
CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Distributed Sys & Course Wrap-up
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Logistics

❖ Project released

▪ Due May 1st at midnight, please get started if you haven’t already

▪ Autograder to be posted soon

▪ NOTE: part of it is manually checked, not auto-graded

❖ HW4

▪ Due this Friday

▪ Autograder posted

❖ Last Checkin to be released soon

▪ Due May1st at midnight (late deadline over reading days)

▪ (Post Semester Survey)

2

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

❖ Any questions? (On anything)

▪ This is the chance for catchup questions, same at the beginning of
next lecture.

3

pollev.com/tqm

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Lecture Outline

❖ Intro to Distributed Systems

❖ Course wrap-up

4

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

What are distributed systems?

❖ A group of computers communicating over the network
by sending messages, which interact to accomplish some
common task

▪ There is no shared state (e.g. memory)

▪ Individual computers (nodes) can fail

▪ The network itself can fail (Drop messages, corrupt messages,
delay messages, etc.)

5

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Why do we care?

❖ They are a really interesting problem to work with

❖ Most applications we interact with are distributed
systems

6

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Distributed Systems Concerns

❖ How do we make it so that the computers work together:

▪ Correctly

▪ Consistent

▪ Efficiently

▪ At (huge) scale

▪ High availability

❖ Despite issues with the network

❖ Despite some computers crashing

❖ Despite some computers being compromised
7

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Distributed Systems: Pessimistic View

❖ Considered a very hard topic

▪ Involves many of the topics covered in this course and more

▪ CIS 5050 spends ~8 lectures covering things already introduced
here. (out of 25 lectures)

❖ “The most thought per line of code out of any course”

▪ Hal Perkins Circa 2019

❖ “A distributed system is one where you can’t get your
work done because some machine you’ve never heard of
is broken.”

▪ Leslie Lamport, circa 1990

8

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Distributed Systems Topics

❖ Concurrency on a single node

▪ Threads, processes, pipes, locks, etc.

❖ Networking

▪ HTTP, DNS, TCP, Sockets, etc.

❖ Synchronization across network nodes

▪ Common Knowledge, Clocks, coordination, leader elections, etc.

❖ Fault Tolerance & Robustness

▪ Byzantine fault tolerance, ACID, etc.

9

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Distributed Systems Topics

❖ Concurrency on a single node

▪ Threads, processes, pipes, locks, etc.

❖ Networking

▪ HTTP, DNS, TCP, Sockets, etc.

❖ Synchronization across network nodes

▪ Common Knowledge, Clocks, coordination, leader elections, etc.

❖ Fault Tolerance & Robustness

▪ Byzantine fault tolerance, ACID, etc.

10

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Muddy Foreheads

❖ Assume the following situation

▪ There are n children, k get mud
on their foreheads

▪ Children sit in circle.

▪ Teacher announces, "Someone
has mud on their forehead

▪ Teacher repeatedly asks "Raise
your hand if you know you have
mud on your forehead."

▪ What happens?

11

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Muddy Foreheads

❖ Assume the following situation

▪ There are n children, k get mud
on their foreheads

▪ Children sit in circle.

▪ Teacher announces, "Someone
has mud on their forehead

▪ Teacher repeatedly asks "Raise
your hand if you know you have
mud on your forehead."

▪ What happens?

• The answer is not "no one raises
their hand"

12

This Photo by Unknown Author is licensed under CC BY-NC-ND

https://mujeresconciencia.com/2014/12/09/grace-murray-hopper-informatica/
https://creativecommons.org/licenses/by-nc-nd/3.0/

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

The Muddy Forehead "Paradox"

❖ If k > 1, the teacher didn’t say anything anyone
didn’t already know!

❖ Yet the information is crucial to let the children
solve the problem

14

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Common Knowledge

❖ There’s a difference between what you know and what
you know others know

❖ And what others know you know

❖ And what others know you know about what you know

❖ And what you know others know you know about what
they know

15

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Muddy Forehead Alteration

❖ What if the teacher pulled each student aside individually
and told them “at least one student has mud on their
forehead”?

▪ Would our solution still work?

16

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Generals Problem

❖ Two generals, on opposite sides
of a city on a hill.

❖ If they attack simultaneously,
they will be victorious. If one
attacks without the other, they
will both be defeated.

❖ Can communicate by
messenger. Messengers can
get lost or be captured.

❖ How do they ensure they can
take the city?

17

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Coordinated Attack

❖ Answer: There does not exist a protocol to decide when
and whether to attack.

❖ Proof by contradiction. Assume a protocol exists. Let the
minimum number of messages received in any
terminating execution be 𝑛. Consider the last message
received in one such execution.

❖ The sender's decision to attack does not depend on
whether or not the message is received; sender must
attack. Since the sender attacks, the receiver must also
attack when the message is not received.

❖ Therefore, the last message is irrelevant, and there exists
an execution with 𝑛-1 message deliveries. 𝑛 was the
minimum! Contradiction. 18

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Generals Problem

❖ To coordinate an attack, the
problem requires common
knowledge

❖ With the messengers, common
knowledge is never reached.

❖ What happens when we add
more generals?

❖ What happens when some of
the generals are malicious?

19

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC

❖ Remote Procedure Call: When a program is able to invoke
a function on another computers address space, and then
get the results.

❖ Usually done as a form of “Message Passing”

▪ Client calls a function that sends a “message” over the network

▪ A server receives the message, executes the function, and sends
the response back

❖ Even in this simple, example, issues can arise

20

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account
Balance

▪ Client may call a function like get_balance()

21

Client 1

Server Node

Data

balance = $100

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account
Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

22

Client 1

Server Node

Data

balance = $100

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account
Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

▪ Server processes the request, and sends it back

23

Client 1

Server Node

Data

balance = $100

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account
Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

▪ Server processes the request, and sends it back

▪ Client returns from the function “get_balance()”

24

Client 1

Server Node

Data

balance = $100

Client was blocked while waiting for the server to respond.

Program that called get_balance() probably doesn’t need

to know much about the network messaging

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Blank Slide

25

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank
account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

26

Client 1

Server Node

Data

balance = $100

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank
account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

▪ Server processes the request, and sends it back

27

Client 1

Server Node

Data

balance = $25

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank
account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

▪ Server processes the request, and sends it back

• … But what if the connection is dropped before client receives
response!

28

Client 1

Server Node

Data

balance = $25

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC Transaction

❖ Server processes the withdraw request, and sends it back

▪ … But what if the connection is dropped before client receives
response!

❖ Let’s say connection is re-established and client resends
“withdraw(75)”…

29

Client 1

Server Node

Data

balance = $25

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Question: Does TCP Solve This?

❖ If we were using TCP, is this situation even possible?

▪ TCP: provides an abstraction of a reliable stream of bytes.

▪ TCP: each packet is acknowledged between user and receiver and
automatically resent.

❖ Yes: this can still happen.

▪ TCP Ensures that packets are sent in a specific order and are
acknowledged before it is “successfully written”.

▪ Does not ensure that the network (or server itself) goes down

▪ Does not ensure that the function we want to execute on the
server worked or whether it actually happened.

30

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: RPC Transaction

❖ Server processes the withdraw request, and sends it back

▪ … But what if the connection is dropped before client receives
response!

❖ Let’s say connection is re-established and client resends
“withdraw(75)”…

▪ How does the server know if this is the same request as last time,
or another request to withdraw $75

▪ How does the server know what the client is “intending”

31

Client 1

Server Node

Data

balance = $25

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Terminology

❖ Exactly Once:

▪ Hardest to guarantee

▪ That something happens and it only happens exactly one time.

▪ Requires that the clients have an ID and each request has an ID
number.

▪ Servers must also keep a history of previously processed requests
and their ID number so that the server can respond to
duplicate/old requests.

32

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Terminology

❖ At Most Once:

▪ That a request is executed at most once (e.g. 0 times or 1 time)

▪ Usually means the client sends the request once and only once.

▪ Usable in some cases, but sometimes we need to guarantee that
something happened.

❖ At Least Once:

▪ That the thing is executed at least one time.

▪ This is fine for things like “Reading a value” or “setting” a value
Other operations may get different results if done multiple times
(Like our transaction)

❖ Exactly Once:

33

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Blank Slide

34

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: Consistent State

35

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 1

Data
x = 0
y = 1

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: Consistent State

36

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 1

Data
x = 0
y = 1

Can contact any node to
Read the data stored

What happens when writing
is involved?

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: Consistent State

37

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Write x = 17

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: Consistent State

38

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Server loses connection to client

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: Consistent State

39

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Client can
communicate with
other nodes instead

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: Consistent State

40

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

What happens if
Node 1 comes alive
again?

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Example: Consistent State

41

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Which node has the
correct data?

How do we reach
consistency again?

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

PAXOS

❖ No deterministic fault-tolerant consensus protocol can
guarantee progress in an asynchronous network.

❖ PAXOS is a protocol for solving consensus while being
resistant to unreliable or failable processors in the
system

▪ Unreliable and failable could mean just that

• the system crashes

• packet (messages) are being sent and received inconsistently

• Becomes malicious and behaves incorrectly “on purpose”

• And in paxos, could possibly recover from any of these

❖ Paxos guarantees consistency, and the conditions that
could prevent it from making progress are difficult to
provoke.

42

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Real Life Equivalents

❖ While what we went over aren’t “real” examples, these
concepts apply to distributed systems.

❖ If a bank or database runs on a collection of nodes. How
do we agree on whether a transaction occurred?

▪ How do we ensure that the transaction went through and won’t
get “lost” due to faults?

❖ What if data was split across different nodes and multiple
clients needed data from multiple nodes at the same
time?

43

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Lecture Outline

❖ Intro to Distributed Systems

❖ Course wrap-up

44

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

What have we been
up to for the last

14 weeks?

45

▪ Ideally, you would have “learned” everything in this course, but
we’ll use red stars ___ today to highlight the ideas that we hope
stick with you beyond this course

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Course Goals

❖ Explore the gap between:

46

The computer is a magic
machine that runs programs!

Intro 5930

The computer is a stupid machine
that executes really, really simple

instructions (really, really fast).

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Systems Programming: The Why

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

1) Understanding the “layer below” makes you a better
programmer at the layer above

2) Gain experience with working with and designing more complex
“systems”

3) Learning how to handle the unique challenges of low-level
programming allows you to work directly with the countless
“systems” that take advantage of it

47

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

So What is a System?

❖ “A system is a group of interacting or interrelated entities
that form a unified whole. A system is delineated by its
spatial and temporal boundaries, surrounded and
influenced by its environment, described by its structure
and purpose and expressed in its functioning.”

▪ https://en.wikipedia.org/wiki/System

▪ Still vague, maybe still confusing

❖ But hopefully you have a better idea of what a system in
CS is now

▪ What kinds of systems have we seen…?

48

https://en.wikipedia.org/wiki/System

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Software System

❖ Writing complex software systems is difficult!

▪ Modularization and encapsulation of code

▪ Resource management

▪ Documentation and specification are critical

▪ Robustness and error handling

▪ Must be user-friendly and maintained (not write-once, read-never)

❖ Discipline: cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

49

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

The Computer as a System

❖ Modern computer systems are increasingly complex!

▪ Networking, threads, processes, pipes, files

▪ Buffered vs. unbuffered I/O, blocking calls, latency

50

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

A Network as a System

❖ A networked system relies heavily on its connectivity

▪ Depends on materials, physical distance, network topology,
protocols

❖ Conceptual abstraction layers

▪ Physical, data link, network, transport, session, presentation,
application

▪ Layered protocol model

• We focused on IP (network), TCP (transport), and HTTP (application)

❖ Network addressing

▪ MAC addresses, IP addresses (IPv4/IPv6), DNS (name servers)

❖ Routing

▪ Layered packet payloads, security, and reliability
51

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Systems Programming: The What

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

▪ Programming: C & C++

▪ Discipline: design, testing, debugging, performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep understanding of the “layer below”

52

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Main Topics

❖ C

▪ Low-level programming language

❖ C++

▪ The 800-lb gorilla of programming languages

▪ “better C” + classes + STL + smart pointers + …

❖ Memory management

❖ System interfaces and services

❖ Networking basics – TCP/IP, sockets, …

❖ Concurrency basics – POSIX threads, synchronization

❖ Multi-processing Basics – Fork, Pipe, Exec

53

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Topic Theme: Abstraction

❖ C: void* as a generic data type

❖ C++: hide execution complexity

▪ e.g., operator overloading, dispatch, containers & algorithms

❖ C++: templates to generalize code

❖ OS: abstract away details of interacting with system
resources via system call interface

❖ Networking: 7-layer OSI model hides details of lower
layers

▪ e.g., DNS abtracts away IP addresses, IP addresses abstract away
MAC addresses

54

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Topic Theme: Using Memory

❖ Variables, scope, and lifetime

▪ Static, automatic, and dynamic allocation / lifetime

▪ C++ objects and destructors; C++ containers and copying

❖ Pointers and associated operators (&, *, ->, [])

▪ Can be used to link data or fake “call-by-reference”

❖ Dynamic memory allocation
▪ malloc/free (C), new/delete (C++), smart pointers (C++)

▪ Who is responsible? Who owns the data? What happens when
(not if) you mess this up? (dangling pointers, memory leaks, …)

❖ Tools
▪ Debuggers (gdb), monitors (valgrind)

▪ Most important tool: thinking!

55

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Topic Theme: Data Passing

❖ C: output parameters

❖ C++: Copy constructors, and copy vs move semantics

❖ Threads: return values or shared memory/resources

▪ Leads to synchronization concerns

❖ I/O to send and receive data from outside of your
program (e.g., disk/files, network, streams)

▪ Linux/POSIX treats all I/O similarly

▪ Takes a LONG time relative to other operations

▪ Blocking vs. polling

❖ Buffers can be used to temporarily hold passed data

▪ Buffering can be used to reduce costly I/O accesses, depending on
access pattern. Similar thing for caches.

56

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Topic Theme: Concurrency

❖ Processes

▪ Exec

▪ Process Groups

• Terminal Control

▪ IPC

• Pipe

• Signals

❖ Threads

▪ Synchronization

• mutex

• Condition variables

▪ Deadlock

❖ Concurrency vs parallelism
57

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

MISSING Topic Theme: Society

❖ One flaw (among others) of this course is how we don’t
talk about how this relates to the rest of the world

▪ These systems we build do not have to necessarily be “evil”, but
can often be used in those ways

▪ We need to work and communicate with other people, even in
CS.

❖ Actions:

▪ Take Algorithmic Justice (CIS 7000) with Danaë Metaxa

▪ Join a community of people working on things that matter to you,
(Unions or other organizations)

▪ Join me as a TA for 2400 or 5950 next year. We will try to
integrate ethics into those courses (still working out details).

58

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Congratulations!

❖ Look how much we learned!

❖ Lots of effort and work, but lots of useful takeaways:

▪ Debugging practice

▪ Reading documentation

▪ Tools (gdb, valgrind, helgrind)

▪ C and C++ familiarity, including multithreaded and networked
code

❖ Go forth and build cool systems!

59

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Future Courses

❖ Systems Courses

▪ CIS 3410 Compilers (May have a grad version in the future)

▪ CIS 5050: Software Systems

▪ CIS 5480: Operating Systems Design and Implementation

▪ CIS 5530: Networked Systems

▪ CIS 5550 Internet and Web Systems

▪ CIS 5500: Database and Information Systems

▪ CIS 5470: Software Analysis

❖ Otherwise related courses

▪ CIS 5600 Interactive Computer Graphics

▪ CIS 5650 GPU Programming and Architecture

▪ CIS 5570 Programming for the Web

60

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Thanks for a great semester!

❖ Special thanks to all the instructors before me (Both at
UPenn and UW) who have influenced me to make the
course what it is

❖ Huge thanks to the course TA’s for helping with the
course!

61

CIT 5950, Spring 2024L24: DS & Course Wrap-upUniversity of Pennsylvania

Thanks for a great semester!

❖ Thanks to you!

▪ It has been another tough semester. Still not completely out of
the pandemic, Zoom fatigue, faltering motivation, etc

▪ Relatively “new” version of the course. Many of the assignments
and infrastructure are recently developed.

▪ You’ve made it through so far, be proud that you’ve made it and
what you’ve accomplished!

❖ Please take care of yourselves, your friends, and your
community

62

	Default Section
	Slide 1: Distributed Sys & Course Wrap-up Computer Systems Programming, Spring 2024
	Slide 2: Logistics
	Slide 3
	Slide 4: Lecture Outline
	Slide 5: What are distributed systems?
	Slide 6: Why do we care?
	Slide 7: Distributed Systems Concerns
	Slide 8: Distributed Systems: Pessimistic View
	Slide 9: Distributed Systems Topics
	Slide 10: Distributed Systems Topics
	Slide 11: Muddy Foreheads
	Slide 12: Muddy Foreheads
	Slide 14: The Muddy Forehead "Paradox"
	Slide 15: Common Knowledge
	Slide 16: Muddy Forehead Alteration
	Slide 17: Generals Problem
	Slide 18: Coordinated Attack
	Slide 19: Generals Problem
	Slide 20: Example: RPC
	Slide 21: Example: RPC
	Slide 22: Example: RPC
	Slide 23: Example: RPC
	Slide 24: Example: RPC
	Slide 25: Blank Slide
	Slide 26: Example: RPC Transaction
	Slide 27: Example: RPC Transaction
	Slide 28: Example: RPC Transaction
	Slide 29: Example: RPC Transaction
	Slide 30: Question: Does TCP Solve This?
	Slide 31: Example: RPC Transaction
	Slide 32: Terminology
	Slide 33: Terminology
	Slide 34: Blank Slide
	Slide 35: Example: Consistent State
	Slide 36: Example: Consistent State
	Slide 37: Example: Consistent State
	Slide 38: Example: Consistent State
	Slide 39: Example: Consistent State
	Slide 40: Example: Consistent State
	Slide 41: Example: Consistent State
	Slide 42: PAXOS
	Slide 43: Real Life Equivalents
	Slide 44: Lecture Outline
	Slide 45: What have we been up to for the last 14 weeks?
	Slide 46: Course Goals
	Slide 47: Systems Programming: The Why
	Slide 48: So What is a System?
	Slide 49: Software System
	Slide 50: The Computer as a System
	Slide 51: A Network as a System
	Slide 52: Systems Programming: The What
	Slide 53: Main Topics
	Slide 54: Topic Theme: Abstraction
	Slide 55: Topic Theme: Using Memory
	Slide 56: Topic Theme: Data Passing
	Slide 57: Topic Theme: Concurrency
	Slide 58: MISSING Topic Theme: Society
	Slide 59: Congratulations!
	Slide 60: Future Courses
	Slide 61: Thanks for a great semester!
	Slide 62: Thanks for a great semester!

