

CIT 5950 Section 1 Solutions - C vs C++, Memory

Const & References

Exercise 1: Reference & const practice

a)​ Draw a memory diagram for the variables declared in main.

void foo(const int &arg);
void bar(int &arg);

int main(int argc, char **argv)
{
 int x = 5;​ ​ ​ ​
 int &refx = x;
 int *ptrx = &x;
 const int &ro_refx = x;
 const int *ro_ptr1 = &x;
 int *const ro_ptr2 = &x;
 // ...
}

b)​ When would you prefer void func(int &arg); to void func(int

*arg);? Expand on this distinction for other types besides int.

-​ When you don’t want to deal with pointer semantics, use references
-​ When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters

and/or return values), use references
-​ Style wise, we want to use references for input parameters and pointers for output

parameters, with the output parameters declared last

c)​ What does the compiler think about the following lines of code:
bar(refx);
bar(ro_refx);
foo(refx);

// No issues
// Compiler error - ro_refx is const
// No issues

d)​ How about this code?

ro_ptr1 = (int*) 0xDEADBEEF;
ptrx = &ro_refx;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

// No issues
// Compiler error - ro_refx is const
// Compiler error - ro_ptr2 is const
// Compiler error - (*ro_ptr1) is const

1

e)​ In a function const int f(const int a); are the const declarations
useful to the client? How about the programmer? What about this function needs
to change to make const matter?

​ The const return and parameter both don’t affect the client at all, since they
work with copies of the parameter/return value. This enforces the programmer not to
modify a at all. If f used references for the parameter/return, then it would matter to
both the client and the programmer.

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You
can think of these like malloc() and free() with some key differences:

●​ Unlike malloc() and free(), new and delete are operators, not functions.
●​ The implementation of allocating heap space may vary between malloc and

new.

New: Allocates the type on the heap, calling the specified constructor if it is a class
type. Syntax for arrays is “new type[num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type.
For anything you called “new” on, you should at some point call “delete” to clean it up.
Syntax for arrays is “delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

Exercise 2: Leaky Pointer

#include <cstdlib>

class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 ~Leaky() { delete x_; } // Delete the allocated int
 private:
 int* x_;
};

int main(int argc, char **argv) {
 Leaky **lkyptr = new Leaky *;
 Leaky *lky = new Leaky();
 *lkyptr = lky;

2

 delete lkyptr;
 delete lky; // Delete of lkyptr doesn’t delete what lky
points to
 return EXIT_SUCCESS;
}

Assuming an instance of Leaky takes up 8 bytes (like a C-struct with just int* x_),
how many bytes of memory are leaked by this program? How would you fix the
memory leaks?
Leaks 12 bytes of memory: 8 bytes for the allocated Leaky object lky points to + 4
bytes for the int the Leaky instance allocates in its constructor.
Deleting the lkyptr doesn’t automatically delete what the pointer points to. Have to
also delete lky and then create a destructor that deletes the allocated int pointer x_.

Exercise 3: Heapy Point

Write the class definition (.h file) and class member definition (.cc file) for a class
HeapyPoint that fulfills the following specifications:

Fields

●​ A HeapyPoint should have three floating-point coordinates that are all stored
on the heap

Constructors and destructor

●​ A constructor that takes in three double arguments and initialize a HeapyPoint
with the arguments as its coordinates

●​ A constructor that takes in two HeapyPoints and initialize a HeapyPoint that is
the midpoint of the input points

●​ A destructor that frees all memory stored on the heap

Methods

●​ A method set_coordinates() that set the HeapyPoint’s coordinates to the three
given coordinates

●​ A method dist_from_origin() that returns a HeapyPoint’s distance from the
origin (0,0,0)

●​ A method print_point() that prints out the three coordinates of a HeapyPoint

Class definition (in .h file):

Class HeapyPoint {

3

​ public:
​ HeapyPoint(double x, double y, double z);
​ HeapyPoint(HeapyPoint& p1, HeapyPoint& p2); // note the use of
reference
​ ~HeapyPoint();
​ void set_coordinates(double x, double y, double z);
​ double dist_from_origin();
​ void print_point();
private:
​ double * x_ptr;
​ double * y_ptr;
​ double * z_ptr; // pointers to coordinates on the heap

};

Class member definition (in .cc file):

#include <cmath>
#include "HeapyPoint.h"
#include <iostream>

// basic constructor - three int arguments
HeapyPoint::HeapyPoint(double x, double y, double z) {
​ x_ptr = new double(x);
​ y_ptr = new double(y);
​ z_ptr = new double(z);
}

// midpoint constructor
HeapyPoint::HeapyPoint(HeapyPoint& p1, HeapyPoint& p2) { // note the use of
reference
​ x_ptr = new double ((*p1.x_ptr + *p2.x_ptr) / 2.0);
​ y_ptr = new double ((*p1.y_ptr + *p2.y_ptr) / 2.0);
​ z_ptr = new double ((*p1.z_ptr + *p2.z_ptr) / 2.0);
}

// destructor
HeapyPoint::~HeapyPoint() {​
​ delete x_ptr;
​ delete y_ptr;
​ delete z_ptr;
}

void HeapyPoint::set_coordinates(double x, double y, double z) {​
​ *x_ptr = x;

4

​ *y_ptr = y;
​ *z_ptr = z;
}

double HeapyPoint::dist_from_origin() {​
​ double ret = 0.0;
​ ret += sqrt(pow(*x_ptr, 2) + pow(*y_ptr, 2) + pow(*z_ptr, 2));
​ return ret;
}

void HeapyPoint::print_point() {
​ std::cout << "Point: " << *x_ptr << ", " << *y_ptr << ", " << *z_ptr << std::endl;
}

5

