
CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Midterm Review
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Poll: how are you?

❖ How are you? What questions do you have about pipe?

2

pollev.com/tqm

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Administrivia

❖ Midterm this week ☺
▪ Midterm review in recitation last week

• No recitation this week

▪ Midterm review in lecture TODAY

▪ Policies and old exam posted

❖ “Check-in” posted

▪ Due Friday

3

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 1)

❖ I do not like midterms that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of some things. (for
example: I will list some of the functions that may be useful and a brief summary of what
the function does)

❖ I am more interested in questions that ask you to:

▪ Apply concepts to solve new problems

▪ Analyze situations to see how concepts from lecture apply

❖ Will there be multiple choice?

▪ If there is, you will still have to justify your choices

4

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 2)

❖ I am still trying to keep the exam fair to you, you must remember some things

▪ High level concepts or fundamentals. I do not expect you to remember every minute
detail.

• E.g. how a multi level page table works should be know, but not the exact details of what is in
each page table entry

• (I know this boundary is blurry, but hopefully this statement helps)

❖ I am NOT trying to “trick” you (like I sometimes do in poll everywhere
questions)

5

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 3)

❖ I am trying to make sure you have adequate time to stop and think about the
questions.

▪ You should still be wary of how much time you have

▪ But also, remember that sometimes you can stop and take a deep breath.

❖ Remember that you can move on to another problem.

❖ Remember that you can still move on to the next part even if you haven’t
finished the current part

6

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 4)

❖ On the midterm you will have to explain things

❖ Your explanations should be more than just stating a topic name.

❖ Don't just say something like (for example) "because of threads" or just state
some facts like "threads are parallel and lightweight processes".

❖ State how the topic(s) relate to the exam problem and answer the question
being asked.

7

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT
EXHAUSTIVE

❖Topics not in this review are still
testable
▪ We recommend going through the course material. Lecture polls,

recitation worksheets, and the previous homeworks.

8

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Review Topics

❖ C++ Programming

❖ C++ Memory

❖ Processes

❖ Caches

9

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 1)

❖ Implement the function filter() which takes in a vector of integers and a set of
integers. The function returns a new vector that contains all of the integers of
the input vector, except for any elements that were in the set.

❖ For example, the following
code should print

▪ 4

▪ 5

10

vector<int> v {3, 4, 5};

set<int> s {3, 6};

auto res = filter(v, s);

for (auto& num : res) {

 cout << num << endl;

}

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 1)

11

vector<int> filter(const vector<int>& numbers

 const set<int>& omit) {

 vector<int> result{};

 for (const auto& num : numbers) {

 if (!omit.contains(num)) {

 result.push_back(num);

 }

 }

 return result;

}

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 2)

❖ Implement the function invert() which takes in a map that maps strings to
other strings. The function returns a map of strings to vectors of strings that
represents the “reverse mapping” of the input map. In other words, the keys in
the result map should be all the values in the input map. The values in the
output map should be all keys that mapped to that value in the input map.

❖ For example,
consider:

12

map<string, string> map;

map["radar"] = "tacoma";

map["rain"] = "tacoma";

map["transit"] = "philly";

map<string, vector<string>> res = invert(map);

// res should be:

// {

// "tacoma" -> ["radar", "rain"],

// "philly" -> ["transit"],

// }

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 1)

13

map<string, vector<string>> invert(const map<string, string>& map) {

 map<string, vector<string>> res;

 for (const auto& kv : map) {

 res[kv.first].push_back(kv.second);

 }

 return res;

}

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

C++ Memory

❖ Draw the state of memory when the code reaches // HERE
We give a little to start.

14

void make_subs(const string& input, vector<string> output) {
 size_t i = 0;
 while (i < input.size()) {
 string sub = input.substr(i);
 output.push_back(sub);
 i += 1;
 }
 string& first = output.at(0);
 // HERE
 return output;
}

int main() {
 string name = "Yo";
 vector<string> subs; // assume initial capacity of 1
 subs = make_subs(name, subs);
}

heapstack

main

name
data_ Yo\0

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

C++ Memory

❖ How many memory
allocations occur
in this code?

❖ 11
see recording
for explanations
for this and the
previous slide.

15

vector<string> make_subs(const string& input, vector<string> output) {
 size_t i = 0;
 while (i < input.size()) {
 string sub = input.substr(i);
 output.push_back(sub);
 i += 1;
 }
 string& first = output.at(0);
 // HERE
 return output;
}

int main() {
 string name = "Yo";
 vector<string> subs; // assume initial capacity of 1
 subs = make_subs(name, subs);
}

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Processes

❖ Consider this code,
what is one possible output?

❖ What changes do we need to make so that
each child process prints exactly one number?

▪ We still need to use processes fork, I and the while
loop. You may not delete existing lines of code,
but you can add new lines or add onto existing
lines of code. The same number of processes
should be created as before.

16

int i = 0;

int main() {
 while (i < 2) {
 pid_t pid = fork();

 cout << i;

 i += 1;
 }
}

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Processes

❖ Consider this code,
what is one possible output?

▪ 0 1 0 1 0 1 0 1

▪ There are four processes in total

▪ Each process prints 0 and 1. The reason why
some processes print 0 even if they didn’t execute
cout << 0; is because the 0 is still in the cout buffer
when we fork.

17

int i = 0;

int main() {
 while (i < 2) {
 pid_t pid = fork();

 cout << i;

 i += 1;
 }
}

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Processes

❖ What changes do we need to make so that
each child process prints exactly one number?

▪ We still need to use processes fork, I and the while
loop. You may not delete existing lines of code,
but you can add new lines or add onto existing
lines of code.

▪ We need to make the print conditional
and flush the buffer when we print

18

int i = 0;

int main() {
 while (i < 2) {
 pid_t pid = fork();
 if (pid == 0) {
 cout << i << endl;
 }
 i += 1;
 }
}

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various particles interacting
with each other. To do this we have the following structs to represent a color
and a point

❖ If we were to store 100 point structs in an array, and iterate over all of them,
accessing them in order, roughly how many cache hits and cache misses would
we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 19

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various particles interacting
with each other. To do this we have the following structs to represent a color
and a point

❖ If we were to store 100 point structs in an array, and iterate over all of them,
accessing them in order, roughly how many cache hits and cache misses would
we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 20

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

Roughly every other time we access a point
struct, it will already be in the cache. The other
50% of the time, it needs to be fetched from
memory

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color structs.

❖ In our simulator, it turns out a VERY common operation is to iterate over all
points and do calculations with their X and Y values.

❖ How else can we store/represent the point objects to make this operation
faster while still maintaining the same data? Roughly how many cache hits
would we get from this updated code?

21

CIT 5950, Spring 2025L10: Midterm ReviewUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color structs.

❖ In our simulator, it turns out a VERY common operation is to iterate over all
points and do calculations with their X and Y values.

❖ How else can we store/represent the point objects to make this operation
faster while still maintaining the same data? Roughly how many cache hits
would we get from this updated code?

22

Change point to just be:
struct point {

 double x, y;

}

Then Store two arrays:
array<point, 100> arr1;

array<color, 100> arr2;

// point at index I

// has color arr2[i]

Each time we access a point,
we can now load 4 points into
the cache. We now get ~25
cache misses and 75 hits

	Default Section
	Slide 1: Midterm Review Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Midterm Philosophy / Advice (pt. 1)
	Slide 5: Midterm Philosophy / Advice (pt. 2)
	Slide 6: Midterm Philosophy / Advice (pt. 3)
	Slide 7: Midterm Philosophy / Advice (pt. 4)
	Slide 8: Disclaimer
	Slide 9: Review Topics
	Slide 10: C++ Programming (pt 1)
	Slide 11: C++ Programming (pt 1)
	Slide 12: C++ Programming (pt 2)
	Slide 13: C++ Programming (pt 1)
	Slide 14: C++ Memory
	Slide 15: C++ Memory
	Slide 16: Processes
	Slide 17: Processes
	Slide 18: Processes
	Slide 19: Caches Q1
	Slide 20: Caches Q1
	Slide 21: Caches Q2
	Slide 22: Caches Q2

