University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Distributed Sys & Course Wrap-up

Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang
Felix Sun Serena Chen
Heyi Liu Yuna Shao

Kevin Bernat

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Logistics

+ Project released

= Due May 1%t at midnight, please get started if you haven’t already
= Autograder to be posted soon
= NOTE: part of it is manually checked, not auto-graded

+ HWA4
" Due this Friday
= Autograder posted

« Last Checkin to be released soon

" Due Maylst at midnight (late deadline over reading days)
" (Post Semester Survey)

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Any questions? (On anything)

" This is the chance for catchup questions, same at the beginning of
next lecture.

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Lecture Outline

+ Intro to Distributed Systems
«» Course wrap-up

University of Pennsylvania

L24: DS & Course Wrap-up

CIT 5950, Spring 2024

What are distributed systems?

» A group of computers communicating over the network

by sending messages, which interact to accomplish some
common task

" There is no shared state (e.g. memory)

" |ndividual computers (nodes) can fail

" The network itself can fail (Drop messages, corrupt messages,
delay messages, etc.)

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Why do we care?

+» They are a really interesting problem to work with

+» Most applications we interact with are distributed
systems

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Distributed Systems Concerns

» How do we make it so that the computers work together:
= Correctly
" Consistent
= Efficiently
= At (huge) scale

High availability

» Despite issues with the network

- Despite some computers crashing

» Despite some computers being compromised

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Distributed Systems: Pessimistic View

+» Considered a very hard topic
" |nvolves many of the topics covered in this course and more

= CIS 5050 spends ~8 lectures covering things already introduced
here. (out of 25 lectures)

» “The most thought per line of code out of any course”
= Hal Perkins Circa 2019

+ “Adistributed system is one where you can’t get your
work done because some machine you’ve never heard of
is broken.”

" |eslie Lamport, circa 1990

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Distributed Systems Topics

’0

L)

» Concurrency on a single node

" Threads, processes, pipes, locks, etc.

Networking
= HTTP, DNS, TCP, Sockets, etc.

% Synchronization across network nodes

= Common Knowledge, Clocks, coordination, leader elections, etc.

L)

0’0

’0

Fault Tolerance & Robustness

= Byzantine fault tolerance, ACID, etc.

L)

0’0

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Distributed Systems Topics

>

L)

>

Concurrency on a single node

" Threads, processes, pipes, locks, etc.

L)

Networking
= HTTP, DNS, TCP, Sockets, etc.

+ Synchronization across network nodes
= Common Knowledge, Clocks, coordination, leader elections, etc.

L)

0’0

’0

Fault Tolerance & Robustness
= Byzantine fault tolerance, ACID, etc.

L)

0’0

10

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Muddy Foreheads

+» Assume the following situation

" There are n children, k get mud
on their foreheads

® Children sit in circle.

® Teacher announces, "Someone
has mud on their forehead

" Teacher repeatedly asks "Raise
your hand if you know you have
mud on your forehead."

" What happens?

11

CIT 5950, Spring 2024

University of Pennsylvania L24: DS & Course Wrap-up

Muddy Foreheads

+» Assume the following situation

There are n children, k get mud
on their foreheads

Children sit in circle.

Teacher announces, "Someone
has mud on their forehead

Teacher repeatedly asks "Raise
your hand if you know you have
mud on your forehead."

What happens?

« The answer is not "'no one raises
their hand"

This Photo by Unknown Author is licensed under CC BY-NC-ND

12

https://mujeresconciencia.com/2014/12/09/grace-murray-hopper-informatica/
https://creativecommons.org/licenses/by-nc-nd/3.0/

L24: DS & Course Wrap-up

The Muddy Forehead "Paradox"
+» If k> 1, the teacher didn’t say anything anyone

didn’t already know!

« Yet the information is crucial to let the children
solve the problem

CIT 5950, Spring 2024

14

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Common Knowledge

+» There’s a difference between what you know and what
you know others know

+» And what others know you know
+» And what others know you know about what you know

+» And what you know others know you know about what
they know

15

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Muddy Forehead Alteration

+ What if the teacher pulled each student aside individually
and told them “at least one student has mud on their
forehead”?

= \Would our solution still work?

16

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Generals Problem

o
2

» Two generals, on opposite sides
of a city on a hill.

*
o0

If they attack simultaneously,
they will be victorious. If one
attacks without the other, they
will both be defeated.

L)

«» Can communicate by
messenger. Messengers can
get lost or be captured.

» How do they ensure they can
take the city?

L)

17

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Coordinated Attack

+» Answer: There does not exist a protocol to decide when

and whether to attack.

» Proof by contradiction. Assume a protocol exists. Let the
minimum number of messages received in any
terminating execution be n. Consider the last message
received in one such execution.

+» The sender's decision to attack does not depend on

whether or not the message is received; sender must
attack. Since the sender attacks, the receiver must also
attack when the message is not received.

+» Therefore, the last message is irrelevant, and there exists

an execution with n-1 message deliveries. n was the
minimum! Contradiction. 18

University of Pennsylvania L24: DS & Course Wrap-up

Generals Problem

» To coordinate an attack, the
problem requires common
knowledge

o
*

X/
X4

» With the messengers, common
knowledge is never reached.

+ What happens when we add
more generals?

+ What happens when some of
the generals are malicious?

L)

CIT 5950, Spring 2024

19

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: RPC

+» Remote Procedure Call: When a program is able to invoke
a function on another computers address space, and then
get the results.

+ Usually done as a form of “Message Passing”
= (Client calls a function that sends a “message” over the network

= A server receives the message, executes the function, and sends
the response back

+» Even in this simple, example, issues can arise

20

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: RPC

« Consider: Client wants to read their current Bank Account
Balance

" Client may call a function like get_balance()

Server Node
Data

Client 1

balance = $100

21

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: RPC

+» Consider: Client wants to read their current Bank Account
Balance
" Client may call a function like get_balance()
= get balance() will reach out to the server across the network

Server Node
Data

Client 1

balance = $100

22

University of Pennsylvania L24: DS & Course Wrap-up

Example: RPC

CIT 5950, Spring 2024

« Consider: Client wants to read their current Bank Account

Balance

" Client may call a function like get_balance()

= get balance() will reach out to the server across the network

= Server processes the request, and sends it back

Client 1 /

Server Node

Data

balance = $100

23

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: RPC

+» Consider: Client wants to read their current Bank Account
Balance
" Client may call a function like get_balance()
= get balance() will reach out to the server across the network
= Server processes the request, and sends it back
= Client returns from the function “get_balance()”

Server Node
Data

Client 1 /

balance = $100

Cliewt was blocked while waiting for the server +o respond.

Program that called get_balance () probably doesu+ veed

to know much abont the network messaging
24

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Blank Slide

25

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: RPC Transaction

+» Consider: Client wants to withdraw S75 from their bank
account
" Client may call a function like withdraw(75)
= withdraw() will reach out to the server across the network

Server Node
Data

Client 1 /

balance = $100

26

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: RPC Transaction

+» Consider: Client wants to withdraw S75 from their bank
account
= Client may call a function like withdraw(75)
= withdraw() will reach out to the server across the network
= Server processes the request, and sends it back

Server Node
Data

Client 1 /

balance = $25

27

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: RPC Transaction

+» Consider: Client wants to withdraw S75 from their bank
account
= Client may call a function like withdraw(75)
= withdraw() will reach out to the server across the network
= Server processes the request, and sends it back

- ... But what if the connection is dropped before client receives
response!

Client 1 /

4mmmmmmmmm s m T m T balance = 525

Server Node
Data

28

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: RPC Transaction

+ Server processes the withdraw request, and sends it back

= .. But what if the connection is dropped before client receives
response!

+ Let’s say connection is re-established and client resends
“withdraw(75)”...

Server Node
Data

Client 1 /

balance = $25

29

University of Pennsylvania

L24: DS & Course Wrap-up

CIT 5950, Spring 2024

Question: Does TCP Solve This?

+ |If we were using TCP, is this situation even possible?
= TCP: provides an abstraction of a reliable stream of bytes.

" TCP: each packet is acknowledged between user and receiver and
automatically resent.

+ Yes: this can still happen.

= TCP Ensures that packets are sent in a specific order and are

acknowledged before it is “successfully written”.
Does not ensure that the network (or server itself) goes down

Does not ensure that the function we want to execute on the
server worked or whether it actually happened.

30

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: RPC Transaction

+ Server processes the withdraw request, and sends it back
= .. But what if the connection is dropped before client receives
response!
+ Let’s say connection is re-established and client resends
“withdraw(75)”...

" How does the server know if this is the same request as last time,
or another request to withdraw $75

" How does the server know what the client is “intending”

Server Node
Data

Client 1

balance = $25

31

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Terminology

+ Exactly Once:

Hardest to guarantee
That something happens and it only happens exactly one time.

Requires that the clients have an ID and each request has an ID
number.

Servers must also keep a history of previously processed requests
and their ID number so that the server can respond to
duplicate/old requests.

32

University of Pennsylvania L24: DS & Course Wrap-up

CIT 5950, Spring 2024

Terminology

<+ At Most Once:

" That a request is executed at most once (e.g. O times or 1 time)
= Usually means the client sends the request once and only once.

= Usable in some cases, but sometimes we need to guarantee that
something happened.

+ At Least Once:

" That the thing is executed at least one time.

" This is fine for things like “Reading a value” or “setting” a value

Other operations may get different results if done multiple times
(Like our transaction)

+ Exactly Once:

33

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Blank Slide

34

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: Consistent State

Client 1
Server Node 1 Server Node 2 (“Backup”)
Data Data
x=0 x=0
y=1 y=1

35

University of Pennsylvania

L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: Consistent State

Client 1

Server Node 1

Data
x=0
y=1

Can contact any node to
Read the data stored

What happens when writing
is involved?

Server Node 2 (“Backup”)

Data
x=0
y=1

36

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: Consistent State

Client 1
Write x =17
Server Node 1 Server Node 2 (“Backup”)
Data Data
x=0 x=0
y =17 y= 1

37

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: Consistent State

Client 1

Server loses connection to client

AN
AN /
\\ /
\Sgrver Nodg/l/ Server Node 2 (“Backup”)
\Qata / Data
X =/‘6\ x=0
y=17"\ y=1
N
// h
N
/ AN
/ AN

38

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: Consistent State

Client 1 Client can
communicate with
other nodes instead

AN
N /
\\ /
/
\Sgrver Node/1 Server Node 2 (“Backup”)
\Qata / Data
X =/‘6\ x=0
Y= 17 \ y=1
N
// N
AN
/ N
/ AN

39

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Example: Consistent State

Client 1 What happens if
Node 1 comes alive
again?
Server Node 1 Server Node 2 (“Backup”)
Data Data
x=0 x=0
y = 17 Y= 1

40

L24: DS & Course Wrap-up CIT 5950, Spring 2024

University of Pennsylvania

Example: Consistent State

Client 1 Which node has the
correct data?

How do we reach
consistency again?

Server Node 1 Server Node 2 (“Backup”)

Data Data
Xx=0 x=0
y=17 y=1

41

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

PAXOS

+» No deterministic fault-tolerant consensus protocol can
guarantee progress in an asynchronous network.

+» PAXOS is a protocol for solving consensus while being
resistant to unreliable or failable processors in the
system

= Unreliable and failable could mean just that
- the system crashes
- packet (messages) are being sent and received inconsistently
- Becomes malicious and behaves incorrectly “on purpose”
- And in paxos, could possibly recover from any of these

+» Paxos guarantees consistency, and the conditions that
could prevent it from making progress are difficult to
provoke.

42

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Real Life Equivalents

III

+» While what we went over aren’t “real” examples, these

concepts apply to distributed systems.

+ If a bank or database runs on a collection of nodes. How
do we agree on whether a transaction occurred?

" How do we ensure that the transaction went through and won’t
get “lost” due to faults?

+» What if data was split across different nodes and multiple
clients needed data from multiple nodes at the same
time?

43

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Lecture Outline

% Intro to Distributed Systems
« Course wrap-up

44

CIT 5950, Spring 2024

What hav'e we been
up to for the last
14 weeks?

Ideally, you would have “learned” everything in this course, but
we’ll use red stars fy today to highlight the ideas that we hope
stick with you beyond this course

45

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Course Goals

+» Explore the gap between:

The computer is a magic
machine that runs programs!

The computer is a stupid machine
that executes really, really simple
instructions (really, really fast).

46

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Systems Programming: The Why

» The programming skills, engineering discipline, and
knowledge you need to build a system

1) Understanding the “layer below” makes you a better
programmer at the layer above

2) Gain experience with working with and designing more complex
“systems”

3) Learning how to handle the unique challenges of low-level
programming allows you to work directly with the countless
“systems” that take advantage of it

47

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

So What is a System?

+» “Asystem is a group of interacting or interrelated entities
that form a unified whole. A system is delineated by its
spatial and temporal boundaries, surrounded and
influenced by its environment, described by its structure
and purpose and expressed in its functioning.”

" https://en.wikipedia.org/wiki/System

= Still vague, maybe still confusing

» But hopefully you have a better idea of what a system in
CS is now
" What kinds of systems have we seen...?

48

https://en.wikipedia.org/wiki/System

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Software System

+» Writing complex software systems is difficult!
" Modularization and encapsulation of code
@Resource management
" Documentation and specification are critical
@Robustness and error handling
" Must be user-friendly and maintained (not write-once, read-never)

@Discipline: cultivate good habits, encourage clean code
" Coding style conventions
= Unit testing, code coverage testing, regression testing
" Documentation (code comments, design docs)

49

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

The Computer as a System

+» Modern computer systems are increasingly complex!
= Networking, threads, processes, pipes, files
= Buffered vs. unbuffered I/0O, blocking calls, latency

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

50

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

A Network as a System

+» A networked system relies heavily on its connectivity

= Depends on materials, physical distance, network topology,
protocols

@Conceptual abstraction layers

" Physical, data link, network, transport, session, presentation,
application

= layered protocol model
- We focused on IP (network), TCP (transport), and HTTP (application)
+» Network addressing
= MAC addresses, IP addresses (IPv4/IPv6), DNS (name servers)
+ Routing

= lLayered packet payloads, security, and reliability
51

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Systems Programming: The What
+» The programming skills, engineering discipline, and
knowledge you need to build a system
@Programming: C& C++
= Discipline: design, testing, debugging, performance analysis

= Knowledge: long list of interesting topics

- Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, ...

fyl\/lost important: a deep understanding of the “layer below”

52

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Main Topics

>

e C

" |Low-level programming language

L)

*

e C++

L)

" The 800-Ib gorilla of programming languages
= “better C” + classes + STL + smart pointers + ...

Memory management

L)

0’0

’0

+ System interfaces and services

L)

*

Networking basics — TCP/IP, sockets, ...

0

’0

% Concurrency basics — POSIX threads, synchronization

’0

+» Multi-processing Basics — Fork, Pipe, Exec

53

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Topic Theme: Abstraction

%+ C: void* as a generic data type
<§¥C++: hide execution complexity
= e.g., operator overloading, dispatch, containers & algorithms

+» C++: templates to generalize code

‘[;YOS: abstract away details of interacting with system
resources via system call interface

<[EyNetworking: 7-layer OSI model hides details of lower
layers

= e.g., DNS abtracts away IP addresses, IP addresses abstract away
MAC addresses

54

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Topic Theme: Using Memory

+ Variables, scope, and lifetime
@Static, automatic, and dynamic allocation / lifetime
" C++ objects and destructors; C++ containers and copying
@Pointers and associated operators (&, *, —>, [1)
" Can be used to link data or fake “call-by-reference”
%y Dynamic memory allocation
" malloc/free (C), new/delete (C++), smart pointers (C++)

" Who is responsible? Who owns the data? What happens when
(not if) you mess this up? (dangling pointers, memory leaks, ...)

+» Tools
" Debuggers (gdb), monitors (valgrind)
@Most important tool: thinking!

55

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Topic Theme: Data Passing

«» C: output parameters
+» C++: Copy constructors, and copy vs move semantics
% Threads: return values or shared memory/resources

@Leads to synchronization concerns

% |/O to send and receive data from outside of your
program (e.g., disk/files, network, streams)
= Linux/POSIX treats all I/O similarly
@Takes a LONG time relative to other operations
" Blocking vs. polling

+ Buffers can be used to temporarily hold passed data

= Buffering can be used to reduce costly I/O accesses, depending on
access pattern. Similar thing for caches.

56

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Topic Theme: Concurrency

fy Processes

" Exec
" Process Groups

- Terminal Control
= |PC

- Pipe

- Signals

% Threads

@Synch ronization

« mutex
« Condition variables

" Deadlock
% Concurrency vs parallelism

57

University of Pennsylvania L24: DS & Course Wrap-up

CIT 5950, Spring 2024

MISSING Topic Theme: Society

% One flaw (among others) of this course is how we don’t
talk about how this relates to the rest of the world

" These systems we build do not have to necessarily be “evil”, but
can often be used in those ways

"= We need to work and communicate with other people, even in
CS.

+» Actions:
= Take Algorithmic Justice (CIS 7000) with Danaé Metaxa

= Join a community of people working on things that matter to you,
(Unions or other organizations)

" Join me as a TA for 2400 or 5950 next year. We will try to
integrate ethics into those courses (still working out details).

58

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Congratulations!

« Look how much we learned!

+ Lots of effort and work, but lots of useful takeaways:
= Debugging practice
= Reading documentation
" Tools (gdb, valgrind, helgrind)

= Cand C++ familiarity, including multithreaded and networked
code

% Go forth and build cool systems!

59

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Future Courses

+» Systems Courses
" CIS 3410 Compilers (May have a grad version in the future)
CIS 5050: Software Systems
CIS 5480: Operating Systems Design and Implementation
CIS 5530: Networked Systems
= CIS 5550 Internet and Web Systems
= CIS 5500: Database and Information Systems
= CIS 5470: Software Analysis

« Otherwise related courses

= CIS 5600 Interactive Computer Graphics
= CIS 5650 GPU Programming and Architecture
= CIS 5570 Programming for the Web

60

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Thanks for a great semester!

Special thanks to all the instructors before me (Both at
UPenn and UW) who have influenced me to make the
course what it is

+ Huge thanks to the course TA’s for helplng with the_
course'

61

University of Pennsylvania L24: DS & Course Wrap-up CIT 5950, Spring 2024

Thanks for a great semester!

+» Thanks to you!

" |t has been another tough semester. Still not completely out of
the pandemic, Zoom fatigue, faltering motivation, etc

= Relatively “new” version of the course. Many of the assignments
and infrastructure are recently developed.

" You’'ve made it through so far, be proud that you’ve made it and
what you’ve accomplished!

+ Please take care of yourselves, your friends, and your
community

62

	Default Section
	Slide 1: Distributed Sys & Course Wrap-up Computer Systems Programming, Spring 2024
	Slide 2: Logistics
	Slide 3
	Slide 4: Lecture Outline
	Slide 5: What are distributed systems?
	Slide 6: Why do we care?
	Slide 7: Distributed Systems Concerns
	Slide 8: Distributed Systems: Pessimistic View
	Slide 9: Distributed Systems Topics
	Slide 10: Distributed Systems Topics
	Slide 11: Muddy Foreheads
	Slide 12: Muddy Foreheads
	Slide 14: The Muddy Forehead "Paradox"
	Slide 15: Common Knowledge
	Slide 16: Muddy Forehead Alteration
	Slide 17: Generals Problem
	Slide 18: Coordinated Attack
	Slide 19: Generals Problem
	Slide 20: Example: RPC
	Slide 21: Example: RPC
	Slide 22: Example: RPC
	Slide 23: Example: RPC
	Slide 24: Example: RPC
	Slide 25: Blank Slide
	Slide 26: Example: RPC Transaction
	Slide 27: Example: RPC Transaction
	Slide 28: Example: RPC Transaction
	Slide 29: Example: RPC Transaction
	Slide 30: Question: Does TCP Solve This?
	Slide 31: Example: RPC Transaction
	Slide 32: Terminology
	Slide 33: Terminology
	Slide 34: Blank Slide
	Slide 35: Example: Consistent State
	Slide 36: Example: Consistent State
	Slide 37: Example: Consistent State
	Slide 38: Example: Consistent State
	Slide 39: Example: Consistent State
	Slide 40: Example: Consistent State
	Slide 41: Example: Consistent State
	Slide 42: PAXOS
	Slide 43: Real Life Equivalents
	Slide 44: Lecture Outline
	Slide 45: What have we been up to for the last 14 weeks?
	Slide 46: Course Goals
	Slide 47: Systems Programming: The Why
	Slide 48: So What is a System?
	Slide 49: Software System
	Slide 50: The Computer as a System
	Slide 51: A Network as a System
	Slide 52: Systems Programming: The What
	Slide 53: Main Topics
	Slide 54: Topic Theme: Abstraction
	Slide 55: Topic Theme: Using Memory
	Slide 56: Topic Theme: Data Passing
	Slide 57: Topic Theme: Concurrency
	Slide 58: MISSING Topic Theme: Society
	Slide 59: Congratulations!
	Slide 60: Future Courses
	Slide 61: Thanks for a great semester!
	Slide 62: Thanks for a great semester!

