University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Systems Programming (& Safety)
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang
Felix Sun Serena Chen
Heyi Liu Yuna Shao

Kevin Bernat

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Logistics

+ Project released

= Due May 1%t at midnight, please get started if you haven’t already
= Autograder to be posted soon
= NOTE: part of it is manually checked, not auto-graded

+ HWA4
" Due this Friday
= Autograder to be posted today

« Last Checkin to be released soon

" Due Maylst at midnight (late deadline over reading days)
" (Post Semester Survey)

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Any questions? (On anything)

" This is the chance for catchup questions, same at the beginning of
next lecture.

University of Pennsylvania L23: Systems Programming Safety

Lecture Outline

J
>

o0

o0

Systems Programming
C&C++
Intro to C++

" std::string & iostreams
= std::vector

= References

" std::optional

Safety
What’s Next?

CIT 5950, Spring 2024

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

% On ascale of 1 (hate) to 5 (love), how do you feel about C
as a programming language?

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Why do you think we chose C++ as the programming
language for this course?

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Why do you think we chose C++ as the programming
language for this course?

<~ What comes to my mind:

® C++ s fast

" C++is used in future courses (5050, 5600, 5530, 5480 (w/ C))

" C++ exposes you to the low-level features that other languages
abstract away. (Even if we did not use them all)
- addresses
« Memory management
- System Calls
- Assembly

® Operating System Kernels and Systems have been written in C for

a long time. In some ways it would be blasphemous to choose
something like python g

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

C/C++?

<+ Common way of listing the languages: C/C++

+» Common understanding of the language

" C++is C but more

= C++is asuperset of C

C++

+» This understanding
is a pet-peeve of mine

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

C vs C++ (Timeline)

+» What People Think

C > C++

10

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

C vs C++ (Timeline)

% More Detail (but a lot left out)

cCw/
Classes
1982

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

11

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

C vs C++ (Timeline)

% More Detail (but a lot left out)

C++98

1998
ANS| C C99 C11 (€23
1989 1999 2011 "\ 2023

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

C has adopted changes from C++

example: auto and nullptrin C23
12

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

C vs C++ Examples

» old_c.c

® C has evolved since it was introduced in 1972

. C23.C

= Cstill gets updates adding new features

= Admittedly, the updates are small relative to other language
updates

% cpp23.cpp and stdin_echo.cpp

" Modern C++ is very different from C (Though most C is still legal!)

*

% cpp23_hello.cpp

" The fundamentals of the language are changing as well 13

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

What else is going on?

+ C++ Seems so cool!!!l What else is going on? ©

%+ NSA: 1.5 years ago (Nov 10t", 2022)

NSA | Software Memory Safety

The path forward

Memory issues in software comprise a large portion of the exploitable vulnerabilities in
existence. NSA advises organizations to consider making a strategic shift from
programming languages that provide little or no inherent memory protection, such as
C/C++, to a memory safe language when possible. Some examples of memory safe
languages are C#, Go, Java, Ruby™, and Swift®, Memory safe languages provide

Rust is not mentioned in this snippet, but mentioned somewhere else in the announcement

14

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

What else is going on?

+ C++ Seems so cool!!!l What else is going on? ©

+ White House: 2 months ago (Feb 26", 2024)

FEBRUARY 26, 2024

Press Release: Future Software Should
Be Memory Safe

T » ONCD » BRIEFING ROOM » PRESS RELEASE

Leaders in Industry Support White House Call to Address Root Cause of
Many of the Worst Cyber Attacks

Read the full report here

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Memory Safety CVE

% CVE = Common Vulnerabilities and Exposures

Memory safety issues remain dominant

We closely study the root cause trends of vulnerabilities & search for patterns

% of memory safety vs. non-memory safety CVEs by patch year

100%
90%
80% /,///\ /\—/\
70% e ——

60%

50%

% of CVEs

40%

30%

20%

10%

0%
2006 2007 2008 2014 2015 2016 2017 2018

Patch Year

B Memory safety B Not memory safety

~70% of the vulnerabilities addressed through a security update each year continue to be memory safety issues
10

This is from Microsoft research showing how most vulnerabilities come from memory issues 16

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Memory Safety

+» Memory Safety is dominating discussion on Systems
programming languages (C, C++, Rust, Zig, Nim, D, ...)

+» What is memory safety?

+» Broadly two types:

= Temporal Safety: making sure you don’t access “objects” that are
destroyed, or in invalid states

= Spatial Safety: making sure you do not access memory you either
shouldn’t access or accessing them in the wrong ways

17

University of Pennsylvania

L23: Systems Programming Safety

Temporal Safety C Example

Here is an example in C where is the issue?

int main(int argc, char** argv) {
int* ptr = malloc(sizeof (1nt));
assert (ptr != NULL);

*ptr = 5;

// do stuff with ptr

free (ptr) ;

printf ("$d\n", *ptr);

CIT 5950, Spring 2024

University of Pennsylvania

Temporal Safety

+» Here is an example in C++ where is the issue?

L23: Systems Programming Safety

- .
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char** argv)
vector<int> v {3, 4, 5};
int& first = v.front () ;
cout << first << endl;

v.push back (0);

cout << v.size () << endl;
cout << first << endl;

{

~

CIT 5950, Spring 2024

19

CIT 5950, Spring 2024

University of Pennsylvania L23: Systems Programming Safety

Temporal Safety

+» Here is an example in C++ where is the issue?

7

D

#include <iostream>
#include <vector>

usling namespace std;

vold func (vector<int>& vl, vector<int>& v2) {
vl.push back(v2.front());

}

int main () {
vector<int> x{3, 4, 5};
func (x, x);

20

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Temporal Safety

+» Here is an example in C++ where is the issue?

()

#include <iostream>
#include <vector>

usling namespace std;

vold func (vector<int>& vl, vector<int>& v2) {
vl.push back(v2.front());

}

int main () {
vector<int> x{3, 4, 5};
func (x, x);

}

\ J

push_back takes in an int&
push_back may need to resize, if it does, the reference to its front becomes invalid

21

L23: Systems Programming Safety CIT 5950, Spring 2024

University of Pennsylvania

Spatial Safety

+» C (and C++) enforce types on variables, they are statically

typed
% Cand C++ can easily get around the type system though:

int x = 3
float f1 x; // converts bits to floating point rep

float f2 = *(float*)e&x; // copies bits

int main () {

printf ("$f\n", fl); // these two print
printf ("$f\n", f2); // different things

22

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Spatial Safety

+» C (and C++) enforce types on variables, they are statically
typed

% Cand C++ can easily get around the type system though:

int main () {
string s = "Howdy :)";
vector<int> v = *retinterpret cast<vector<int>*>(&s);

v.push back (3);

// this code probably crashes before getting here
}

23

L23: Systems Programming Safety CIT 5950, Spring 2024

University of Pennsylvania

Aside: unions

% A union is a type that can have more than one possible
representations in the same memory position

runion {
float £,
int 1i;
};

f = 3.14; // assigns a float value to the union

printf ("$d\n", i); // try to interpret the same memory as an int

// this is not type checked ®

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Spatial Safety

% A union is a type that can have more than one possible
representations in the same memory position

r// common design pattern, return a struct that either holds
// an error or the expected value, with a bool to indicate
struct parer result ({
bool 1is valid;
union {
char* error message;
struct parsed command* cmd;

¥
b

struct parser result parse cmd(const char* input);

int main() {
struct parser result = parse cmd("..");
struct parsed command = * (parser result.cmd)

}
// We didn’t check if the result was valid, may be violating

spatial safety)

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Spatial Safety

%+ Sometimes violating spatial safety is "needed"
" To support “Generics” in C, we often cast to/from void*

® Can be used for some cool stuff like this fast inverse square root
algorithm (don’t do this, it is not fast anymore):

float Q_rsqrt(float number)

float x2, y;
const float threehalfs = 1.5F;

= number % 0.5F;
= number;
* (long *) &y;
Ox5f3759df - (i >> 1);
* (float *) &i;
y * (threehalfs - (x2 xy xy));

return y;

L23: Systems Programming Safety CIT 5950, Spring 2024

University of Pennsylvania

Spatial Safety

Spatial safety includes index out of bounds.

o0

int primes = {2, 3, 5, 6, 11, 13};

primes [3]
primes[100

[6]
= i No TudexOutOfBounds
] = 0; // memory smash! Hope for seafault

+» What is wrong here?
"Hello!\n", PAGE_SIZE) ;

write (STDERR FILENO,

« Here?

[char buf[6];

strcpy (buf, "Hello!\n");
27

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Has C++ Been Fixing These?

+» C++ has been giving replacements for these features that
are safer.
" |nstead of union, C++ has optional, variant, any and others
" |nstead of C arrays, there is the vector and array type

« |Is this C++ safe?

vector<int> v {2, 3, 5, o6, 11, 13};
v[1000] = 7; // 1s this safe?
v.at (1000) = O0; // above: no, this: yes

+» C++ Keeps adding new features that are better and safer
but adding in unchecked-unsafe ways to use them.
Usually, the argument is for performance

28

L23: Systems Programming Safety CIT 5950, Spring 2024

C++ Backwards compatibly

+» Even with Modern C++ adding new features to get better
and safer, many people stick to bad habits that are kept in
C++ for backwards compatibility

29

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Counter Point: How serious is this safety?

% A counterpoint to the safety stuff is that:

" There is already a lot of tools to help detect these issues
(Valgrind, Address Sanitizer, UB Sanitizer, etc.)

" These issues are common, but they are not the biggest issues of
Security

- Notable Recent Security Issues:
= Heartbleed
= Spectre & Meltdown
" Log4j

XZ utils backdoor

= Social Engineering in general

30

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Other Point: Productivity

+ These issues also affect how productive C++ developers

are. These are added spots for bugs and can make coding
more difficult

+» Some initial studies report improved productivity from
moving from C++ to Rust

» Other languages also have more modern tooling support
= Compilation
"= Package Management
" Etc.

31

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Lecture Outline

« What’s Next?

32

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

C++ Successor Languages

» Because of the issue with safety, 2022 has been called
“the year of the C++ successor Languages”

% Justin 2022, three successor languages were announced:
= Val (now called Hylo)
= Carbon
= cppfront (sometimes called cpp2)

+» There have been many languages before:
=D
" Go
" Rust
= Others: Nim, Zig, Swift, etc. 33

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

C and C++ are used everywhere

+» Many things are written largely/primarily in C++ or C

The Adobe suite (Photoshop, etc)
The Microsoft office suite (word, PowerPoint, etc.)
The libre office suite (FOSS word, PowerPoint, etc)

Chromium (Core of most web browsers, Edge, Opera, Chrome,
etc)

Firefox

Most Database implementations

Tensorflow & Pytorch

gcc, clang & llvm (which is the backbone for many compilers)
Game Engines (Unreal, Unity, etc.)

Most of this information is from Jason Turner’s “C++ is 40... Is C++ DYING?” video
https://www.youtube.com/watch?v=hxjSpasg3gk 34

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

C and C++ are used everywhere

» Regularly ranks in top used ~5-10 programming languages

» Many people still use C++
® Estimates from JetBrains

= ~1,157,000 professional developers use C++ as their primary
language

= ~2,492,000 professional developers regularly use C++

35

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Programming Language Adoption

| do believe that there is real value in pursuing functional
programming, but it would be irresponsible to exhort everyone
to abandon their C++ compilers and start coding in Lisp, Haskell,
or, to be blunt, any other fringe language.

To the eternal chagrin of language designers, there are plenty of

externalities that can overwhelm the benefits of a language...

We have cross platform issues, proprietary tool chains,
certification gates, licensed technologies, and stringent
performance requirements on top of the issues with legacy
codebases and workforce availability that everyone faces. ...

— John Carmack [emphasis added]

For better or for worse, C++ already exists and has a bunch of work behind it.
Moving to another thing is going to take time and money, but is not impossible

Screenshot from Herb Sutter’s Plenary in cppcon 2023: https://www.youtube.com/watch?v=8U3hI8XMm8c
It is an interesting talk, but his cppcon 2022 or c++now 2023 talks may be better starting points for those interested 36

https://www.youtube.com/watch?v=8U3hl8XMm8c

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Migration

>

%+ Some organizations are (at least in part) trying to move
from C/ C++

+» The Linux kernel has incorporated Rust into it

® |t never allowed C++ into the kernel

>

+ Microsoft and Mozilla Firefox are putting in a lot of effort
to start training some employees to program in Rust.

*

- Some places are investigating the languages “Zig”

L)

D)

37

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Example: Python

+» Python made breaking changes just moving from version
2.7t03.0

>

Python release cycle

| | | | |
end-of-life ‘ | ‘ ‘ ‘ ‘
‘ end-of-life

Python 2.6
Python 2.7

+» Python 2.7 Python 3.0
Python 3.1

was extended | i

. Python 3.4 __end-of-life .

in support for | wuonss —

Python 3.6

a long time. Python 37

|

Python 3.8 | . security
|
|

~ Python 3.9
10 years python 3.10

Python 3.11

Python 3.12

Urity

securityl
Python 3.13

gl 'o9 "0l "M1IM121"M13 114115116 117 118 1 19 1 ‘20 231124 1'251'26 | '27 128 | '29
. |t took a

REALLY long time for many people to give up Python 2.7
and move to Python 3.

211122

*

D)

D)

+» How long will it take to move away from C++?

L)

38

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

Evolution

% C++is evolving to try and accommodate for some of these
iIssues

" Epochs & safety profiles

%+ Some passionate C++ developers are trying to make a new
language/syntax.
= Cppfront (cpp2) by Herb Sutter: a new syntax on C++ that fixes a

lot of broken defaults and makes writing C++ simpler. Still
compiles with and can directly invokes existing C++ code

= Circle: a C++ compiler that supports many new features including
ones related to safety, but these features are not std C++

= Carbon by Google: a new language with strong C++
interoperability. Still very early on and not runnable

39

University of Pennsylvania L23: Systems Programming Safety CIT 5950, Spring 2024

What’s next?

+» The situation is developing, we will see how things evolve
over time ©

+» There is a lot of inertia towards moving away from C++
and a lot of things look promising

" | think Rust and Zig both look very very cool and | wish | could
teach you one of those languages and we could just use them.

= Cppfront (or carbon or circle) looks the most promising. They have
the advantage of easier integration into existing C++ ecosystems
and making C++ safer and easier to use. It is compatible with most

existing C++ tools and code-bases.

40

	Default Section
	Slide 1: Systems Programming (& Safety) Computer Systems Programming, Spring 2024
	Slide 2: Logistics
	Slide 3
	Slide 4: Lecture Outline
	Slide 6: Poll: how are you?
	Slide 7: Poll: how are you?
	Slide 8: Poll: how are you?
	Slide 9: C/C++?
	Slide 10: C vs C++ (Timeline)
	Slide 11: C vs C++ (Timeline)
	Slide 12: C vs C++ (Timeline)
	Slide 13: C vs C++ Examples
	Slide 14: What else is going on?
	Slide 15: What else is going on?
	Slide 16: Memory Safety CVE
	Slide 17: Memory Safety
	Slide 18: Temporal Safety C Example
	Slide 19: Temporal Safety
	Slide 20: Temporal Safety
	Slide 21: Temporal Safety
	Slide 22: Spatial Safety
	Slide 23: Spatial Safety
	Slide 24: Aside: unions
	Slide 25: Spatial Safety
	Slide 26: Spatial Safety
	Slide 27: Spatial Safety
	Slide 28: Has C++ Been Fixing These?
	Slide 29: C++ Backwards compatibly
	Slide 30: Counter Point: How serious is this safety?
	Slide 31: Other Point: Productivity
	Slide 32: Lecture Outline
	Slide 33: C++ Successor Languages
	Slide 34: C and C++ are used everywhere
	Slide 35: C and C++ are used everywhere
	Slide 36: Programming Language Adoption
	Slide 37: Migration
	Slide 38: Example: Python
	Slide 39: Evolution
	Slide 40: What’s next?

