University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Project Overview & pipe()
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang
Felix Sun Serena Chen
Heyi Liu Yuna Shao

Kevin Bernat

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Logistics

» Exam grades posted Monday night
= Regrade Requests open till Tuesday 4/9 @ 11:59pm)

= Rember that we have the clobber policy, it is ok if the exam did
not go well.

» HWO3 due Friday this week

= Recitation last week had an overview of what it is doing
= Autograder is posted

+ Project code posted
" Due May 18t @ 11:59pm
" There is a component that is graded by hand
= Git repositories to be created soon
= Beginning of this lecture helps with setup.

+ Checkin released, due before Wednesday’s lecture)

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Any questions?

University of Pennsylvania L20: Project & pipe()

Lecture Outline

+» Project Overview

>

L)

>

» Refresher
= stdin, stdout, stderr & File Descriptors
" Exec

+» Pipe

+ Unix Shell

>

>

CIT 5950, Spring 2024

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Project: Multi-threaded Search Server

« Components:
= Read files and store them into an index
= Setup a TCP Server Socket
"= Read & Parse HTTP Requests
" Handle HTTP Requests & send the appropriate response back

» Demo: If you normally only look at the
>etting up slides, you should probably watch
= Searching

= URL & URI this part of the lecture recording.

University of Pennsylvania L20: Project & pipe()

Lecture Outline

+ Project Overview

>

L)

>

+ Refresher

= stdin, stdout, stderr & File Descriptors
" Exec

+» Pipe
« Unix Shell

>

>

CIT 5950, Spring 2024

University of Pennsylvania L20: Project & pipe()

Lecture Outline

J
>

» C++ & CInterop

+ Processes & Fork

+ stdin, stdout, stderr & File Descriptors
« EXxec

+» Pipe

CIT 5950, Spring 2024

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

stdout, stdin, stderr

+ By default, there are three “files” open when a program
starts
= stdin: for reading terminal input typed by a user
« cinin C++
- System.ininJava
= stdout: the normal terminal output.
« coutin C++
« System.out inJava
= stderr: the terminal output for printing errors
« cerrin C++

- System.errinljava

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

stdout, stdin, stderr

» stdin, stdout, and stderr all have initial file descriptors
constants definedin unistd.h

®" STDIN FILENO -> 0
= STDOUT FILENO -=> 1
" STDERR FILENO -> 2

+ These will be open on default for a process

» Printing to stdout with cout will use
write (STDOUT FILENO, ..)

L20: Project & pipe() CIT 5950, Spring 2024

University of Pennsylvania

File Descriptor Table

\/
0’0

In addition to an address space, each process will have its
own file descriptor table managed by the OS

+» The table is just an array, and the file descriptor is an

index into it. Terminal input
open ("Foo.txt", O RDWR) ; =
. //
1 — Terminal output
2 \\ >
3 \\\ -

\ Foo.txt

10

University of Pennsylvania L20: Project & pipe()

File Descriptor Table: Per Process

+ each process will have its own file descriptor table
managed by the OS

+ Fork will make a copy of the parent’s file descriptor table
for the child

Terminal input

>_
0 .---""'-'-/

1 Terminal output

| \qs

CIT 5950, Spring 2024

11

University of Pennsylvania L20: Project & pipe()

CIT 5950, Spring 2024

File Descriptor Table: Per Process

+ each process will have its own file descriptor table
managed by the OS

+ Fork will make a copy of the parent’s file descriptor table
for the child

parent child

Terminal input Terminal input

= >_
o ,____,/- oo o

1 Terminal output

Terminal output

12

University of Pennsylvania

L20: Project & pipe() CIT 5950, Spring 2024

File Descriptor Table: Per Process

+ each process will have its own file descriptor table
managed by the OS

+ Fork will make a copy of the parent’s file descriptor table
for the child

parent

open ("Foo

LExt",

o RDWR) >

Terminal input

/

Terminal output

-._.______

0]
1
2
3

~.

T

B

\ Foo.txt

child

Terminal input

>_
0 _-__________/

1 Terminal output

Child is unaffected by parent calling open!

13

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Gap Slide

+» Gap slide to distinguish we are moving on to a new
example (that looks very similar to the previous one)

14

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

printf isimplemented using
write (STDOUT FILENO
That’s why it is redirected
after changing stdout

+» We can change things so that STDOUT_FILENO is
associated with something other than a terminal output.

Redirecting stdin/out/err

+» Now, any calls to printf, cout, System.out, etc now go to

the redirected output Terminal input
% To do this: use dup?2 () >_
/

/

— Terminal output
— =
S~

Foo.txt
!Www« dup? (3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

w N = O

15

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Redirecting stdin/out/err

+» We can change things so that STDOUT_FILENO is

associated with something other than a terminal output.

» Now, any calls to printf, cout, System.out, etc now go to

w N = O

the redirected output Terminal input

% To do this: use dup?2 () >_
//

N Terminal output

>_
\\
Foo.txt
! dup? (3, STDOUT_FILENO) ;

Redirects stdout to go to
file descriptor 3’s destination

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Closing a file descriptor

+ If we close a file descriptor, it only closes that descriptor,
not the file itself

+ Other file descriptors to the same file will still be open

+ useclose () Terminal input
close (3); >_
//
N\ Terminal output

w N = O

17

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

exec*()

+ Loads in a new program for execution

+» PC, SP, registers, and memory are all reset so that the
specified program can run

18

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

execvp()

int execvp (const char *file,
char* const argvl(]):

» Duplicates the action of the shell (terminal) in terms of
finding the command/program to run

» Argv is an array of char¥*, the same kind of argv that is
passedtomain () ina C/C++ program

" argv[0] MUST have the same contents as the file parameter
= argv must have NULL/nullptr as the last entry of the array

<« Returns -1 on error. Does NOT return on success

19

University of Pennsylvania

L20: Project & pipe()

Exec Visualization

+ Exec takes a process and discards or “resets” most of it

Stack

Shared Libraries

Stack

SP=>

1
T

[PC==

Shared Libraries

v

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

example.cpp

T

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

other.cpp

CIT 5950, Spring 2024

NOTE that the following

DO change

- The stack

- The heap

- Globals

- Loaded code
- Registers

NOTE that the following

do NOT change
- Process ID
- Open files
- The kernel

20

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Exec Demo

+ See exec example.cpp
= Brief code demo to see how exec works
= What happens when we call exec?
= What happens if we open some files before exec?
= What happens if we replace stdout with a file?

+» NOTE: When a process exits, then it will close all of its
open files by default

21

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

int main(int argc, char* argv([]) {
// fork a process to exec clang
pid t clang_pid = fork(); This code is broken. It
1t (clan id == . .
/) o o e e compiles, but it
char* clang argv[] = {"g++-12", "-0o", doesn’t dO What we
"hello","hello.cpp", NULL};
execvp (clang argv[0], clang argv); want. Why?

exit (EXIT FAILURE) ;
}

=) .
// fork to run the compiled program g++ 12 is a C++

pid t hello pid = fork(); compiler

if (hello pid == 0) { . |
// the process created by fork want to compile
char* hello argv[] = {"./hello", NULL}; and run hello.cpp
execvp (hello argv[0], hello argv); . .
exit (EXIT FAILURE); = Assume it compiles

) = Assume | gave the

return EXIT SUCCESS;

| . correct args to exec

22

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

This code is broken. It

main() compiles, but it
l doesn’t do what we
fork
orkl) T execvp(compile hello_world) want. Why?
}
exit()
fo‘r:k() " g++-12isa C++
T~ execvp(run hello_world) compiler
| | = | want to compile
! exit() and run hello.cpp
exit()

= Assume it compiles

= Assume | gave the
correct args to exec

23

University of Pennsylvania L20: Project & pipe()

Lecture Outline

+ Project Overview

>

L)

>

» Refresher
= stdin, stdout, stderr & File Descriptors
" Exec

+» Pipe

+ Unix Shell

>

>

CIT 5950, Spring 2024

24

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Pipes

int pipe(int pipefd[2]):

+» Creates a unidirectional data channel for IPC
+ Communication through file descriptors! // POSIX ©

+» Takes in an array of two integers, and sets each integer to
be a file descriptor corresponding to an “end” of the pipe

+» pipefd[0] isthereading end of the pipe
» pipefd[1] isthe writing end of the pipe

+ In addition to copying memory, fork
copies the file descriptor table of parent

+~ Exec does NOT reset file descriptor table e

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Pipe Visualization

+» A pipe can be thought of as a "file" that has distinct file
descriptors for reading and writing. This "file" only exists
as long as the pipe exists and is maintained by the OS.

= Data written to the pipeis storedina Terminal input
buffer until it is read from the pipe S

R E

/
— Terminal output

— | —
—— il

Kernel
Pipe Buffer

26

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Pipes & EOF

» Many programs will read from a file until they hit EOF and
will not terminate until then

» Like reading from the terminal, just because there is
nothing in the pipe, does not mean nothing else will ever
come through the pipe.

® EQOF is not read in this case

» EOF is only read from a pipe when:

" There is nothing in the pipe
= All write ends of the pipe are closed

+ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

27

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

o Poll Everywhere pollev.com/tqm

+» What does the parent print? What does the child print?
why? (assume pipe, close and fork succeed)

12

13 bool wrapped write(int fd, const string& to_write);

14

15 pipe_unidirect.cpp
16 optional<string> wrapped_read(int fd); .
17 on course website
18 int main() {

19 int pipe_fds[2];

20 pipe(pipe_fds);

21

22

23 pid_t pid = fork(); close(pipe fds[1]);

24

25 if (pid == @) { optional<string> message = wrapped read(pipe fds[@]);
26

27 if (message.has value()) {

28 cout << message.value() << endl;

29 close(pipe_fds[@]); }

30

31 string greeting {"Hello!"}; string greeting{"Howdy!"};
32 wrapped write(pipe fds[1], greeting); wrapped_write(pipe_fds[@], greeting);
33

34 optional<string> response = wrapped read(pipe_fds[1]); int wstatus;

35 waitpid(pid, &wstatus, 0);
36 if (response.has_value()) {

37 cout << response.value() << endl; return EXIT_SUCCESS;

38 } -

39

49 exit(EXIT_SUCCESS);

41

42

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Pipes & EOF

» Many programs will read from a file until they hit EOF and
will not terminate until then

» Like reading from the terminal, just because there is
nothing in the pipe, does not mean nothing else will ever
come through the pipe.

® EQOF is not read in this case

» EOF is only read from a pipe when:

" There is nothing in the pipe
= All write ends of the pipe are closed

+ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

29

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Exec & Pipe Demo

+ See 10 autograder.c
" How could we take advantage of exec and pipe to do something
useful?
" Combine usage of fork and exec so our program can do multiple
things

30

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

« First:
we compile the program with the gcc command

Overall parent Terminal

Running main() |-« - >

31

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

« First:
we compile the program with the gcc command

Overall parent Terminal

Running main() |-« - >

fork ()

child

execvp("gcc", ...);

32

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

« First:
we compile the program with the gcc command

Overall parent Terminal

Running main() |-« - >

waitpid()

fork ()

child

execvp("gcc", ...);

33

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent Terminal

:

Running main()

34

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent Terminal

Running main()

Kernel

One pipe to get input Pipe Buffer /
to user program (numbers.cc)

35

L20: Project & pipe() CIT 5950, Spring 2024

University of Pennsylvania

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent Terminal

Running main()

Kernel

Pipe Buffer /

One pipe to get input
to user program (numbers.cc)

Pipe Buffer

One pipe to get the output
from user program

36

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent Terminal

Running main() |- - >

fork () ——
Fork to create the process ,
that willrun the student’s code ‘
’ Kernel
child Pipe Buffer /
~ /
- \ Pipe Buffer
N\ L~
> T~
L 37

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent Terminal

Running main() |-

Child:

close write end of in_pipe ‘

Kernel
child / Pipe Buffer //

Pipe Buffer
N\

v

— —
— —
—
o

AN

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent Terminal

Running main() |- >

Child:

redirect so stdin refers to < > , \
Kernel

read end of in_pipe 0
child Pipe Buffer
/ ~ /

Pipe Buffer
N\ L~
I~

fork ()

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent

Terminal

Running main() |- >

fork ()
Child:
Close other access to ‘ — ~ ~
/
read end of in_pipe — Kernel ™S
_ ,
. / .
child g — 9 Pipe Buffer /
~
~
Pipe Buffer
N\ L~
> T~

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent

Terminal

Running main() |- >

fork ()
Child:
Close read end of out_pipe 0
Kernel
child Pipe Buffer,/
~ /
e
Pipe Buffer
N\ L~
q] = :)
\~ _________________________________ 41

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent

Terminal
Running main() |- >
Child:
Redirect stdout to refer to the
write end of out_pipe Kernel
child Pipe Buffer/
N /
o
Pipe Buffer
AW L~

42

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent

Terminal
Running main() |- 4 >
Child:
Close other access to
write end of out_pipe Kernel
child Pipe Buffer,/
N /
o
Pipe Buffer
S L~
e - e o e o mm mm e e e e o mm mm Em o - = >

43

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent

Terminal

Running main()

fork ()

Parent:
close read end of in_pipe

Kernel
Pipe Buffer/ \
/

child

Pipe Buffer
R L~

44

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent

Terminal

Running main() |- >

:\
~
fork () RS

Parent:
close write end of out_pipe

child Pipe Buffer/

Pipe Buffer

{/
\

45

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent

Terminal

Running main()

fork ()

child Pipe Buffer,/

DONE*
(with pipe setup)

Pipe Buffer

46

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

io autograder.cpp Trace

+» Compilation done! Run the compiled program...
BUT send autograder input and capture output

Overall parent

Terminal

Running main()

fork ()

child Pipe Buffer/

Child: exec’s student code
parent: sends in input &
reads student output

execvp("./numbers", ...); Pipe Buffer

47

University of Pennsylvania L20: Project & pipe()

Lecture Outline

+ Project Overview

>

L)

>

» Refresher
= stdin, stdout, stderr & File Descriptors
" Exec

+» Pipe

+ Unix Shell

>

>

CIT 5950, Spring 2024

48

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Unix Shell

+» A user level process that reads in commands

" This is the terminal you use to compile, and run your code

+» Commands can either specify one of our programs to run
or specify one of the already installed programs

= Other programs can be installed easily.

% There are many commonly used bash programs, we will
go over a few and other important bash things.

49

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

.

+ "/"is used to connect directory and file names together to
create a file path.
= E.g. "workspace/595/hello/"

+» "."is used to specify the current directory.

" Eg."./test suite" tells to look in the current directory for a
file called "test suite”

« ".Nis like "." but refers to the parent directory.

" Eg."./solution binaries/../test suite" would be
effectively the same as the previous example.

50

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Common Commands (Pt. 1)

» "1s" lists out the entries in the specified directory (or
current directory if another directory is not specified

» "ed" changes directory to the specified directory

" Eg."ced ./solution binaries"

» "exit" closes the terminal
» 'mkdir" creates a directory of specified name

» 'touch" creates a specified file. If the file already exists,
it just updates the file’s time stamp

51

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Common Commands (Pt. 2)

» "echo" takes in command line args and simply prints
those args to stdout
= "acho hello!" simply prints "hello!"

+ 'we' reads a file or from stdin some contents. Prints out
the line count, word count, and byte count

» "cat" prints out the contents of a specified file to stdout.

If no file is specified, prints out what is read from stdin

» "head" print the first 10 line of specified file or stdin to
stdout

52

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Common Commands (Pt. 3)

+ "grep" given a pattern (regular expression) searches for
all occurrences of such a pattern. Can search a file, search
a directory recursively or stdin. Results printed to stdout

+ "history" prints out the history of commands used by
you on the terminal

+» "cron'" a program that regularly checks for and runs any
commands that are scheduled via "crontab”

» 'wget" specify a URL, and it will download that file for
you

53

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Unix Shell Commands

+» Commands can also specify flags

= Eg."1s —1"lists the files in the specified directory in a more
verbose format

+ Reuvisiting the design philosophy:
" Programs should "Do One Thing And Do It Well."
" Programs should be written to work together

= Write programs that handle text streams, since text streams is a
universal interface.

« These programs can be easily combined with UNIX Shell
operators to solve more interesting problems

54

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Unix Shell Control Operators

» cmdl && cmd2, used to run two commands. The
second is only run if cmd1 doesn’t fail
" E.g."make && ./test suite"

» cmdl | cmd2, creates a pipe so that the stdout of
cmd1 is redirected to the stdin of crnd?2
" Eg."history | grep valgrind"

» cmd &, runs the process in the background, allowing you
to immediately input a new command

55

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

Unix Shell Control Operators

» cmd < file, redirects stdin to instead read from the
specified file
" Eg."./penn-shredder < test case"

» cmd > file, redirects the stdout of a command to be

written to the specified file
" Eg."grep -r kill > out.txt"

+» Complex example:
cat ./input.txt | ./numbers > out.txt

&& diff out.txt expected.txt

56

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+ Which of the following commands will print the number
of files in the current directory?

cd: change directory

cd. && Is wc 1s: list directory contents

Is | wc
I wc: reads from stdiv, prints the number

Is && wc of words, lines, and characters read.

The correct answer is not listed
We’re lost...

mm oo w>»

57

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+ Which of the following commands will print the number
of files in the current directory?

cd . && Is wc Correctly gets the

number of files, but not

ONLY the number of files
Is && wc e we 1

The correct answer is not listed would be preferred.
We’re lost...

mmigfolw >

58

University of Pennsylvania L20: Project & pipe() CIT 5950, Spring 2024

That’s all!

+» More on pipe in next lecture!

+» Any questions?

59

	Default Section
	Slide 1: Project Overview & pipe() Computer Systems Programming, Spring 2024
	Slide 2: Logistics
	Slide 3
	Slide 4: Lecture Outline
	Slide 5: Project: Multi-threaded Search Server
	Slide 6: Lecture Outline
	Slide 7: Lecture Outline
	Slide 8: stdout, stdin, stderr
	Slide 9: stdout, stdin, stderr
	Slide 10: File Descriptor Table
	Slide 11: File Descriptor Table: Per Process
	Slide 12: File Descriptor Table: Per Process
	Slide 13: File Descriptor Table: Per Process
	Slide 14: Gap Slide
	Slide 15: Redirecting stdin/out/err
	Slide 16: Redirecting stdin/out/err
	Slide 17: Closing a file descriptor
	Slide 18: exec*()
	Slide 19: execvp()
	Slide 20: Exec Visualization
	Slide 21: Exec Demo
	Slide 22: Any questions so far?
	Slide 23: Any questions so far?
	Slide 24: Lecture Outline
	Slide 25: Pipes
	Slide 26: Pipe Visualization
	Slide 27: Pipes & EOF
	Slide 28
	Slide 29: Pipes & EOF
	Slide 30: Exec & Pipe Demo
	Slide 31: io_autograder.cpp Trace
	Slide 32: io_autograder.cpp Trace
	Slide 33: io_autograder.cpp Trace
	Slide 34: io_autograder.cpp Trace
	Slide 35: io_autograder.cpp Trace
	Slide 36: io_autograder.cpp Trace
	Slide 37: io_autograder.cpp Trace
	Slide 38: io_autograder.cpp Trace
	Slide 39: io_autograder.cpp Trace
	Slide 40: io_autograder.cpp Trace
	Slide 41: io_autograder.cpp Trace
	Slide 42: io_autograder.cpp Trace
	Slide 43: io_autograder.cpp Trace
	Slide 44: io_autograder.cpp Trace
	Slide 45: io_autograder.cpp Trace
	Slide 46: io_autograder.cpp Trace
	Slide 47: io_autograder.cpp Trace
	Slide 48: Lecture Outline
	Slide 49: Unix Shell
	Slide 50: . / ..
	Slide 51: Common Commands (Pt. 1)
	Slide 52: Common Commands (Pt. 2)
	Slide 53: Common Commands (Pt. 3)
	Slide 54: Unix Shell Commands
	Slide 55: Unix Shell Control Operators
	Slide 56: Unix Shell Control Operators
	Slide 57: Polls
	Slide 58: Polls
	Slide 59: That’s all!

