
CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Unix, HW4, and Move
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Logistics

❖ Project released

▪ Due May 1st at midnight, please get started if you haven’t already

❖ HW4

▪ To be posted shortly after lecture

▪ Should have everything you need after Today’s Lecture

❖ Checkin to be released soon

2

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

❖ What is your primary OS?

3

pollev.com/tqm

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

❖ What do you think is the most used OS?

4

pollev.com/tqm

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

❖ Any questions?

5

pollev.com/tqm

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Lecture Outline

❖ Brief History

❖ UNIX Shell & Commands

❖ HW4 Demo

❖ Move

6

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Multics: The Precursor

❖ Multiplexed Information and Computing Service

❖ Early time-sharing operating system

▪ Time sharing: the sharing of a computer (mainframe) across
multiple users at the same time

▪ Necessary pre – personal computers (~1975)

❖ Started development in 1964

▪ funded in part by Bell labs

❖ Bell Labs pulls out of
Multics in 1969

7

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

"Unics"

❖ Ken Thompson and Dennis Ritchie
lead the development of Unix

▪ Both worked on Multics under
Bell Labs

❖ Took some inspiration from Multics

▪ Hierarchical file system

▪ Text command line shell

▪ The name:

• Multics: Multiplexed Information and Computing Service

• Unics: Uniplexed Information and Computing Service

• At some point "Unics" became "Unix“

▪ Unix rejected the overcomplexity of Multics
8

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

UNIX

❖ Originally (1970) was
a singletasking system,
without name or backing,
and written in PDP assembly

❖ Functionality and multitasking added as other
departments in Bell Labs needed them

❖ Departments kept adopting UNIX instead of built in OS’s.

▪ As a result, a support team was created, a UNIX Programmer’s
Manual was written, and man pages were created

9

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

UNIX and C

❖ B programming language by Ken Thompson

▪ Was intended for writing UNIX utilities

❖ Dennis Ritchie modified B to make New B

▪ Added things like types! (int, char, etc.)

❖ More features were added to New B, heavily influenced
by its use in UNIX

❖ UNIX was soon re-written in C

▪ One of the first operating systems (re)written in a higher-level-
language (aka, not assembly)

10

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Unix Adoption

❖ 1973: Unix was first presented formally outside of Bell
Labs. Leading to many requests for the system

❖ Due to a 1956 decree, Bell System could not turn UNIX
into a commercial product.

▪ Bell had to license the product to anyone who asked

▪ Code was “open source” of sorts.

❖ UNIX was continually updated, and C was as well.

▪ Included the addition of pipes and other features

▪ These updates made UNIX more portable to other systems.

11

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

UNIX Design Philosophy

❖ Philosophy behind development of UNIX that spread to
standards for developing software generally.

▪ Arguable more influential than UNIX itself

❖ Short version:

▪ Programs should "Do One Thing And Do It Well."

▪ Programs should be written to work together

▪ Write programs that handle text streams, since text streams is a
universal* interface.

❖ Extra short version: "Keep it Simple, Stupid."

12

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

GNU

❖ In 1983, Bell Systems split up due to anti-trust laws.

▪ A successor (AT&T) then turned UNIX into a commercial
product, limiting rights to distribute/change/adapt/etc. UNIX

❖ Later that year, GNU is founded by Richard Stallman

▪ GNU Not Unix

▪ Copyleft

▪ Goal: create a complete UNIX compatible system composed
entirely of free software

▪ Developed many required programs (libraries, editors, shell,
compilers …) but missing low level elements like the kernel

13

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Linux

❖ By 1991, a UNIX-like kernel that was
Free Software did not exist

❖ Linus Torvalds was studying operating
systems and wrote his own called Linux

▪ This would be published under GPL 2 (GNU Public
License)

❖ Blew up in popularity due to being free and
open source

14

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Unix-Like

❖ Almost all operating systems are UNIX related

▪ “Genetically” related with historical connection to the original
code base

▪ Through the UNIX trademark once a system meets the Single
UNIX Specification and is certified

▪ Through “functionally” being UNIX-like. Behaving in a manner that
is consistent with UNIX design and specification

• Linux falls under this one

❖ Most Operating systems are Unix Like

▪ Linux, macOS, iOS, Chrome OS, Android, etc.

15

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Lecture Outline

❖ Brief History

❖ UNIX Shell & Commands

❖ HW4 Demo

❖ Move

16

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Unix Shell

❖ A user level process that reads in commands

▪ This is the terminal you use to compile, and run your code

❖ Commands can either specify one of our programs to run
or specify one of the already installed programs

▪ Other programs can be installed easily.

❖ There are many commonly used bash programs, we will
go over a few and other important bash things.

17

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

. / ..

❖ "/" is used to connect directory and file names together to
create a file path.
▪ E.g. "workspace/595/hello/"

❖ "." is used to specify the current directory.
▪ E.g. "./test_suite" tells to look in the current directory for a

file called "test_suite"

❖ ".." is like "." but refers to the parent directory.
▪ E.g. "./solution_binaries/../test_suite" would be

effectively the same as the previous example.

18

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Common Commands (Pt. 1)

❖ "ls" lists out the entries in the specified directory (or
current directory if another directory is not specified

❖ "cd" changes directory to the specified directory

▪ E.g. "cd ./solution_binaries"

❖ "exit" closes the terminal

❖ "mkdir" creates a directory of specified name

❖ "touch" creates a specified file. If the file already exists,
it just updates the file’s time stamp

19

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Common Commands (Pt. 2)

❖ "echo" takes in command line args and simply prints
those args to stdout
▪ "echo hello!" simply prints "hello!"

❖ "wc" reads a file or from stdin some contents. Prints out
the line count, word count, and byte count

❖ "cat" prints out the contents of a specified file to stdout.
If no file is specified, prints out what is read from stdin

❖ "head" print the first 10 line of specified file or stdin to
stdout

20

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Common Commands (Pt. 3)

❖ "grep" given a pattern (regular expression) searches for
all occurrences of such a pattern. Can search a file, search
a directory recursively or stdin. Results printed to stdout

❖ "history" prints out the history of commands used by
you on the terminal

❖ "cron" a program that regularly checks for and runs any
commands that are scheduled via "crontab"

❖ "wget" specify a URL, and it will download that file for
you

21

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Unix Shell Commands

❖ Commands can also specify flags
▪ E.g. "ls -l" lists the files in the specified directory in a more

verbose format

❖ Revisiting the design philosophy:

▪ Programs should "Do One Thing And Do It Well."

▪ Programs should be written to work together

▪ Write programs that handle text streams, since text streams is a
universal interface.

❖ These programs can be easily combined with UNIX Shell
operators to solve more interesting problems

22

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Unix Shell Control Operators

❖ cmd1 && cmd2, used to run two commands. The
second is only run if cmd1 doesn’t fail
▪ E.g. "make && ./test_suite"

❖ cmd1 | cmd2, creates a pipe so that the stdout of
cmd1 is redirected to the stdin of cmd2
▪ E.g. "history | grep valgrind“

❖ cmd > file, redirects the stdout of a command to be
written to the specified file

❖ Complex example:
 cat ./input.txt | ./numbers > out.txt
 && diff out.txt expected.txt 23

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Polls

❖ Which of the following commands will print the number
of files in the current directory?

A. ls > wc

B. cd . && ls wc

C. ls | wc

D. ls && wc

E. The correct answer is not listed
F. We’re lost…

24

pollev.com/tqm

cd: change directory

ls: list directory contents

wc: reads from stdin, prints the number

of words, lines, and characters read.

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Polls

❖ Which of the following commands will print the number
of files in the current directory?

A. ls > wc

B. cd . && ls wc

C. ls | wc

D. ls && wc

E. The correct answer is not listed
F. We’re lost…

25

pollev.com/tqm

Correctly gets the

number of files, but not

ONLY the number of files

ls | wc –l

would be preferred.

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Demo

❖ In HW4, you will be writing your own shell that reads
from user input

▪ Each line is a command that could consist of multiple programs
and pipes between them

▪ Your shell should fork a process to run each program and setup
the pipes in between them

❖ Some sample programs provided to help with
implementation ideas.

26

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Unix Shell Control Operators: Pipe

❖ cmd1 | cmd2, creates a pipe so that the stdout of
cmd1 is redirected to the stdin of cmd2
▪ E.g. "history | grep valgrind"

27

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Lecture Outline

❖ Brief History

❖ UNIX Shell & Commands

❖ HW4 Demo

❖ Move

28

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Demo

❖ In HW4, you will be writing your own shell that reads
from user input

▪ Each line is a command that could consist of multiple programs
and pipes between them

▪ Your shell should fork a process to run each program and setup
the pipes in between them

❖ Some sample programs provided to help with
implementation ideas.

❖ Can run a sample solution with:
./solution_binaries/pipe_shell

29

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Suggested Approach

❖ HIGHLY ENCOURAGED to follow the suggested approach

▪ Write a program that acts similarly to stdin_echo.cc

▪ Write a program that can handle commands with no pipes

• "ls"

▪ Add support for command line arguments

• "ls -l"

▪ Add support for commands with ONE pipe

• "ls -l | wc"

▪ Generalize to add support for any number of pipes

• "ls –l | wc | cat"

30

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line

❖ Consider the case when a user inputs
▪ "ls"

31

Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", {"ls", nullptr});

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line

❖ Consider the case when a user inputs
▪ "ls"

32

Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", {"ls", nullptr});

Terminal

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Hints

❖ If there are n commands in a line, there should be n-1
pipes

❖ Each pipe should be written to by exactly one process

❖ Each pipe should be read by exactly one process

▪ Different than the one writing

❖ There are three cases to consider for commands using
pipes

▪ The first process, which reads from stdin and writes out to a pipe

▪ The last process, which reads from a pipe and writes to stdout

▪ Processes in between which read from one pipe and write to
another

❖ More hints when HW is posted 33

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

34

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

35

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

36

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

37

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

38

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

39

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

40

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

41

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

42

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

43

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

44

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

45

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

46

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("wc", …);

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

HW4 Example Line 2

❖ Consider the case when a user inputs
▪ "ls | wc | cat"

48

Overall parent

Running main()
or helper_fnct()fork()

child

execvp("ls", …);
Kernel

Pipe Buffer

Terminal

Pipe Buffer

fork()

child

execvp("wc", …);

fork()
child

execvp("cat", …);

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Lecture Outline

❖ Brief History

❖ UNIX Shell & Commands

❖ HW4 Demo

❖ Move

49

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Copy Semantics: close up look

❖ Internally a string
manages a heap
allocated C string
and looks something like:

50

int main(int argc, char **argv) {

 std::string a{"bleg"};

}

a

Stack heap

ptr_

len_ 4

b l e g \0

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Copy Semantics: close up look

❖ When we copy
construct string b

we could get something like:

51

int main(int argc, char **argv) {

 std::string a{"bleg"};

 std::string b{a};

}

a

Stack heap

ptr_

len_ 4

b l e g \0

b ptr_

len_ 44

b l e g \0

This is another memory allocation, and we
need to copy over the characters of the string

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Move Semantics (C++11)

❖ “Move semantics”
move values from
one object to
another without
copying (“stealing”)

▪ A complex topic that
uses things called
“rvalue references”

• Mostly beyond the
scope of this
class

52

int main(int argc, char **argv) {

 std::string a{"bleg")};

 // moves a to b

 std::string b{std::move(a)};

 std::cout << "a: " << a << std::endl;

 std::cout << "b: " << b << std::endl;

 return EXIT_SUCCESS;

}

a: ""

b: "bleg"

Note: we should NOT access ‘a’ after we move it. It is undefined
to do so, it just so happens it is set to the empty string

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Move Semantics: close up look

❖ Internally a string
manages a heap
allocated C string
and looks something like:

53

int main(int argc, char **argv) {

 std::string a{"bleg"};

}

a

Stack heap

ptr_

len_ 4

b l e g \0

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Move Semantics: close up look

❖ When we use move
to construct string b

we could get something like:

54

int main(int argc, char **argv) {

 std::string a{"bleg"};

 std::string b{std::move(a)};

}

a

Stack heap

ptr_

len_ 0

b l e g \0

b ptr_

len_ 4

nullptr

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Move Semantics: Use Cases

❖ Useful for optimizing away temporary copies

❖ Preferred in cases where copying may be expensive

▪ Consider we had a vector of strings… we could transfer ownership
of memory to avoid copying the vector and each string inside of it.

❖ Can be used to help enforce uniqueness

❖ Rust is a systems programming language that is gaining
popularity and by default it will move variables instead of
copy them.

55

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Move Semantics: Details

❖ Implement a “Move Constructor” with something like:

❖ Implement a “Move assignment” with something like:

56

Point& Point::operator=(Point&& rhs) {

 // ...

}

Point::Point(Point&& other) {

 // ...

}

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

Move Semantics: Details

❖ “Move Constructor” example for a fake String class:

57

String::String(String&& other) {

 this->len_ = other.len_;

 this->ptr_ = other.ptr_;

 other.len_ = 0;

 other.ptr_ = nullptr;

}

CIT 5950, Spring 2024L21: Unix, HW4, MoveUniversity of Pennsylvania

std::move

❖ Use std::move to indicate that you want to move
something and not copy it

58

Point p {3, 2}; // constructor

Point a {p}; // copy constructor

Point b {std::move(p)}; // move constructor

	Default Section
	Slide 1: Unix, HW4, and Move Computer Systems Programming, Spring 2024
	Slide 2: Logistics
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Lecture Outline
	Slide 7: Multics: The Precursor
	Slide 8: "Unics"
	Slide 9: UNIX
	Slide 10: UNIX and C
	Slide 11: Unix Adoption
	Slide 12: UNIX Design Philosophy
	Slide 13: GNU
	Slide 14: Linux
	Slide 15: Unix-Like
	Slide 16: Lecture Outline
	Slide 17: Unix Shell
	Slide 18: . / ..
	Slide 19: Common Commands (Pt. 1)
	Slide 20: Common Commands (Pt. 2)
	Slide 21: Common Commands (Pt. 3)
	Slide 22: Unix Shell Commands
	Slide 23: Unix Shell Control Operators
	Slide 24: Polls
	Slide 25: Polls
	Slide 26: HW4 Demo
	Slide 27: Unix Shell Control Operators: Pipe
	Slide 28: Lecture Outline
	Slide 29: HW4 Demo
	Slide 30: Suggested Approach
	Slide 31: HW4 Example Line
	Slide 32: HW4 Example Line
	Slide 33: HW4 Hints
	Slide 34: HW4 Example Line 1
	Slide 35: HW4 Example Line 1
	Slide 36: HW4 Example Line 1
	Slide 37: HW4 Example Line 1
	Slide 38: HW4 Example Line 1
	Slide 39: HW4 Example Line 1
	Slide 40: HW4 Example Line 1
	Slide 41: HW4 Example Line 1
	Slide 42: HW4 Example Line 1
	Slide 43: HW4 Example Line 1
	Slide 44: HW4 Example Line 1
	Slide 45: HW4 Example Line 1
	Slide 46: HW4 Example Line 1
	Slide 48: HW4 Example Line 2
	Slide 49: Lecture Outline
	Slide 50: Copy Semantics: close up look
	Slide 51: Copy Semantics: close up look
	Slide 52: Move Semantics (C++11)
	Slide 53: Move Semantics: close up look
	Slide 54: Move Semantics: close up look
	Slide 55: Move Semantics: Use Cases
	Slide 56: Move Semantics: Details
	Slide 57: Move Semantics: Details
	Slide 58: std::move

