

CIT 5950 Recitation 1 - C vs C++, Memory
Welcome to recitation!!! 😃

References
References create aliases that we can bind to existing variables. References are not separate
variables and cannot be reassigned after they are initialized. In C++, you define a reference
using: type &name = var. The ‘&’ is similar to the ‘*’ in a pointer definition in that it modifies
the type and the space can come before or after it.

Const
Const makes a variable unchangeable after initialization, and is enforced at compile time.

const int x = 5; // Can’t assign to x
const int* xptr = &x; // Can assign to xptr, but not *xptr
int *const yptr = &y; // Can assign to *yptr, but not yptr
const int *const zptr = &z; // Can’t assign to *zptr or zptr

Class objects can be declared const too - a const class object can only call member functions
that have been declared as const, which are not allowed to modify the object instance it is being
called on.

Exercise 1: Reference & const practice

a)​ Draw a memory diagram for the variables declared in main. It might be helpful to
distinguish variables that are constant in your memory diagram.
int main(int argc, char **argv) {
 int x = 5;​ ​ ​ ​
 int &refx = x;
 int *ptrx = &x;
 const int &ro_refx = x;
 const int *ro_ptr1 = &x;
 int *const ro_ptr2 = &x;
 // ...
}

b)​ When would you prefer void func(int &arg); to void func(int

*arg);? Expand on this distinction for other types besides int.

c)​ If we have functions void foo(const int &arg); and void bar(int
&arg);, what does the compiler think about the following lines of code:

bar(refx);
bar(ro_refx);
foo(refx);

1

d)​ How about this code?

ro_ptr1 = (int*)0xDEADBEEF;
ptrx = &ro_refx;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think
of these like malloc() and free() with some key differences:

●​ Unlike malloc() and free(), new and delete are operators, not functions.
●​ The implementation of allocating heap space may vary between malloc and new.

New: Allocates the type on the heap, calling the specified constructor if it is a class type.
Syntax for arrays is “new type[num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
anything you called “new” on, you should at some point call “delete” to clean it up. Syntax for
arrays is “delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

Exercise 2: Leaky Pointer

#include <cstdlib>

class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky **lkyptr = new Leaky *;
 Leaky *lky = new Leaky();
 *lkyptr = lky;
 delete lkyptr;
 return EXIT_SUCCESS;
}

Assuming an instance of Leaky takes up 8 bytes (like a C-struct with just int *x_), how many
bytes of memory are leaked by this program? How would you fix the memory leaks?

2

Exercise 3: Heapy Point

Write the class definition (.hpp file) and class member definition (.cpp file) for a
class HeapyPoint that fulfills the following specifications:

Fields

●​ A HeapyPoint should have three floating-point coordinates that are all stored
on the heap

Constructors and destructor

●​ A constructor that takes in three double arguments and initialize a HeapyPoint
with the arguments as its coordinates

●​ A constructor that takes in two HeapyPoints and initialize a HeapyPoint that is
the midpoint of the input points

●​ A destructor that frees all memory stored on the heap

Methods

●​ A method set_coordinates() that set the HeapyPoint’s coordinates to the three
given coordinates

●​ A method dist_from_origin() that returns a HeapyPoint’s distance from the
origin (0,0,0)

●​ A method print_point() that prints out the three coordinates of a HeapyPoint

Hints:

●​ You may find the pow() function and the sqrt() functions useful.
○​ pow(x, 2) returns x squared
○​ sqrt(x) returns the square root of x D

●​ Class HeapyPoint {

○​ public:

■​ //TODO Constructor 1 three double arguments
■​ //TODO Constructor 2 two HeapyPoints
■​ //TODO Destructor
■​ //TODO set_coordinates()
■​ //TODO double dist_from_origin()
■​ //TODO print_point()

○​ private:

■​ //TODO Three floating-point coordinates

};

3

