CIT 5950 Recitation 0

Intro to C++

Introductions

Felix Yuzhou Sun

e 2nd Year MCIT student
e TAfor 5920 last semester
e Love K-pop and cooking

CV - Chandravaran Kunjeti

e 2nd Year Robotics student
e TA for 5950 last semester
e Anime

Introductions

Sean Chuang

e CIT5910TA last semester
e Tendtohaveveryearly OH......
e |swim and use the sauna at Pottruck every day

Ice breaker

Break up into groups of ~10
Here are some questions to help you guys get to know each other...

What'’s your favorite food

What would you do with your life if you didn’t have to worry about salary?

If you were sent to a deserted island and could only bring three movies, what
would they be?

Logistics

e HWODueinaweek Feb 1st @ 11:59 pm
o Don't forget to hand in your assignment on Gradescope
o |If you need extension, please post private post on Ed

e Pre-semester survey due January 31st @ 11:59 pm

e HW1tobereleased soon afterwards

Recitation

e Const &reference exercise
e STL
e optional

e Docker Setup Help

Const and References

X, refx 5

Example

® Consider the following code:

int x = 5;

int &refx = x;

ptrx | Ox7fff...

What are some tradeoffs to using pointers vs references?

Pointers Versus References

Pointers References

Can move to different data via References the same data for its
reassignment/pointer arithmetic entire lifetime - can't reassign

Can be initialized to NULL No sensible “default reference,”
must be an alias

Useful for output parameters: Useful for input parameters:
MyClass* output const MyClass& 1input

Pointers, References, and Parameters

® When would you prefer:
0 void func(int &arg) vs. void func(int *arg)

® Usereferences when you don't want to deal with pointer semantics
o Allows real pass-by-reference

o0 Can make intentions clearer in some cases

® Style wise, we want to use references for input parameters and pointers for output
parameters, with the output parameters declared last

O Note: Areference can't be NULL

References and Parameters

® When would you prefer:

0 void func(int &arg) vs. void func(int arg)

® Use void func(int arg) if the function doesn't need to modify the input or if you want

to ensure that the original value remains unchanged.
e Choose reference (void func(int &arg) if the function must modify the original value.

® Style wise, we want to use references for input parameters for improved readability
and consistency. It maintains a uniform coding style across functions.

O Note: Areference can't be NULL

Const

Mark a variable with const to
make a compile time check
that a variable is never
reassigned

Does not change the
underlying write-permissions

for this variable

intx=42;

// Read only
const int &ro_ref = x;

// Writable Reference
int&ref =x;
// Can still modify x with ref!

ref +=3;

ro_ref +=2; // does not compile

Exercise 1

int x = 5; X, refx

_ ro _refx
int &refx = x;

const int &ro_refx = x

“we

Exercise 1

void foo(const int &arg);
void bar(int &arg);
void baz(int arg);

int x = 5;
int &refx = x;
const 1int &ro_refx

X5

X, refx 5
ro refx

Which result in a compiler error?

SIAXSSKXS

v OK

X ERROR
bar(refx) ;
bar(ro_refx);
foo(refx);
int y = ro_refx;

int& other_ref = ro_refx; o refx is const
const int z = Xx
baz(ro_refx);

ro_refx 1is const

ok since we pass a copy

Exercise 2

this function attempts to modify a string so that it is all capital letters.

void all_caps(string to_capitalize);

int main() {
string name {"mf doom"};
all_caps(name) ;
cout << name << endl;
// should print out "MF DOOM"

}

Exercise 2
to help implement this function, we use a function from the C standard library:

- toupper () takesinacharacter and returns the uppercase version. If it is not a
lowercase letter, it returns the same character that was passed in

There are two issues that make this code output the wrong answer, what are they?

void all_caps(string to_capitalize) {
for (auto c : to_capitalize) {
c = toupper(c);
}
}

Exercise 2
to help implement this function, we use a function from the C standard library:

- toupper () takesinacharacter and returns the uppercase version. If it is not a
lowercase letter, it returns the same character that was passed in

There are two issues that make this code output the wrong answer, what are they?

void all_caps(string& to_capitalize) {
for (auto& c : to_capitalize) {
c = toupper(c);
}
}

Explanation: Pass-By-Value vs Pass-By-Reference

1. The function all_caps takes its argument to_capitalize by value, meaning it works on a
copy of the string passed to it, not the original string. As a result, the modifications
made inside the function do not affect the original string in main. To fix this, we should
pass the string by reference: void all_caps(string& to_capitalize)

2. Intheloop for (auto c:to_capitalize), cis a copy of each character in the string, not a
reference to it. Modifying c does not change the original string. To fix this, we should
iterate over references to the characters in the string: for (auto& c : to_capitalize).

C++ STL

C++ standard lib is built around templates

e (ontainers store data using various underlying data structures
o The specifics of the data structures define properties and
operations for the container
e [terators allow you to traverse container data
o Iterators form the common interface to containers
o Different flavors based on underlying data structure
e Algorithms perform common, useful operations on containers
o Use the common interface of iterators, but different algorithms
require different ‘complexities’ of iterators

21

Common C++ STL Containers (and Java equiv)

e Sequence containers can be accessed sequentially
o wvector<Item>usesadynamically-sized contiguous array (like
ArrayList)
o list<Item>uses adoubly-linked list (like LinkedList)
e Associative containers use search trees and are sorted by keys
o set<Key>onlystoreskeys (like TreeSet)
o map<Key,Value>stores key-value pair<>’s (like TreeMap)
e Unordered associative containers are hashed
o unordered map<Key,Value> (like HashMap)

Common C++ STL Methods

.size ()

.push_back ()
.pop_back ()

.push_front ()
.pop_front ()

.operator|[] ()
.insert ()

.find ()

//

//
//

//
//

//
/S
//

vector

get number of elements

add element to back
remove back element

add element to front
remove front element

random access element
insert key

find key

list

set

map

unordered map

Common C++ STL Methods

.size ()

.push _back ()
.pop_back ()

.push front()
.pop_front ()

.operator|[] ()
.insert ()

.find ()

//

//
//

//
//

//
//
//

get number of elements

add element to back
remove back element

add element to front
remove front element

random access element
insert key

find key

‘ (vector
< < < | list

set

< | map

<
<
<

<
<
<

<
<

<\ | unordered map

Common STL Containers (Sequence)

(Like ArrayList in Java) (Like LinkedList in Java)
list<Item>

vector<Item>

.push back() .push front ()
.operator|[] ()

.pop_ back() .pop_ front ()

25

Common STL Containers (Associative)

functions
for
comparison

map<Key, Value>
(Like TreeMap in Java)

.contains ()
.insert ()

.find ()

set<Item>

.operator[] ()

(Like TreeSet in Java)

.size ()

something
related to
hashing

(Like HashMap in Java)

unordered map<Key, Value>

26

Common STL Containers

Many more containers and methods!

See full documentation here:
http://www.cplusplus.com/reference/stl

27

http://www.cplusplus.com/reference/stl

Common STL Data Structures

e vector<ltem> (Resizable array, like ArrayList in Java)
O .operator[] ()(Getsanelement from the vector at a specific index)
O .push back () (Adds a new element at the end of the vector)
O .pop back () (Removes the last element in the vector)

e set<ltem> (anunindexed collection of items, like Set in Java)
O .find () (Searches the container for an element, returns an iterator)
O .insert () (Inserts a new item into the set)

O .size () (Returnsthe size of the set)

28

http://www.cplusplus.com/vector
http://www.cplusplus.com/vector

Common STL Data Structures

® Map-< Key, Va I UE > (Store key value pairs, like TreeMap in Java)

O .operator([] () (Getsavalue associated with a given key. Can also be used
to insert a key value pair if the given key does not exist in the map)

O . find () (Searches the map for an element with the key, returns an iterator)
O .insert () (Inserts a new key value pair into the map)

® U nordered_map< Key, Va | ue> (Store key value pairs, like HashMap in Java)

o Supports mostly same operations as map does, usually faster than map
And a lot more! See full documentation here:

http:/www.cplusplus.com/reference/stl

29

http://www.cplusplus.com/reference/stl

Now what's that ‘std::less'? //Out of scope

std::less<T>(const T& lhs, const T& rhs) {
return lhs < rhs;

J

30

Exercise 3 - STL Methods

Exercise 3: STL Methods

Complete the function ChangeWords that:

Takes in a vector of strings, and a map of
<string, string>key-value pairs

Returns a new vector<string>, where
every string in the original vector is replaced by
its corresponding value in the map

Example: if vector words is {"the",
"secret", "number", "is", "x1ii"} and
map subs is {{"secret", "magic"},
{"x1i4i", "42"}}, then

ChangeWords (words, subs) should return a
new vector {"the", "magic", "number",
"s", "42"}.

using namespace std;

vector<string> ChangeWords(const
vector<string> &words,
map<string,string> &subs) {

#TODO: f4ill in the method

Exercise 3 Solution

using namespace std;
vector<string> ChangeWords(const vector<string> &words,
map<string, string> &subs) {
vector<string> result;
for (auto &word : words) {
if (subs.find(word) != subs.end()) {
result.push_back(subs[word]);
} else {
result.push_back(word) ;
}
}

return result;

}

33

Exercise 4: optional

std::optional

% optional<T> is astruct that can either:
» Have some value

T(optional<string> {"Hello!"})

» Have nothing

(nullopt)

Exercise 4

We usually use the [] syntax to access a value in a map. However, this does not work elegantly to handle
the case when the specified key is not in the map. We instead want to write a helper function to help get a
value and distinguish the case when the key is not in the map.

For example: if we have the mapvalues { 3: “hello”, 4: “bye”};,
Then get(values, 3) returns“hello”and get(values, 6) returnsnullopt.
optional<string> get(map<int, string>& table, int key) {
// TODO: implement me

Exercise 4

optional<string> get(map<int, string>& table, int key) {
if (!table.contains(key)) {
return nullopt;

}
return table[key];

}

Does anyone need help with
their docker container setup?

Bonus Exercise 5

Bonus Exercise - 5

Complete the following function ‘word_positions()’ that takes in a vector of strings and then returns an
unordered_map. The map is used to keep track of where each string in the ‘words’ shows up in the vector
For instance:
Words ={"hello” “hello”, “no”, “monte”, “sano”, “hello” “sano”};
Would return:
{
“hello”: [0, 1, 5],
“no”: [2],
“monte”: [3],
“sano”: [4, 6]
}

unordered_map<string, vector<size_t>> word_positions(const vector<string>& words) {}

Bonus Exercise - 5

unordered_map<string, vector<size_t>> word_positions(const vector<string>& words) {
unordered_map<string, vector<size_t>> result{};
for (size_t i {OU}; i < words.length(); i++){
result[words.at(i)].push_back(i);

}

return result;

}

Bonus Exercise 6

Bonus Exercise - 6

This implementation is broken, why?

unordered_map<string, vector<size_t>> word_positions(const vector<string>& words) {
unordered_map<string, vector<size_t>> result{};

for (size_t i {OU}; i < words.length(); i++){
vector<size_t> current_positions = result[words.at(i)];
current_positions.push_back(i);

}

return result;

Bonus Exercise - 6

Fixed

unordered_map<string, vector<size_t>> word_positions(const vector<string>& words) {
unordered_map<string, vector<size_t>> result{};

for (size_t i {OU}; i < words.length(); i++){
vector<size_t>& current_positions = result[words.at(i)];
current_positions.push_back(i);

}

return result;

