
CIT 5950
Recitation 9
HW3 and Processes

1

Logistics
● HW3

○ Due Thursday April 12th @ 11:59 PM
● Survey #2: GitHub and Partner Info

○ Due Tomorrow April 5th @ 11:59 PM

2

Homework 3 Overview

3

Overview
In HW3, you will be implementing a simplified version of simplevm

There are three core aspects of the simplevm implementation
● Swap file (provided to you)
● Page
● PageTable

Specification provided in the .hpp files for Page and PageTable

HIGHLY suggest that you follow the recommended approach in the writeup

4

Swap File
A file containing all of the initial page
contents and the contents of pages
that aren’t loaded in to memory
currently.

Swap files are used by “real” OS’s to
store data that doesn’t fit into physical
memory

(provided for you)

5

Page 0 data

Page 1 data

Page 2 data

…

Page N data

Swap file layout

Start of the file

End of the file

*each page data is fixed size
of 4096 bytes

Page
A page represents a single page of data in virtual memory

A page holds Page::PAGE_SIZE amount of bytes. (4096 bytes)

In the constructor, a page should load in its data from the swap file

On flush() a copy of the page’s data is written to its location on the swap file

The access() and store() member functions modify the bytes_ and not the swap_file

You MUST use an initializer list in the ctor and cctor to initialize the swap_file_
reference.

6

Page Table
Contains an LRU cache of Page’s
Least recently used - LRU

Pages are considered “loaded into physical
memory” when there is a Page object for that
page.

Pages that aren’t in memory are stored in the
swap file

get_page() handles both cases where a page
is loaded into memory and where it isn’t

7

Page 0 data

Page 1 data

Page 2 data

…

Page N data

Swap file

Page Table

page0 page2

empty empty

Capacity = 4

LRU Cache Key Properties
- We need to support quick lookup.

- Can I quickly check if a Page is in the PageTable?

- We need to be able to flexibly rearrange Pages and maintain sequential order.
- Can I easily move a Page from the middle of a data structure to the end?
- Can I easily check what the next least used page is?

Alas, no single data structure meets both these requirements.

Think about what combination of data structures could fit these needs.

8

Casting Tips
From the writeup:

- You can assume the type you are reading/writing to the page data will be
primitives types.

This means you can “build up” the bytes that make up an element of type T.
- Read from bytes_ member variable of Page class.

- Where in the bytes array should you start reading from?
- How many bytes should you read?

- Then use static_cast<T> to cast it into the desired type T.

Take a look at reinterpret_cast<T> when reading from the swap file into bytes_.

9

Any Questions?

10

Processes review

11

Processes
● Created using fork() - the only function that returns twice!

○ Child gets 0
○ Parent gets new pid (process id) of child

● Essentially duplicates the parent process
○ Child starts where fork() returns

● Get status of children with waitpid(...)
● Replace currently running process with a new one using exec*()
● Communicate between processes with pipe(int fds[2])

○ (more in lecture next week)

12

Exercise 1

13

Processes Exercise 1
How many times is :) printed?

int main(int argc, char* argv[]) {
 for (int i = 0; i < 4; i++) {

fork();
 }
 cout << ":)\n"; // "\n" is similar to endl
 return EXIT_SUCCESS;
}

14

Processes Exercise 1
How many times is :) printed?

int main(int argc, char* argv[]) {
 for (int i = 0; i < 4; i++) {

fork();
 }
 cout << ":)\n"; // "\n" is similar to endl
 return EXIT_SUCCESS;
}

15

Child processes copy the ‘i’ of the parent when
fork is called and start executing in the loop

Processes Exercise 1

int main(int argc, char* argv[]) {
 for (int i = 0; i < 4; i++) {

fork();
 }
 cout << ":)\n"; // "\n" is similar to endl
 return EXIT_SUCCESS;
}

16

original

Processes Exercise 1

int main(int argc, char* argv[]) {
 for (int i = 0; i < 4; i++) {

fork();
 }
 cout << ":)\n"; // "\n" is similar to endl
 return EXIT_SUCCESS;
}

17

original i = 0
Original forks, makes a child

Processes Exercise 1

int main(int argc, char* argv[]) {
 for (int i = 0; i < 4; i++) {

fork();
 }
 cout << ":)\n"; // "\n" is similar to endl
 return EXIT_SUCCESS;
}

18

i = 1

Original and its child forks,
each makes 1 child.

2 new processes created

original

Processes Exercise 1

int main(int argc, char* argv[]) {
 for (int i = 0; i < 4; i++) {

fork();
 }
 cout << ":)\n"; // "\n" is similar to endl
 return EXIT_SUCCESS;
}

19

i = 2

More children are made

original

Processes Exercise 1

int main(int argc, char* argv[]) {
 for (int i = 0; i < 4; i++) {

fork();
 }
 cout << ":)\n"; // "\n" is similar to endl
 return EXIT_SUCCESS;
}

20

i = 3original

16 processes, therefore 16 :) printed

4 iterations and number of processes
doubles on each iteration.

Processes & Wait
fork() returns twice

- zero for the newly created child
- non-zero value to the parent. This value is the Process ID number of the child

The process ID number gotten by fork() can be used by the parent to wait or “join”
a child process.

21

Processes & Wait
The process ID number returned by fork() to the parent can be used by the parent
to wait or “join” the child process.

int main(int argc, char* argv[]) {
 pid_t pid = fork();
 if (pid == 0) {
 cout << "child\n";

exit(EXIT_SUCCESS);
 }
 waitpid(pid, nullptr, 0);
 cout << "parent\n"; // "\n" is similar to endl
 return EXIT_SUCCESS;
}

22

This code always prints”
child
parent

Parent process waits for child to finish, so
child must be printed before parent

Exercise 2

23

Processes Exercise 2
int main(int argc, char* argv[]) {
 pid_t pid = fork();
 if (pid == 0) {
 pid = fork();
 if (pid == 0) {
 cout << "my\n";
 } else {
 cout << "mind\n";
 }

exit(EXIT_SUCCESS);
 }
 pid = fork();
 if (pid == 0) {
 cout << "skies\n";

exit(EXIT_SUCCESS);
 }
 waitpid(pid, nullptr, 0);
 cout << "of\n"; // "\n" is similar to endl
} 24

What does are the possible
outputs of this program?

Processes Exercise 2 Solution
int main(int argc, char* argv[]) {
 pid_t pid = fork();
 if (pid == 0) {
 pid = fork();
 if (pid == 0) {
 cout << "my\n";
 } else {
 cout << "mind\n";
 }

exit(EXIT_SUCCESS);
 }
 pid = fork();
 if (pid == 0) {
 cout << "skies\n";

exit(EXIT_SUCCESS);
 }
 waitpid(pid, nullptr, 0);
 cout << "of\n"; // "\n" is similar to endl
} 25

Fork() is called three times, so we have four
processes in total
(1 overall parent, 2 children, 1 grandchild)

Processes Exercise 2 Solution
int main(int argc, char* argv[]) {
 pid_t pid = fork();
 if (pid == 0) {
 pid = fork();
 if (pid == 0) {
 cout << "my\n";
 } else {
 cout << "mind\n";
 }

exit(EXIT_SUCCESS);
 }
 pid = fork();
 if (pid == 0) {
 cout << "skies\n";

exit(EXIT_SUCCESS);
 }
 waitpid(pid, nullptr, 0);
 cout << "of\n"; // "\n" is similar to endl
} 26

Each print statement only comes after all
processes have been created.

The only “synchronization” is the parent waits
for the second child to exit, and then the parent
prints.

So… “of” must come after “skies”
As long as that is maintained all orderings of
the four print statements is possible

Processes and files/pipes
● If we create a pipe or access a file, there is one instance of it system wide

● When a process forks, it copies the file descriptors of the parent

● Multiple process can have access to the same file/pipe, but through their own
file descriptors.

● When one process closes its file descriptors, other processes file descriptors
remain open

27

dup2() and redirection
We can use dup2() to redirect a file descriptor to something else.
Each process also has its own file descriptors tables.
Fork copies the file descriptor of the parent into the child.

int main(int argc, char* argv[]) {
 int fd = open("hello.txt", O_RDWR);
 pid_t pid = fork();
 if (pid == 0) {
 wrapped_write(fd, "child"); // helper function to write a string to a fd
 close(fd);

exit(EXIT_SUCCESS);
 }
 waitpid(pid, nullptr, 0);
 dup2(fd, STDOUT_FILENO); // redirects STDOUT to the file specified by fd
 cout << "parent\n"; // writes to STDOUT_FILENO
} 28

Always writes
child
parent
To the file “hello.txt”

Exercise 3

29

dup2 Exercise 3
int main(int argc, char* argv[]) {
 int fd = open("begin.txt", O_RDWR);
 pid_t pid = fork();
 if (pid == 0) {
 dup2(STDOUT_FILENO, fd); // fd is redirected
 wrapped_write(fd, "dust"); // helper function to write a string to a fd
 cout << "crusader\n";

close(STDOUT_FILENO);
exit(EXIT_SUCCESS);

 }
 dup2(fd, STDOUT_FILENO);
 cout << "star\n";
 close(fd);
 waitpid(pid, nullptr, 0)
 cout << "platinum\n";
}

What is printed to the terminal and what is written to begin.txt?
30

dupe2 Exercise 3 Solution
int main(int argc, char* argv[]) {
 int fd = open("begin.txt", O_RDWR);
 pid_t pid = fork();
 if (pid == 0) {
 dup2(STDOUT_FILENO, fd);
 wrapped_write(fd, "dust");
 cout << "crusader\n";

close(STDOUT_FILENO);
exit(EXIT_SUCCESS);

 }
 dup2(fd, STDOUT_FILENO);
 cout << "star\n";
 close(fd);
 waitpid(pid, nullptr, 0)
 cout << "platinum\n";
}

31

though we closed fd, STDOUT still points to file

STDOUT and fd point to the same thing (begin.txt)

fd points to cout

dupe2 Exercise 3 Solution
int main(int argc, char* argv[]) {
 int fd = open("begin.txt", O_RDWR);
 pid_t pid = fork();
 if (pid == 0) {
 dup2(STDOUT_FILENO, fd);
 wrapped_write(fd, "dust");
 cout << "crusader\n";

close(STDOUT_FILENO);
exit(EXIT_SUCCESS);

 }
 dup2(fd, STDOUT_FILENO);
 cout << "star\n";
 close(fd);
 waitpid(pid, nullptr, 0)
 cout << "platinum\n";
}

32

begin.txt contains:
star
platinum

what was printed:
dust
crusader

Bonus question: what do we know about the
order of the words being printed/written?

Pipe()
More pipe information

33

Exercise 4

34

Exercise: fill in the blanks

35

in_pipe

in_pipe[1]
in_pipe[0]
in_pipe[0]

"./numbers"
"./numbers", nullptr

command.c_str(), args

Exercise: fill in the blanks

36

in_pipe[0]

in_pipe[1]

in_pipe[1]

pid, nullptr, 0

