CIT 5950 Recitation 1

The Heap, Pointers, and Destructors

Logistics

e HWO Duetomorrow @ 11:59 pm
o Don't forget to hand in your assignment on Gradescope
o |If you need extension, please post private post on Ed

e HW1tobereleased soon

Recitation

e Const & reference exercise
e Dynamic Memory Allocation: Leaky Pointer

e Object Construction & Initialization: HeapyPoint

Const and References

X, refx 5

Example
® Consider the following code:
int x = 5;
3 t & -F - . ° ° ° °
int &refx = x5 No.te syntactic SI.mlldl‘ItytO ptrx Ox7fff...
int xptrx = &x; pointer declaration

Still the address-of operator!

What are some tradeoffs to using pointers vs references?

Pointers Versus References

Pointers References

Can move to different data via References the same data for its
reassignment/pointer arithmetic entire lifetime - can't reassign

Can be initialized to NULL No sensible “default reference,”
must be an alias

Useful for output parameters: Useful for input parameters:
MyClass* output const MyClass& 1input

Pointers, References, and Parameters

® When would you prefer:
0 void func(int &arg) vs. void func(int *arg)

® Usereferences when you don't want to deal with pointer semantics
o Allows real pass-by-reference

o0 Can make intentions clearer in some cases

® Style wise, we want to use references for input parameters and pointers for output
parameters, with the output parameters declared last

O Note: Areference can't be NULL

Ox7fff.. -+ 42 Ox7fff...
ro_ptr X rw_ptr
Const T
J_ | |
Red = “can’t change box it's next to” Ox7fff :
Black = “read and write” : ________ |
ptr
e Mark a variable with const to intx =42
make a compile time check
that a variable is never // Read only
reassigned const int *ro_ptr = &x;
e Does not change the // Can still modify x with rw_ptr!
underlying write-permissions int “rw_ptr = &x;

for this variable
// Only ever points to x

int *const ptr = &x;

X, refx 5
ro refx

Exercise 1

int x = 5;

ro_ptrl | OX7fff... Ox7fff... |ptrx

int &refx = x;

int *xptrx = &x;

const int &ro_refx = x3

|
|
const int *ro_ptrl = &x; : Ox7fff... ! ro ptr2
.
int *const ro_ptr2 = &x; . .
/ “Pointer to a const int”
“Const pointer to anint” Legend

Red = “can’t change box it's next to”
Tip: Read the declaration “right-to-left” Black = “read and write”

Exercise 1

legend x, refx
Red = “can’t change box it's next to ro refx

Black = “read and write”

ro_ptril Ox7fff...

void foo(const int &arg);

void bar(int &arg);

int x = 5;
int &refx = x;
int xptrx = &x;

const 1int &ro_refx
const 1int xro_ptril
int xconst ro_ptr2

Ox7fff...

ptrx

bar(refx) ;

Which result in a compiler error?

v OK X ERROR

bar(ro_refx) ; ro_refx 1is const

zi. foo(refx);
&x ro_ptrl = (int*) OxDEADBEEF;

XXXSSXS

ptrx = &ro_refx; ro_refx is const
ro_ptr2 = ro_ptr2 + 2; ro_ptr2 1is const
*ro_ptrl = *ro_ptrl + 1; (xro_ptri) is const

Dynamic Memory Allocation;
Leaky Pointer Exercise

Why does the heap matter?

Heap is the region where dynamic memory allocation occurs.

Main Idea: Lifetime of Variables

Dynamic vs automatic allocation

// dynamic allocation
int* foo() {
int* x;
x = malloc(sizeof(int));
*x = 595;
return x;

// “Automatic” Allocation
int* foo() {

int *x;

int n = 595;

X = &n;

return Xx,;

”

x would be pointed to de-allocated memory.

“n” goes away when we return

New and Delete Operators

New: Allocates the type on the heap, calling specified constructor if it is a class type
Syntax:

type *ptr = new type;

type *heap arr = new type[num];

Delete: Deallocates the type from the heap, calling the destructor if it is a class type.
For anything you called new on, you should at some point call delete tocleanitup

Syntax:
delete ptr;

delete[] heap arr;

Exercise 2: Memory Leaks

class Leaky {
public:

Leaky() { x_ = new int(5); }
private:

int *x_;

};

int main(int argc, char **argv)
Leaky **lkyptr = new Leaky *;
Leaky *1lky = new Leaky()
*lkyptr = lky;
delete 1lkyptr;
return EXIT SUCCESS;

Stack

Heap

Exercise 2: Memory Leaks

Heap

class Leaky { Stack
public:

Leaky() { x_ = new int(5); }
private:

int *x_; lkyptr | 0602010
};

int main(int argc, char **argv) {

0x602030

m) Leaky **lkyptr = new Leaky *; 0x602030
- Leaky *1lky = new Leaky () Ly | 0%
- *1lkyptr = lky;
m) delete lkyptr; How can we fix this leak?
- return EXIT SUCCESS; delete 1ky;

}

~Leaky () { delete x ; }

x| 0x602050

Destructors

e Automatically called when the object is out of scope or no long needed

e Deallocates memory & cleans up the class object
o What happen if we don't call destructors - result in a memory leak

e Example syntax:

0 ~Leaky() {
del x ;
}

Object construction;
HeapyPoint Exercise

Exercise 3: HeapyPoint

Write the class definition (.h file) and class member definition (.cc file) for a class HeapyPoint that fulfills the
following specifications:

Fields
e A HeapyPoint should have three floating-point coordinates that are all stored on the heap

Constructors and destructor
e Aconstructor that takes in three double arguments and initialize a HeapyPoint with the arguments as its
coordinates
e Aconstructor that takes in two HeapyPoints and initialize a HeapyPoint that is the midpoint of the input
points
e Adestructor that frees all memory stored on the heap

Methods
e A method set_coordinates() that set the HeapyPoint’s coordinates to the three given coordinates

e A method dist_from_origin() that returns a HeapyPoint’s distance from the origin (0,0,0)
e A method print_point() that prints out the three coordinates of a HeapyPoint

Class HeapyPoint {

public:
//TODO Constructor 1 three double arguments
//TODO Constructor 2 two HeapyPoints
//TODO Destructor
//TODO set coordinates ()
//TODO double dist from origin()
//TODO print point ()

private:
//TODO Three floating-point coordinates

HeapyPoint.hpp

?
Class HeapyPoint { Why do we use references here?
public: Avoid making unnecessary
HeapyPoint (double x, double y, double z); memory allocation for copies
HeapyPoint (HeapyPointé& pl, HeapyPoint& p2);
~HeapyPoint () ;

void set coordinates(double x, double y, double z);
double dist from origin();
void print point();

private:
double * x ;
double * y ;
double * z ; // pointers to coordinates on the heap

HeapyPoint.cpp - constructors & destructor

#include <cmath>
#include "HeapyPoint.h"
#include <iostream>

// basic constructor - three int arguments

HeapyPoint: :
X _(new
y_ (new
z_(new

// midpoint
HeapyPoint: :

HeapyPoint (double x, double y, double z)
double (x)),

double (y)),

double(z)) {}

constructor
HeapyPoint (HeapyPointé& pl, HeapyPointé& p2)

X _(new double((*pl.x + *p2.x) / 2.0)),

y_ (new
z_(new

double((*pl.y + *p2.y) / 2.0)),
double((*pl.z_ + *p2.z) / 2.0)) {}

// destructor
HeapyPoint: : ~HeapyPoint () {
delete x_;
delete y_;
delete z_;

}

You can also do without initialize a list, for example

: HeapyPoint::HeapyPoint(double x, double y, double z) {

x_=new double(x);
y_=new double(y);
z_=new double(z);

}

Assignment {}:
Members are first default-initialized and then assigned a value.

It’s in some cases faster and a better practice in C++ to use
initialization instead of assignment

HeapyPoint.cpp - methods

void HeapyPoint::set coordinates(double x, double y, double z) {

*x = x;
*Y_ =Y
*z = z;

}

double HeapyPoint::dist_ from origin() {
double ret = 0.0;
ret += sqrt(pow(*x , 2) + pow(*y_, 2) + pow(*z , 2));
return ret;

}

void HeapyPoint: :print point() {
std::cout << "Point: " << *x <K ", " KKty KK ", " <KL *z <K< std::endl;
}

