
CIT 5950
Section 5
Threads, Processes, and Concurrency

1

Logistics

Due This Friday (tomorrow night):

Homework 1 @ 11:59 pm

2

Threads and Processes

3

“Computers are really dumb. They can only do a few
things like shuffling around numbers, but they do
them really really fast so that they appear smart.”

Hal Perkins

Threads are just a way of making computers appear to do multitasking,
regardless of whether they are running one or more CPUs

4

Terminology
● Process

○ The execution environment of a program

● Thread
○ Some sequential execution of code (Contained within a process)

● Concurrency
○ Making progress on multiple tasks over the same period of time.

(Don't have to wait for old tasks to finish before working on next)

● Parallelism
○ Doing multiple tasks at the same time (e.g. on multiple CPUs)

5

6

Processes

● Created using fork() - the only function that returns twice!
○ Child gets 0
○ Parent gets new pid (process id) of child

● Essentially duplicates the parent process
● Get status of children with waitpid(...)
● Replace currently running process with a new one using exec()

7

Threads vs Processes
Multiple Threads Multiple Processes

Memory / Address Space Shared Separate

 Stack Each thread has its own One stack per contained thread

 Heap Shared by multiple threads Independent heap for each process

Resources (e.g. file descriptors) Shared Copies

Communication Easy Difficult

Synchronization Difficult N/A

“Weight” “light” “heavy”

Robustness One crashes, all crash Independent of each other

8

Think about
overhead and

switching
between them

Quick Check

MyClass onTheStack;
pthread_t child;
pthread_create(&child, nullptr, foo, &onTheStack);

onTheStack is on the parent thread’s stack. However, each thread has its
own stack! Can we still access onTheStack from the child? Why or why not?

9

Yes! All threads share an address space

Exercise 1

10

a) List some reasons why it's better to use multiple threads within the same
process rather than multiple processes running the same program
Processes are more expensive, since they need their own address space.
Threads are more lightweight.

b) What benefits could there be to using multiple processes instead of multiple
threads?
Memory safety and (possible) crash tolerance. Processes can’t overwrite each
other’s work because they don’t share an address space. Multiple processes
can keep running independently if one crashes (depends of the task), whereas
one thread seg faulting could crash the whole program.

Exercise 1

11

Exercise 1
c) Which registers will for sure be different between two threads that are

executing different functions?
The stack pointer is guaranteed to be different, since threads have their own
stacks. The program counters run independently, but might hold the same
value if two threads are running the same function.

d) How does the OS distinguish the threads?
Thread IDs. The OS will track its own data about threads, including the current
register states, and the pthread_t type is used as an identifier from the user
program (similar to how a file descriptor identifies a file or socket).

12

Thread with pthread

13

POSIX Thread Basics

14

Creation pthread_create Parent: “Go do this {function}”

Termination pthread_exit
start_routine returns

“I’m done with my task!”

pthread_cancel “I changed my mind, you can stop now”

exec() or exit() is called
main() returns

The entire process is terminated

Synchronization pthread_join “I’ll wait for you to finish and report back your result”
(resource persists until joined)

pthread_detach “You’re free now, go forth and prosper”
(automatically cleans up on termination)

Declared in pthread.h (Compile and link with –pthread)
Note: C++11 has its own (different) thread library

Thread Gotchas
● Resources (heap-allocated storage, file descriptors, etc)

○ Often shared between multiple threads
○ Must be allocated / deallocated exactly once
○ Don’t use deallocated resources from other threads

buf = new int[BUFSIZE];
...
if (!handleRequest(buf, req, len)) {

delete[] buf; // buf was allocated in this thread
close(fd); // is somebody else going to try to use fd???
pthread_exit(nullptr);

}
15

Reasoning About Threads is Hard
● There’s no one way to reason about everything that could happen
● Try to break each problem down as much as possible

○ e.g. reads, writes, things that happen only while a lock is held

Suppose you have some global variable

int g = 0;

Two threads each run the following code:

g += 1;
g += 2;

16

g += 1;

g += 2;

g = g + 1;

g = g + 2;

load reg ⇐ g
store g ⇐ reg + 1

How to Reason about Concurrency

Each thread has its own set of registers, so reg can hold
different values in different threads

load reg ⇐ g
store g ⇐ reg + 2

17

● Load / store are separate operations

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

How to Reason about Concurrency

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

Thread 1 Thread 2

18

Remember: Each thread must still execute its own code in order sequentially within itself

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

How to Reason about Concurrency

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

Thread 1 Thread 2

g = 6
19

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

How to Reason about Concurrency

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

Thread 1 Thread 2

g = 3
20

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

How to Reason about Concurrency

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

Thread 1 Thread 2

g = 4
21

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

How to Reason about Concurrency

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

Thread 1 Thread 2

g = 3
22

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

How to Reason about Concurrency

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

Thread 1 Thread 2

g = 3
23

If you "sandwich" work
from one thread
between a load and store
in another thread you can
"delete" the work done.

reg ⇐ g

g ⇐ reg + 2

Other thread does
whatever with g

Exercise 2

24

Exercise 2
int g = 0;
void *worker(void *ignore) {
 for (int k = 1; k <= 3; k++) {
 g = g + k;
 }
 printf("g = %d\n", g);
 return NULL;
}

int main() {
 pthread_t t1, t2;
 int ignore;
 ignore = pthread_create(&t1, NULL, &worker, NULL);
 ignore = pthread_create(&t2, NULL, &worker, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 return EXIT_SUCCESS;
} 25

What are the possible outputs of this
program?
(think of as many as you can!)

What is the range of values that g can have
at the end of the program?

Exercise 2
int g = 0;
void *worker(void *ignore) {
 for (int k = 1; k <= 3; k++) {
 g = g + k;
 }
 printf("g = %d\n", g);
 return NULL;
}

int main() {
 pthread_t t1, t2;
 int ignore;
 ignore = pthread_create(&t1, NULL, &worker, NULL);
 ignore = pthread_create(&t2, NULL, &worker, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 return EXIT_SUCCESS;
} 26

What are the possible outputs of this
program?

Lots of possible answers, here are a few:

g = 6 g = 12 g = 7 g = 6
g = 12 g = 12 g = 9 g = 11

Exercise 2
int g = 0;
void *worker(void *ignore) {
 for (int k = 1; k <= 3; k++) {
 g = g + k;
 }
 printf("g = %d\n", g);
 return NULL;
}

int main() {
 pthread_t t1, t2;
 int ignore;
 ignore = pthread_create(&t1, NULL, &worker, NULL);
 ignore = pthread_create(&t2, NULL, &worker, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 return EXIT_SUCCESS;
} 27

What is the range of values that g can have
at the end of the program?

 4 5 6 7 8 9 10 11 12

How to get 4 and 5 is tough to see. What you should
take away: can't guarantee ordering/interleaving of

threads. Need to be careful with shared data.

How to Get 4 from Exercise 2

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

reg ⇐ g

g ⇐ reg + 3

Thread 1

g = 4 28

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

reg ⇐ g

g ⇐ reg + 3

Thread 2

Store 0 in reg

Write g =1

Store 1 in
reg

Write g =4

