
CIT 5950
Recitation 10
Pipe() and HW4

1

Logistics
● Project

○ Due May 1st, 11:59pm

● HW3

○ Due tomorrow at Midnight

● HW4

○ Released! Overview in this recitation

○ Due Friday April 26th, 11:59pm

2

File Descriptors, Redirections & Pipes

File Descriptor
● Unique id that refers to a file
● Type int
● read(2) and write(2)
● open(2) and close(2)

○ Open with unique permissions

○ Read only, write only, read&write, etc

● Each process has unique file
descriptor table

● 0, 1, 2 reserved for stdin, stdout,
stderr

0

1

2

3

…

Terminal Input (stdin)

Terminal Output (stdout)

Terminal Output Error
(stderr)

file.txt

Quick Example
- read(STDIN_FILENO, buf, 30);

- Reads from terminal input and stores to buffer

- write(STDERR_FILENO, "error message\n", 15);

- Write to terminal output error

- write(STDIN_FILENO, "trying to write\n", 17);

- Error. STDIN is “read only”

Redirections
- Redirect a file descriptor to point to some other file!
- dup2(int oldfd, int newfd)

- Whatever file that was pointed to by oldfd is now pointed to file pointed to by newfd

● dup2(newfd, STDIN_FILENO)
○ Redirect STDIN to newfd. What does this mean?
○ Anything that was supposed to be read from stdin, which was terminal

input, will come from newfd
● dup2(newfd, STDOUT_FILENO)

○ Redirect STDOUT to newfd. What does this mean?
○ Anything that was supposed to be outputted to stdout, will now be

outputted to newfd

Pipes
● FIFO data structure with a read end and write end

○ Picture a pipe with water flowing into (write end) and out of (read end)

● pipe(2) system call. pipe(int pipefd[2])

○ Creates the pipe data structure pointed to by pipefd

○ pipefd[0] = read-end, pipefd[1] = write-end

write(pipefd[1], “stuff”, 6); read(pipefd[0], buf, 6);

pipe

Pipes and processes
● File Descriptor table is “shared” among processes

○ → pipes are shared!!!!

● Child processes has its own copy of each pipe end

pipe

parent
child

read

write

write

read

Some tips
DRAW! It is easier to visualize what points where.
READ! The system calls related to file descriptors. open(2), close(2), dup2(2),
pipe(2)
READ CAREFULLY! The man pages for above. Really know what’s going on.
E.g. What happens when we fork(2) after pipe(2)?
 What happens if we close(2) in a child process?

Processes and files/pipes
● If we create a pipe or access a file, there is one instance of it system wide

● When a process forks, it copies the file descriptors of the parent

● Multiple process can have access to the same file/pipe, but through their own
file descriptors.

● When one process closes its file descriptors, other processes file descriptors
remain open

10

dup2() and redirection
We can use dup2() to redirect a file descriptor to something else.
Each process also has its own file descriptors tables.
Fork copies the file descriptor of the parent into the child.

int main(int argc, char* argv[]) {
 int fd = open("hello.txt", O_RDWR);
 pid_t pid = fork();
 if (pid == 0) {
 wrapped_write(fd, "child"); // helper function to write a string to a fd
 close(fd);

exit(EXIT_SUCCESS);
 }
 waitpid(pid, nullptr, 0);
 dup2(fd, STDOUT_FILENO); // redirects STDOUT to the file specified by fd
 cout << "parent\n"; // writes to STDOUT_FILENO
} 11

Always writes
child
parent
To the file “hello.txt”

Exercise 1

12

dup2 Exercise 1
int main(int argc, char* argv[]) {
 int fd = open("antennas.txt", O_RDWR);
 pid_t pid = fork();
 close(STDOUT_FILENO);
 if (pid == 0) {
 cout << "storm\n";
 dup2(fd, STDOUT_FILENO);
 cout << "static\n";

exit(EXIT_SUCCESS);
 }
 waitpid(pid, nullptr, 0);
 cout << "sleep\n";
}

What is printed to the terminal and what is written to antennas.txt?

13

dup2 Exercise 1 Solution
int main(int argc, char* argv[]) {
 int fd = open("antennas.txt", O_RDWR);
 pid_t pid = fork();
 close(STDOUT_FILENO);
 if (pid == 0) {
 cout << "storm\n";
 dup2(fd, STDOUT_FILENO);
 cout << "static\n";

exit(EXIT_SUCCESS);
 }
 waitpid(pid, nullptr, 0);
 cout << "sleep\n";
}

What is printed to the terminal and what is written to antennas.txt?

14

antennas.txt contains:
static

what was printed:

Nothing gets printed to the terminal since
STDOUT_FILENO has been closed for
both parent and child

dup2 Exercise 1 Solution
int main(int argc, char* argv[]) {
 int fd = open("antennas.txt", O_RDWR);
 pid_t pid = fork();
 close(STDOUT_FILENO);
 if (pid == 0) {
 cout << "storm\n";
 dup2(fd, STDOUT_FILENO);
 cout << "static\n";

exit(EXIT_SUCCESS);
 }
 waitpid(pid, nullptr, 0);
 cout << "sleep\n";
}

15

redirects STDOUT to the file
specified by fd

closes STDOUT

For dup2(newfd, oldfd)

newfd must be a valid, open file descriptor.

oldfd does not need to be open; if it is, dup2 will close it without complaining. If it's not

already open, dup2 will just assign it the file descriptor newfd.

dup2 Exercise 1 Solution
int main(int argc, char* argv[]) {
 int fd = open("begin.txt", O_RDWR);
 pid_t pid = fork();
 if (pid == 0) {
 dup2(STDOUT_FILENO, fd);
 wrapped_write(fd, "dust");
 cout << "crusader\n";

close(STDOUT_FILENO);
exit(EXIT_SUCCESS);

 }
 dup2(fd, STDOUT_FILENO);
 cout << "star\n";
 close(fd);
 waitpid(pid, nullptr, 0)
 cout << "platinum\n";
}

16

though we closed fd, STDOUT still points to file

STDOUT and fd point to the same thing (begin.txt)

fd points to cout

dup2 Exercise 1 Solution
int main(int argc, char* argv[]) {
 int fd = open("begin.txt", O_RDWR);
 pid_t pid = fork();
 if (pid == 0) {
 dup2(STDOUT_FILENO, fd);
 wrapped_write(fd, "dust");
 cout << "crusader\n";

close(STDOUT_FILENO);
exit(EXIT_SUCCESS);

 }
 dup2(fd, STDOUT_FILENO);
 cout << "star\n";
 close(fd);
 waitpid(pid, nullptr, 0)
 cout << "platinum\n";
}

17

begin.txt contains:
star
platinum

what was printed:
dust
crusader

Bonus question: what do we know about the
order of the words being printed/written?

Pipe()
- Unidirectional

- If you want two processes to have bidirectional communication, you must make two pipes

- Ex: If you want to make a child process that will send info to its parent
- Start with the parent process
- Create your pipe array: int arr[2];
- Call pipe: pipe(arr);

- this creates a pipe in the kernel, and adds two file descriptors to your fd table
- Fork your second process (the one you want the current process to communicate with)

- int pid = fork();
- Parent and child should close the ends that they do not use

- Child close read: if (pid == 0) { close(arr[0]); }
- Parent close write: if (pid != 0) { close(arr[1]); }

- Once your child is done writing, it will call close(arr[1]). This ensures EOF is sent to the pipe to
be read by the parent. 18

Exercise 2

19

Exercise: fill in the blanks
int main (int argc, char** argv) {

 // create a pipe to send input to program

 int in_pipe[2];

 pipe(in_pipe);

 pid_t pid = fork();

 if (pid == 0) { // child

 close(in_pipe[1]); // close writeend

 // replace stdin with read end of pipe

 dup2(in_pipe[0], STDIN_FILENO);

 // close read end since it has been duplicated

 close(in_pipe[0]);

 string command("./numbers"); // exec the program

"./numbers" with no command line args

 char* args[] = {"./numbers", nullptr};

 execvp(command.c_str(), args);

 return EXIT_FAILURE; // should NEVER get here

 }
20

else {

 close(in_pipe[0]); // close read end

 // write inputs to the pipe

 string inputs = "30\n40\n50\n6";

 wrapped_write(to_echo, in_pipe[1]);

 // close pipe so that exec'd program

 // knows there is no more piped contents to read

 close(in_pipe[1]);

 // wait for child to finish

 waitpid(pid, nullptr, 0);

 }

}

Exercise: fill in the blanks

21

in_pipe

in_pipe[1]
in_pipe[0]
in_pipe[0]

"./numbers"
"./numbers", nullptr

command.c_str(), args

Exercise: fill in the blanks

22

in_pipe[0]

in_pipe[1]

in_pipe[1]

pid, nullptr, 0

Exercise 3

23

Exercise 3: What does this print? Does it terminate?
int main(int argc, char* argv[]) {
 array<int, 2> pipe_fds {-1, -1};
 pipe(pipe_fds.data());
 pid_t pid = fork();
 if (pid == 0) {

dup2(pipe_fds.at(0), STDIN_FILENO);
close(pipe_fds.at(0));
// cat should read from stdin till eof, printing everything it reads
vector<char*> args {"cat", nullptr};
execvp(args.at(0), args.data());

 }
 write(pipe_fds.at(1), "the city in rain", strlen("the city in rain"));
 close(pipe_fds.at(1));
 close(pipe_fds.at(0));
 waitpid(pid, nullptr, 0);
}

24

Exercise 3: What does this print? Does it terminate?
int main(int argc, char* argv[]) {
 array<int, 2> pipe_fds {-1, -1};
 pipe(pipe_fds.data());
 pid_t pid = fork();
 if (pid == 0) {

dup2(pipe_fds.at(0), STDIN_FILENO);
close(pipe_fds.at(0));
// cat should read from stdin till eof, printing everything it reads
vector<char*> args {"cat", nullptr};
execvp(args.at(0), args.data());

 }
 write(pipe_fds.at(1), "the city in rain", strlen("the city in rain"));
 close(pipe_fds.at(1));
 close(pipe_fds.at(0));
 waitpid(pid, nullptr, 0);
}

25

Print: the city in rain
It doesn’t terminate since the
child has its write end open,
thus cat never reads EOF

Homework 4 Overview

26

Overview
● In HW4, you will be implementing a simplified shell

● This shell only needs to support variable length pipelines

● You can reuse the same docker container as the one setup from the Project,
thus allowing you to use the boost functions.

○ Highly recommended, the string functions will make parsing user input a lot easier.

27

HW4 Provided Files
● We provide some files to get you started

● Sample C++ programs:

● sh.cpp gives an example of a program that uses execvp

● stdin_echo.cpp does the same thing as “cat”, it reads from stdin 1 line at
a time, prints what it reads and repeats until EOF. But you can modify the code
and run it as a command for your pipe_shell to help with debugging.

28

HW4 Tests
● We provide the test cases:

○ tests: a directory containing all of the tests
○ test_files: a directory containing files used for the tests

● To run a test:
○ ./pipe_shell < tests/simple_input.txt > out.txt

Runs your pipeshell giving it the input for the “simple” test case and writes the output of your
pipe_shell to out.txt

○ diff out.txt tests/simple_output.txt
Compares your program output (out.txt) to the expected output to the simple test case
If nothing is printed, then there are no differences between the files and your code passes!

○ Replace “simple” with one of the other test cases in the tests directory to run that case.

29

HW4 Demo

Any Questions?

31

