
CIT 5950 Recitation 1

The Heap, Pointers, and Destructors

Some slides referenced from CSE 333 Winter 2020

Logistics

● HW0 Due tomorrow @ 11:59 pm

○ Don’t forget to hand in your assignment on Gradescope

○ If you need extension, please post private post on Ed

● HW1 to be released soon

Recitation

● Const & reference exercise

● Dynamic Memory Allocation: Leaky Pointer

● Object Construction & Initialization: HeapyPoint

Const and References

Example
● Consider the following code:

int x = 5;

int &refx = x;

int *ptrx = &x;

5x, refx 5

0x7fff...ptrx

What are some tradeoffs to using pointers vs references?

Note syntactic similarity to
pointer declaration

Still the address-of operator!

Pointers Versus References
Pointers References

Can move to different data via
reassignment/pointer arithmetic

References the same data for its
entire lifetime - can’t reassign

Can be initialized to NULL No sensible “default reference,”
must be an alias

Useful for output parameters:
MyClass* output

Useful for input parameters:
const MyClass& input

● When would you prefer:

○ void func(int &arg) vs. void func(int *arg)

● Use references when you don’t want to deal with pointer semantics

○ Allows real pass-by-reference

○ Can make intentions clearer in some cases

● Style wise, we want to use references for input parameters and pointers for output
parameters, with the output parameters declared last

○ Note: A reference can’t be NULL

Pointers, References, and Parameters

Const

● Mark a variable with const to
make a compile time check
that a variable is never
reassigned

● Does not change the
underlying write-permissions
for this variable

int x = 42;

// Read only
const int *ro_ptr = &x;

// Can still modify x with rw_ptr!
int *rw_ptr = &x;

// Only ever points to x
int *const ptr = &x;

420x7fff... 0x7fff...
xro_ptr rw_ptr

0x7fff...
ptr

Legend
Red = “can’t change box it’s next to”
Black = “read and write”

Exercise 1
int x = 5;

int &refx = x;

int *ptrx = &x;

const int &ro_refx = x;

const int *ro_ptr1 = &x;

int *const ro_ptr2 = &x;

“Const pointer to an int”

“Pointer to a const int”

5x, refx

0x7fff... ptrxro_ptr1 0x7fff...

0x7fff... ro_ptr2

ro_refx

Tip: Read the declaration “right-to-left”

Legend
Red = “can’t change box it’s next to”
Black = “read and write”

Exercise 1

void foo(const int &arg);
void bar(int &arg);

int x = 5;
int &refx = x;
int *ptrx = &x;
const int &ro_refx = x;
const int *ro_ptr1 = &x;
int *const ro_ptr2 = &x;

5x, refx

0x7fff...

ptrx
ro_ptr1 0x7fff...

0x7fff...ro_ptr2

ro_refx

Which result in a compiler error?
✔ OK ❌ ERROR

bar(refx);
bar(ro_refx);
foo(refx);
ro_ptr1 = (int*) 0xDEADBEEF;
ptrx = &ro_refx;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

✔
❌ ro_refx is const
✔
✔
❌ ro_refx is const
❌ ro_ptr2 is const
❌ (*ro_ptr1) is const

Legend
Red = “can’t change box it’s next to”
Black = “read and write”

Dynamic Memory Allocation;
Leaky Pointer Exercise

Why does the heap matter?

Heap is the region where dynamic memory allocation occurs.

Main Idea: Lifetime of Variables

Dynamic vs automatic allocation

// dynamic allocation
int* foo() {
 int* x;
 x = malloc(sizeof(int));
 *x = 595;
 return x;
}

// “Automatic” Allocation
int* foo() {
 int *x;
 int n = 595;
 x = &n;
 return x;
}

x would be pointed to de-allocated memory.
“n” goes away when we return

New and Delete Operators

New: Allocates the type on the heap, calling specified constructor if it is a class type

 Syntax:

type *ptr = new type;

type *heap_arr = new type[num];

Delete: Deallocates the type from the heap, calling the destructor if it is a class type.

For anything you called new on, you should at some point call delete to clean it up

 Syntax:

delete ptr;

delete[] heap_arr;

Exercise 2: Memory Leaks
class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int *x_;
};

int main(int argc, char **argv) {
 Leaky **lkyptr = new Leaky *;
 Leaky *lky = new Leaky();
 *lkyptr = lky;
 delete lkyptr;
 return EXIT_SUCCESS;
}

Stack Heap

???

Exercise 2: Memory Leaks
class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int *x_;
};

int main(int argc, char **argv) {
 Leaky **lkyptr = new Leaky *;
 Leaky *lky = new Leaky();
 *lkyptr = lky;
 delete lkyptr;
 return EXIT_SUCCESS;
}

Stack Heap

0x602010 0x602030

0x602030lky

lkyptr

0x602050x_

5

How can we fix this leak?
delete lky;
~Leaky() { delete x_; }

Destructors

● Automatically called when the object is out of scope or no long needed

● Deallocates memory & cleans up the class object
○ What happen if we don’t call destructors - result in a memory leak

● Example syntax:
○ ~Leaky() {

del x_;
}

Object construction;
HeapyPoint Exercise

Write the class definition (.h file) and class member definition (.cc file) for a class HeapyPoint that fulfills the
following specifications:

Fields
● A HeapyPoint should have three floating-point coordinates that are all stored on the heap

Constructors and destructor
● A constructor that takes in three double arguments and initialize a HeapyPoint with the arguments as its

coordinates
● A constructor that takes in two HeapyPoints and initialize a HeapyPoint that is the midpoint of the input

points
● A destructor that frees all memory stored on the heap

Methods
● A method set_coordinates() that set the HeapyPoint’s coordinates to the three given coordinates
● A method dist_from_origin() that returns a HeapyPoint’s distance from the origin (0,0,0)
● A method print_point() that prints out the three coordinates of a HeapyPoint

Exercise 3: HeapyPoint

Class HeapyPoint {

public:
//TODO Constructor 1 three double arguments
//TODO Constructor 2 two HeapyPoints
//TODO Destructor
//TODO set_coordinates()
//TODO double dist_from_origin()
//TODO print_point()

private:
//TODO Three floating-point coordinates

};

Class HeapyPoint {

public:
HeapyPoint(double x, double y, double z);
HeapyPoint(HeapyPoint& p1, HeapyPoint& p2);
~HeapyPoint();
void set_coordinates(double x, double y, double z);
double dist_from_origin();
void print_point();

private:
double * x_;
double * y_;
double * z_; // pointers to coordinates on the heap

};

HeapyPoint.hpp

Why do we use references here?

Avoid making unnecessary
memory allocation for copies
(If they were passed by value, a
copy of each HeapyPoint object
would be created, which could be
inefficient)

HeapyPoint.cpp - constructors & destructor

#include <cmath>
#include "HeapyPoint.h"
#include <iostream>

// basic constructor - three int arguments
HeapyPoint::HeapyPoint(double x, double y, double z) :

x_(new double(x)),
y_(new double(y)),
z_(new double(z)) {}

// midpoint constructor
HeapyPoint::HeapyPoint(HeapyPoint& p1, HeapyPoint& p2) :
 x_(new double((*p1.x_ + *p2.x_) / 2.0)),

y_(new double((*p1.y_ + *p2.y_) / 2.0)),
z_(new double((*p1.z_ + *p2.z_) / 2.0)) {}

// destructor
HeapyPoint::~HeapyPoint() {

delete x_;
delete y_;
delete z_;

}
You can also do without initialize a list, for example

HeapyPoint::HeapyPoint(double x, double y, double z) {
x_ = new double(x);
y_ = new double(y);
z_ = new double(z);

}

Assignment {}:
Members are first default-initialized and then assigned a value.

It’s in some cases faster and a better practice in C++ to use
initialization instead of assignment

HeapyPoint.cpp - methods

void HeapyPoint::set_coordinates(double x, double y, double z) {
*x_ = x;
*y_ = y;
*z_ = z;

}

double HeapyPoint::dist_from_origin() {
double ret = 0.0;
ret += sqrt(pow(*x_, 2) + pow(*y_, 2) + pow(*z_, 2));
return ret;

}

void HeapyPoint::print_point() {
std::cout << "Point: " << *x_ << ", " << *y_ << ", " << *z_ << std::endl;

}

