CIT 5950 Section 0 Solutions - C, Pointers, and Docker

Pointers

Exercise 1:
Draw a memory diagram like the one above for the following code and determine what the
output will be.

vold foo (int32 t *x, int32 t *y, int32 t *z) {

X = y;
*X —_ *Z,
*z = 37;

}

int main(int argc, char *argv[]) {

int32 t x =5, y = 22, z = 42;
foo (&x, &y, &z);

printf("%d, %d, %d\n", x, vy, z);
return EXIT SUCCESS;

foo line 1: foo line 2: foo line 3: end of foo:
x (foo) X x (foo) X x (foo) X x (foo) X
5 5 5 5
y (foo) y y (foo) y y (foo) y y (foo) y
22 = 22 = 42 s 42
z (foo) e z (foo) z z (foo) z z (foo) z
= 42 - 42 - 42 - 37

So, the code will output 5, 42, 37.

The following code has a bug. What'’s the problem, and how would you fix it?

void bar (char *str) {
str = "ok bye!";

int main(int argc, char *argv[]) {
char *str = "hello world!";
bar (str);
printf ("$s\n", str); // should print "ok bye!"
return EXIT SUCCESS;

The problem is that modifying the argument str in bar will not effect str in main because
arguments in C are always passed by value. In order to modify str in main, we need to pass a
pointer to a pointer (char **)into bar and then dereference it:

void bar fixed(char **str ptr) /{
*str ptr = "ok bye!";
}

int main(int argc, char *argv[]) {
char *str = "hello world!";
bar (&str) ;
printf ("$s\n", str); // should print "ok bye!"
return EXIT SUCCESS;

Output Parameters

Exercise 2:
strcpy is a function from the standard library that copies a string src into an output parameter
called dest and returns a pointer to dest. Write the function below. You may assume that

dest has sufficient space to store src.

char *strcpy(char *dest, char *src) {
char *ret value = dest;
while (*src != '"\0') {
*dest = *src;
src++;
dest++;

}
*dest = '\0'; // don’t forget the null terminator!

return ret value;

}

How is the caller able to see the changes in dest if C is pass-by-value?

The caller can see the copied over string in dest since we are dereferencing dest. Note that
modifications to dest that do not dereference will not be seen by the caller(such as dest++).
Also note that if you used array syntax, then dest [i] is equivalentto * (dest+1i).

Why do we need an output parameter? Why can’t we just return an array we create in strcpy?

If we allocate an array inside strcpy, it will be allocated on the stack. Thus, we have no control
over this memory after st rcpy returns, which means we can’t safely use the array whose
address we've returned.

Exercise 3:
More practice with output parameters and arrays.

Write a function to compute the sum of values and product of all values in an array. The
function is given a pointer to the first element in an array, the length of the array, and
two output parameters to return the product and sum.

void product and sum(int *input, int length, int *product,
- int *sum) {

int temp sum = 0;
int temp product = 1;
for (int i = 0; i < length; i++) {

temp sum += input[i];

temp product *= input[i]’
}
*sum = temp sum;
*product = temp product;

}

Exercise 4:

size t filter(int *input, size t length, int filter, int** out) {
size_t new_len = 0;
for (size_t i = 0; i < length; i++) {
if (input[i] !'= filter) {
new len += 1;
}
}

int* res = new int[new_len];

size_ t j = 0;
for (size t i = 0; i < length; i++) {
if (input[i] !'= filter) {
res[]j] = input[i];
j +=1;
}
}
*out = res;

return new_len;

