be installed easily.

❖ There are many commonly used bash programs, we will
go over a few and other important bash things.

49

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

. / ..

❖ "/" is used to connect directory and file names together to
create a file path.
▪ E.g. "workspace/595/hello/"

❖ "." is used to specify the current directory.
▪ E.g. "./test_suite" tells to look in the current directory for a

file called "test_suite"

❖ ".." is like "." but refers to the parent directory.
▪ E.g. "./solution_binaries/../test_suite" would be

effectively the same as the previous example.

50

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Common Commands (Pt. 1)

❖ "ls" lists out the entries in the specified directory (or
current directory if another directory is not specified

❖ "cd" changes directory to the specified directory

▪ E.g. "cd ./solution_binaries"

❖ "exit" closes the terminal

❖ "mkdir" creates a directory of specified name

❖ "touch" creates a specified file. If the file already exists,
it just updates the file’s time stamp

51

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Common Commands (Pt. 2)

❖ "echo" takes in command line args and simply prints
those args to stdout
▪ "echo hello!" simply prints "hello!"

❖ "wc" reads a file or from stdin some contents. Prints out
the line count, word count, and byte count

❖ "cat" prints out the contents of a specified file to stdout.
If no file is specified, prints out what is read from stdin

❖ "head" print the first 10 line of specified file or stdin to
stdout

52

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Common Commands (Pt. 3)

❖ "grep" given a pattern (regular expression) searches for
all occurrences of such a pattern. Can search a file, search
a directory recursively or stdin. Results printed to stdout

❖ "history" prints out the history of commands used by
you on the terminal

❖ "cron" a program that regularly checks for and runs any
commands that are scheduled via "crontab"

❖ "wget" specify a URL, and it will download that file for
you

53

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Unix Shell Commands

❖ Commands can also specify flags
▪ E.g. "ls -l" lists the files in the specified directory in a more

verbose format

❖ Revisiting the design philosophy:

▪ Programs should "Do One Thing And Do It Well."

▪ Programs should be written to work together

▪ Write programs that handle text streams, since text streams is a
universal interface.

❖ These programs can be easily combined with UNIX Shell
operators to solve more interesting problems

54

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Unix Shell Control Operators

❖ cmd1 && cmd2, used to run two commands. The
second is only run if cmd1 doesn’t fail
▪ E.g. "make && ./test_suite"

❖ cmd1 | cmd2, creates a pipe so that the stdout of
cmd1 is redirected to the stdin of cmd2
▪ E.g. "history | grep valgrind"

❖ cmd &, runs the process in the background, allowing you
to immediately input a new command

55

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Unix Shell Control Operators

❖ cmd < file, redirects stdin to instead read from the
specified file
▪ E.g. "./penn-shredder < test_case"

❖ cmd > file, redirects the stdout of a command to be
written to the specified file
▪ E.g. "grep –r kill > out.txt"

❖ Complex example:
 cat ./input.txt | ./numbers > out.txt
 && diff out.txt expected.txt

56

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Polls

❖ Which of the following commands will print the number
of files in the current directory?

A. ls > wc

B. cd . && ls wc

C. ls | wc

D. ls && wc

E. The correct answer is not listed
F. We’re lost…

57

pollev.com/tqm

cd: change directory

ls: list directory contents

wc: reads from stdin, prints the number

of words, lines, and characters read.

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

Polls

❖ Which of the following commands will print the number
of files in the current directory?

A. ls > wc

B. cd . && ls wc

C. ls | wc

D. ls && wc

E. The correct answer is not listed
F. We’re lost…

58

pollev.com/tqm

Correctly gets the

number of files, but not

ONLY the number of files

ls | wc –l

would be preferred.

CIT 5950, Spring 2024L20: Project & pipe()University of Pennsylvania

That’s all!

❖ More on pipe in next lecture!

❖ Any questions?

59

	Default Section
	Slide 1: Project Overview & pipe() Computer Systems Programming, Spring 2024
	Slide 2: Logistics
	Slide 3
	Slide 4: Lecture Outline
	Slide 5: Project: Multi-threaded Search Server
	Slide 6: Lecture Outline
	Slide 7: Lecture Outline
	Slide 8: stdout, stdin, stderr
	Slide 9: stdout, stdin, stderr
	Slide 10: File Descriptor Table
	Slide 11: File Descriptor Table: Per Process
	Slide 12: File Descriptor Table: Per Process
	Slide 13: File Descriptor Table: Per Process
	Slide 14: Gap Slide
	Slide 15: Redirecting stdin/out/err
	Slide 16: Redirecting stdin/out/err
	Slide 17: Closing a file descriptor
	Slide 18: exec*()
	Slide 19: execvp()
	Slide 20: Exec Visualization
	Slide 21: Exec Demo
	Slide 22: Any questions so far?
	Slide 23: Any questions so far?
	Slide 24: Lecture Outline
	Slide 25: Pipes
	Slide 26: Pipe Visualization
	Slide 27: Pipes & EOF
	Slide 28
	Slide 29: Pipes & EOF
	Slide 30: Exec & Pipe Demo
	Slide 31: io_autograder.cpp Trace
	Slide 32: io_autograder.cpp Trace
	Slide 33: io_autograder.cpp Trace
	Slide 34: io_autograder.cpp Trace
	Slide 35: io_autograder.cpp Trace
	Slide 36: io_autograder.cpp Trace
	Slide 37: io_autograder.cpp Trace
	Slide 38: io_autograder.cpp Trace
	Slide 39: io_autograder.cpp Trace
	Slide 40: io_autograder.cpp Trace
	Slide 41: io_autograder.cpp Trace
	Slide 42: io_autograder.cpp Trace
	Slide 43: io_autograder.cpp Trace
	Slide 44: io_autograder.cpp Trace
	Slide 45: io_autograder.cpp Trace
	Slide 46: io_autograder.cpp Trace
	Slide 47: io_autograder.cpp Trace
	Slide 48: Lecture Outline
	Slide 49: Unix Shell
	Slide 50: . / ..
	Slide 51: Common Commands (Pt. 1)
	Slide 52: Common Commands (Pt. 2)
	Slide 53: Common Commands (Pt. 3)
	Slide 54: Unix Shell Commands
	Slide 55: Unix Shell Control Operators
	Slide 56: Unix Shell Control Operators
	Slide 57: Polls
	Slide 58: Polls
	Slide 59: That’s all!

