
CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Systems Programming (& Safety)
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Logistics

❖ Project released

▪ Due May 1st at midnight, please get started if you haven’t already

▪ Autograder to be posted soon

▪ NOTE: part of it is manually checked, not auto-graded

❖ HW4

▪ Due this Friday

▪ Autograder to be posted today

❖ Last Checkin to be released soon

▪ Due May1st at midnight (late deadline over reading days)

▪ (Post Semester Survey)

2

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

❖ Any questions? (On anything)

▪ This is the chance for catchup questions, same at the beginning of
next lecture.

3

pollev.com/tqm

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Lecture Outline

❖ Systems Programming

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ Safety

❖ What’s Next?

4

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Poll: how are you?

❖ On a scale of 1 (hate) to 5 (love), how do you feel about C
as a programming language?

6

pollev.com/tqm

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Poll: how are you?

❖ Why do you think we chose C++ as the programming
language for this course?

7

pollev.com/tqm

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Poll: how are you?

❖ Why do you think we chose C++ as the programming
language for this course?

❖ What comes to my mind:

▪ C++ is fast

▪ C++ is used in future courses (5050, 5600, 5530, 5480 (w/ C))

▪ C++ exposes you to the low-level features that other languages
abstract away. (Even if we did not use them all)

• addresses

• Memory management

• System Calls

• Assembly

▪ Operating System Kernels and Systems have been written in C for
a long time. In some ways it would be blasphemous to choose
something like python 8

pollev.com/tqm

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

C/C++?

❖ Common way of listing the languages: C/C++

❖ Common understanding of the language

▪ C++ is C but more

▪ C++ is a super set of C

❖ This understanding
is a pet-peeve of mine

9

C++

C

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

C vs C++ (Timeline)

❖ What People Think

10

C C++

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

C vs C++ (Timeline)

❖ More Detail (but a lot left out)

11

C
1972

K&R C
1978

ANSI C
1989

C99
1999

C w/
Classes
1982

C++
1985

C++98
1998

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

C vs C++ (Timeline)

❖ More Detail (but a lot left out)

12

ANSI C
1989

C99
1999

C++98
1998

C++11
2011

C11
2011

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

C++14
2014

C++17
2017

C++20
2020

C++23
2023

C23
2023

C has adopted changes from C++
example: auto and nullptr in C23

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

C vs C++ Examples

❖ old_c.c

▪ C has evolved since it was introduced in 1972

❖ c23.c

▪ C still gets updates adding new features

▪ Admittedly, the updates are small relative to other language
updates

❖ cpp23.cpp and stdin_echo.cpp

▪ Modern C++ is very different from C (Though most C is still legal!)

❖ cpp23_hello.cpp

▪ The fundamentals of the language are changing as well 13

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

What else is going on?

❖ C++ Seems so cool!!!! What else is going on? ☺

❖ NSA: 1.5 years ago (Nov 10th, 2022)

14

Rust is not mentioned in this snippet, but mentioned somewhere else in the announcement

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

What else is going on?

❖ C++ Seems so cool!!!! What else is going on? ☺

❖ White House: 2 months ago (Feb 26th, 2024)

15

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Memory Safety CVE

❖ CVE = Common Vulnerabilities and Exposures

16This is from Microsoft research showing how most vulnerabilities come from memory issues

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Memory Safety

❖ Memory Safety is dominating discussion on Systems
programming languages (C, C++, Rust, Zig, Nim, D, …)

❖ What is memory safety?

❖ Broadly two types:

▪ Temporal Safety: making sure you don’t access “objects” that are
destroyed, or in invalid states

▪ Spatial Safety: making sure you do not access memory you either
shouldn’t access or accessing them in the wrong ways

17

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Temporal Safety C Example

❖ Here is an example in C where is the issue?

18

int main(int argc, char** argv) {

 int* ptr = malloc(sizeof(int));

 assert(ptr != NULL);

 *ptr = 5;

 // do stuff with ptr

 free(ptr);

 printf("%d\n", *ptr);

}

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Temporal Safety

❖ Here is an example in C++ where is the issue?

19

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

 vector<int> v {3, 4, 5};

 int& first = v.front();

 cout << first << endl;

 v.push_back(6);

 cout << v.size() << endl;

 cout << first << endl;

}

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Temporal Safety

❖ Here is an example in C++ where is the issue?

20

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

 v1.push_back(v2.front());

}

int main() {

 vector<int> x{3, 4, 5};

 func(x, x);

}

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Temporal Safety

❖ Here is an example in C++ where is the issue?

21

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

 v1.push_back(v2.front());

}

int main() {

 vector<int> x{3, 4, 5};

 func(x, x);

}

push_back takes in an int&

push_back may need to resize, if it does, the reference to its front becomes invalid

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Spatial Safety

❖ C (and C++) enforce types on variables, they are statically
typed

❖ C and C++ can easily get around the type system though:

22

int main() {

 int x = 3;

 float f1 = x; // converts bits to floating point rep

 float f2 = *(float*)&x; // copies bits

 printf("%f\n", f1); // these two print

 printf("%f\n", f2); // different things

}

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Spatial Safety

❖ C (and C++) enforce types on variables, they are statically
typed

❖ C and C++ can easily get around the type system though:

23

int main() {

 string s = "Howdy :)";

 vector<int> v = *retinterpret_cast<vector<int>*>(&s);

 v.push_back(3);

 // this code probably crashes before getting here

}

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Aside: unions

❖ A union is a type that can have more than one possible
representations in the same memory position

24

union {

 float f;

 int i;

};

f = 3.14; // assigns a float value to the union

printf("%d\n", i); // try to interpret the same memory as an int

// this is not type checked

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Spatial Safety

❖ A union is a type that can have more than one possible
representations in the same memory position

25

// common design pattern, return a struct that either holds

// an error or the expected value, with a bool to indicate

struct parer_result {

 bool is_valid;

 union {

 char* error message;

 struct parsed_command* cmd;

 };

};

struct parser_result parse_cmd(const char* input);

int main() {

 struct parser_result = parse_cmd("…");

 struct parsed_command = *(parser_result.cmd)

}

// We didn’t check if the result was valid, may be violating

spatial safety

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Spatial Safety

❖ Sometimes violating spatial safety is "needed"
▪ To support “Generics” in C, we often cast to/from void*

▪ Can be used for some cool stuff like this fast inverse square root
algorithm (don’t do this, it is not fast anymore):

26

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Spatial Safety

❖ Spatial safety includes index out of bounds.

❖ What is wrong here?

❖ Here?

27

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!
No IndexOutOfBounds

Hope for segfault

write(STDERR_FILENO, "Hello!\n", PAGE_SIZE);

char buf[6];

strcpy(buf, "Hello!\n");

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Has C++ Been Fixing These?

❖ C++ has been giving replacements for these features that
are safer.

▪ Instead of union, C++ has optional, variant, any and others

▪ Instead of C arrays, there is the vector and array type

❖ Is this C++ safe?

❖ C++ Keeps adding new features that are better and safer
but adding in unchecked-unsafe ways to use them.
Usually, the argument is for performance

28

vector<int> v {2, 3, 5, 6, 11, 13};

v[1000] = 7; // is this safe?

v.at(1000) = 0; // above: no, this: yes

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

C++ Backwards compatibly

❖ Even with Modern C++ adding new features to get better
and safer, many people stick to bad habits that are kept in
C++ for backwards compatibility

29

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Counter Point: How serious is this safety?

❖ A counterpoint to the safety stuff is that:

▪ There is already a lot of tools to help detect these issues
(Valgrind, Address Sanitizer, UB Sanitizer, etc.)

▪ These issues are common, but they are not the biggest issues of
Security

❖ Notable Recent Security Issues:

▪ Heartbleed

▪ Spectre & Meltdown

▪ Log4j

▪ XZ utils backdoor

▪ Social Engineering in general

30

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Other Point: Productivity

❖ These issues also affect how productive C++ developers
are. These are added spots for bugs and can make coding
more difficult

❖ Some initial studies report improved productivity from
moving from C++ to Rust

❖ Other languages also have more modern tooling support

▪ Compilation

▪ Package Management

▪ Etc.

31

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Lecture Outline

❖ What’s Next?

32

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

C++ Successor Languages

❖ Because of the issue with safety, 2022 has been called
“the year of the C++ successor Languages”

❖ Just in 2022, three successor languages were announced:

▪ Val (now called Hylo)

▪ Carbon

▪ cppfront (sometimes called cpp2)

❖ There have been many languages before:

▪ D

▪ Go

▪ Rust

▪ Others: Nim, Zig, Swift, etc. 33

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

C and C++ are used everywhere

❖ Many things are written largely/primarily in C++ or C

▪ The Adobe suite (Photoshop, etc)

▪ The Microsoft office suite (word, PowerPoint, etc.)

▪ The libre office suite (FOSS word, PowerPoint, etc)

▪ Chromium (Core of most web browsers, Edge, Opera, Chrome,
etc)

▪ Firefox

▪ Most Database implementations

▪ Tensorflow & Pytorch

▪ gcc, clang & llvm (which is the backbone for many compilers)

▪ Game Engines (Unreal, Unity, etc.)

34

Most of this information is from Jason Turner’s “C++ is 40… Is C++ DYING?” video
https://www.youtube.com/watch?v=hxjSpasg3gk

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

C and C++ are used everywhere

❖ Regularly ranks in top used ~5-10 programming languages

❖ Many people still use C++

▪ Estimates from JetBrains

▪ ~1,157,000 professional developers use C++ as their primary
language

▪ ~2,492,000 professional developers regularly use C++

35

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Programming Language Adoption

36

For better or for worse, C++ already exists and has a bunch of work behind it.
Moving to another thing is going to take time and money, but is not impossible

Screenshot from Herb Sutter’s Plenary in cppcon 2023: https://www.youtube.com/watch?v=8U3hl8XMm8c
It is an interesting talk, but his cppcon 2022 or c++now 2023 talks may be better starting points for those interested

https://www.youtube.com/watch?v=8U3hl8XMm8c

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Migration

❖ Some organizations are (at least in part) trying to move
from C / C++

❖ The Linux kernel has incorporated Rust into it

▪ It never allowed C++ into the kernel

❖ Microsoft and Mozilla Firefox are putting in a lot of effort
to start training some employees to program in Rust.

❖ Some places are investigating the languages “Zig”

37

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Example: Python

❖ Python made breaking changes just moving from version
2.7 to 3.0

❖ Python 2.7
was extended
in support for
a long time.
~10 years

❖ It took a
REALLY long time for many people to give up Python 2.7
and move to Python 3.

❖ How long will it take to move away from C++?
38

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

Evolution

❖ C++ is evolving to try and accommodate for some of these
issues

▪ Epochs & safety profiles

❖ Some passionate C++ developers are trying to make a new
language/syntax.

▪ Cppfront (cpp2) by Herb Sutter: a new syntax on C++ that fixes a
lot of broken defaults and makes writing C++ simpler. Still
compiles with and can directly invokes existing C++ code

▪ Circle: a C++ compiler that supports many new features including
ones related to safety, but these features are not std C++

▪ Carbon by Google: a new language with strong C++
interoperability. Still very early on and not runnable

39

CIT 5950, Spring 2024L23: Systems Programming SafetyUniversity of Pennsylvania

What’s next?

❖ The situation is developing, we will see how things evolve
over time ☺

❖ There is a lot of inertia towards moving away from C++
and a lot of things look promising

▪ I think Rust and Zig both look very very cool and I wish I could
teach you one of those languages and we could just use them.

▪ Cppfront (or carbon or circle) looks the most promising. They have
the advantage of easier integration into existing C++ ecosystems
and making C++ safer and easier to use. It is compatible with most
existing C++ tools and code-bases.

40

	Default Section
	Slide 1: Systems Programming (& Safety) Computer Systems Programming, Spring 2024
	Slide 2: Logistics
	Slide 3
	Slide 4: Lecture Outline
	Slide 6: Poll: how are you?
	Slide 7: Poll: how are you?
	Slide 8: Poll: how are you?
	Slide 9: C/C++?
	Slide 10: C vs C++ (Timeline)
	Slide 11: C vs C++ (Timeline)
	Slide 12: C vs C++ (Timeline)
	Slide 13: C vs C++ Examples
	Slide 14: What else is going on?
	Slide 15: What else is going on?
	Slide 16: Memory Safety CVE
	Slide 17: Memory Safety
	Slide 18: Temporal Safety C Example
	Slide 19: Temporal Safety
	Slide 20: Temporal Safety
	Slide 21: Temporal Safety
	Slide 22: Spatial Safety
	Slide 23: Spatial Safety
	Slide 24: Aside: unions
	Slide 25: Spatial Safety
	Slide 26: Spatial Safety
	Slide 27: Spatial Safety
	Slide 28: Has C++ Been Fixing These?
	Slide 29: C++ Backwards compatibly
	Slide 30: Counter Point: How serious is this safety?
	Slide 31: Other Point: Productivity
	Slide 32: Lecture Outline
	Slide 33: C++ Successor Languages
	Slide 34: C and C++ are used everywhere
	Slide 35: C and C++ are used everywhere
	Slide 36: Programming Language Adoption
	Slide 37: Migration
	Slide 38: Example: Python
	Slide 39: Evolution
	Slide 40: What’s next?

