
CIT 5950 Spring 2024: Final

May 10, 2024

First Name : ___

Last Name : ___

Penn ID : ___

Please fill in your information above, read the following pledge, and sign in the space below:

I neither cheated myself nor helped anyone cheat on this exam. All answers on this exam are

my own. Violation of this pledge can result in a failing grade.

Sign Here : ___

Exam Details & Instructions:

• There are 8 questions made of 13 parts (and a short bonus) worth a total of 100 points.

• You have 120 minutes to complete this exam.

• The exam is closed book. This includes textbooks, phones, laptops, wearable devices,

other electronics, and any notes outside of what is mentioned below.

• You are allowed two 8.5 x 11 inch sheets of paper (double sided) for notes.

• Any electronic or noise-making devices you do have should be turned off and put away.

• Remove all hats, headphones, and watches.

• Your explanations should be more than just stating a topic name. Don't just say

something like (for example) "because of threads" or just state some facts like

"threads are parallel and lightweight processes". State how the topic(s) relate to the

exam problem and answer the question being asked.

Advice:

• Remember that there are 8 questions made up of a total of 13 parts (and a short bonus

question). Please budget your time so you can get to every question.

• Do not be alarmed if there seems to be more space than needed for an answer, we try to

include a lot of space just in case it is needed.

• Try to relax and take a deep breath. Remember that we also want you to learn from this.

A bad grade on this exam is not the end of the world.

Please put your PennID at the top of each page in case the pages become separated.

If you need extra space, the last page of this exam is blank for you as scratch space and to

write answers. If you use it, please clearly indicate on that page and under the

corresponding question prompt that you are using the extra page to answer that question.

Please also write your full name and PennID at the top of the sheet.

PennID: ______________________

2

Question 1 {15 pts}

We want to write the function word_positions() that takes in a vector of strings as input

and returns a map that maps words to what index they show up in the input vector. The resulting

map contains each string in the input vector associated with a vector of contains all indexes the

string shows up in the input vector.

To be more clear, the following code calls the word_positions() function

// helper function for printing, assume it works:

string vec_to_str(const vector<size_t>& vec);

int main() {

 vector<string> vec {"luv", "sic", "AND", "NOW", "luv", "sic"};

 map<string, vector<size_t>> res = word_positions(vec);

 for (auto& pair : res) {

 cout << pair.first << ": "l

 cout << vec_to_str(pair.second) << endl;

 }

}

When run, it should print out:

AND: {2}

NOW: {3}

luv: {0, 4}

sic: {1, 5}

It is your job to implement the function word_positions in the box on the next page.

Note that you do not need to worry about the specific ordering of the key values pairs in the

map. map<> will automatically sort the entries when they are stored in the map.

Note: You can use any C++ that was covered in class.

You may use this blank space for scratch work. Your answer goes on the next page.

PennID: ______________________

3

Note: we do not expect people to use all the space provided, but we are providing it just in

case it is needed.

map<string, vector<size_t>>

word_positions(const vector<string>& input) {

}

PennID: ______________________

4

Question 2 {5 pts}

One of the notable ways we interact with various operating system features is through items we

would consider “handles” or “descriptors”. For example, when we open a file, we are given a file

descriptor, which is just an integer value. Notably we are not given access to any “real” file data

structure directly.

Fork() does a similar thing by returning a process ID instead of direct access to a process control

block. A similar thing happens when we create a pthread, the “returned” pthread_t is usually

nothing more than an integer that identifies the thread.

Why do you think system calls are designed to give us these identifiers instead of giving direct

access to their underlying structures? There is more than one reason, but please give us only one

(we will only grade the first reason you list).

You probably don’t need this full space, but we have provided it just in case.

PennID: ______________________

5

Question 3 {15 pts}

One of the most common data structures in computer sciences is a map structure.

Note: you do not need to be familiar with maps, or algorithm analysis to solve this problem. The

maps are just the setting for the question. This question is about memory.

What is a map?

I believe you should be familiar with what a map is from taking the pre-requisite course, but I've

included a brief refresher on a map here. Feel free to skip to the memory diagrams if you think

you are already familiar. You do not need to be familiar with hashing to answer this question.

A map is a data structure that has two associated types, a key type and a value type. Users can

store keys to be associated with a value. A Map is thus a collection of key-value pairs. Common

operations include adding a new pairing, setting an existing pairing to have a new value, finding

a specific pair from just the key, and iterating over all elements in the map.

Memory Diagrams

One way we can store key-value pairs is by storing each key with is value as a pair and then

storing the pairs in an array. Structures like this are typically called a flat map:

key = …

value = …

key = …

value = …

key = …

value = …

key = …

value = …

key = …

value = …

A modification we can make on the flat map is that instead of one array, we have two arrays. One

array has the keys and another has the values. The key and values are associated by index, so that

keys[i] correspond to values[i].

 key = …

key = …

key = …

key = …

key = …

value = …

value = …

value = …

value = …

value = …

Flat Map

 int size

 key keys[]

 value values[]

Flat Map

 int size

 pair[] kv_pairs

PennID: ______________________

6

Part 1 {10 pts}

Let’s say we write code that has a huge map containing many elements. The map uses 4-byte

integers as keys and 4-byte floats as values (8 bytes together). We analyze our code and notice

that by far the most common operation performed on this structure is the “get” operation:

// given a map and a key, looks through the map for the

// presences of the key and returns the corresponding value

value get(map m, key k);

If we wanted to maximize performance for that operation, which structure would be better?

Why? Your answer should be 2-3 sentences.

Hint: if you are thinking about algorithm analysis like O(n) stuff or counting the number

instructions executed, you are doing it wrong

Part 2 {5 pts}

If the keys and value pairs were larger (let’s say that the keys are 64 bit integers (8 bytes) and

that the value is the size of a page, 4096 bytes). How does this change your answer from part 1?

Please explain why. Limit your answers to 3 sentences at maximum. Note: We will try and treat

your answer to part 1 as “correct” for the sake of this question.

PennID: ______________________

7

Question 4 {15 pts}

Travis tries to implement his own mutex using only booleans between two threads.

His attempt is shown below:

bool flag1 {false};

bool flag2 {false};

vector<string> global_vec{};

void* first_thread(void* arg) {

 flag1 = true;

 while (flag2) {

 sleep(1);

 }

 // only one thread should execute this function at a time

 critical_code(global_vec);

 flag1 = false;

}

void* second_thread(void* arg) {

 flag2 = true;

 while (flag1) {

 sleep(1);

 }

 // only one thread should execute this function at a time

 critical_code(global_vec);

 flag2 = false;

}

You can assume that exactly one thread is created to run first_thread(), exactly one thread is

create to run second_thread(), that both threads are created successfully, and that this compiles

successfully.

Question continues onto the next page

PennID: ______________________

8

Part 1 {8 pts}

This code does not work properly every time we run it. This is for a few reasons, but what is one

reason it does not always work? Please justify your answer

Note: I don't mean that this is inefficient, I mean that it does not work.

Part 2 {7 pts}

Above we said that the code did not work in some cases, but we did not promise it would fail

EVERY time we ran it. Is it possible that we run the code, and it runs without issue? Please

briefly justify your answer.

PennID: ______________________

9

Question 5 {13 pts}

Ash is writing multi-threaded code and has repeatedly forgotten to unlock a lock when they are

done with it. Ash remembers how this is similar to an issue with C, where it's easy to forget to

free things, but in C++ it is possible to use a smart pointer that will automatically clean up

memory for us when the smart pointer object is destructed.

Ash takes inspiration from smart pointers, and supposes we could implement a new object called

a "lock guard" that will automatically acquire a lock and then later unlock the lock when they are

done with it.

Part 1 {6 pts}

Ash has started writing the implementation, but it is not yet finished, please finish the

implementation:

(Note there are two boxes for you to write code in, please put something in both)

class lock_guard {

 public:

 // constructor

 lock_guard(pthread_mutex_t* lock) : lock_(lock) {

// todo: implement the rest

 }

 // destructor

 ~lock_guard() {

// todo: implement the rest

 }

 private:

 pthread_mutex_t* lock_;

};

PennID: ______________________

10

Part 2 {7 pts}

Travis tries to use what Ash wrote to write thread safe code that increments a shared global

variable. He writes the following code and finds that there is still a data race in this code:

int global_counter = 0;

pthread_mutex_t global_mutex;

void* thread_code(void* arg) {

 for (int i = 0; i < 5; i++) {

 lock_guard(&global_mutex);

 global_counter += 1;

 }

 global_counter += 5950;

 return nullptr;

}

Please explain what mistake Travis made that lead to a data race in this code?

You can assume the code compiles, that there is more than one thread running thread_code() and

that all threads (and locks) are created successfully.

PennID: ______________________

11

Question 6 {16 pts}

Part 1 {10 pts}

Suppose we're working on a program that involves sending requests over the network and

waiting for the responses the server sends back. After some testing and user feedback, we're told

is "too slow". Specifically, there are a lot of things the application needs to load and it's taking a

while to do. Because of this, Sean comes up with an idea for how to make our application faster.

Sean supposes we can store recent requests and their corresponding response in the program's

memory to avoid having to make the same request again over the network. Is this something that

can be implemented, and if it was implemented, would it likely improve performance? Please

explain your answer.

Part 2 {6 pts}

For any given connection over the network, can we ensure that the bytes we send will be

successfully received at its intended destination and received in the proper order? Please briefly

justify your answer.

PennID: ______________________

12

Question 7 {6 pts}

Let's say you've written a program that runs really well and does everything you need to, except

that once every day it crashes. Fortunately for you, it's not doing anything critical - but it's not

worth the development time to find and fix the cause of the crash.

You decide to write a program that checks the status of another program and restarts it if it

crashes. You are deciding whether your two programs (the one that crashes and the one that

restarts) should be two threads in the same process or in two separate processes.

Which do you choose? Briefly explain your answer

Question 8 {14 pts}

Part 1 {6 pts}

Consider a new page replacement policy called MRU (Most Recently Used). MRU can be

thought of as the "opposite" of LRU. Where the page that was most recently used is evicted from

physical memory if another page needs to be brought in. (e.g., if page A was most recently

accessed, and we then wanted to load in a page not in the physical memory, page A would be

evicted to make space for the new page)

Assume we have virtual pages A B C D, start with empty physical memory and physical memory

can only hold 2 physical pages.

What is a sequence of page accesses that would result in MRU having less page faults than

LRU? Please give a sequence of accesses that is exactly 6 page accesses long in the boxes

below.

Access # 0 1 2 3 4 5

Page

accessed

PennID: ______________________

13

Part 2 {8 pts}

For this problem, lets assume we are working with a 32-bit system. That means the pointer in our

virtual address space for a process is 32 bits, and thus there are 2^32 different addresses in our

program's virtual address space. If each address corresponds to one byte in memory, and a virtual

page is 2^12 bytes, then what do we know about the following items?

Please briefly justify answer for each of these. If we do not have enough information to

determine an answer, please explain why we cannot determine that answer.

Item Amount & short justification

Number of virtual

pages per process

Bits needed for the

virtual page number

Size of a physical

page

Number of physical

pages in physical

memory

PennID: ______________________

14

Question 9 {1 pt} all submissions will get this point

What’s an interesting/niche hobby you have? Or is there anything interesting you do that helps

destress during the semester?

If you don’t want to do that, then put anything here! What’s your favourite thing you learned this

semester? Anything you want to show us or want us to know?

PennID: ______________________

15

Appendix

pthread_create

SYNOPSIS

int pthread_create(pthread_t *thread, pthread_attr_t *attr,

 void *(*start_routine) (void *), void *arg);

DESCRIPTION

The pthread_create() function starts a new thread in the

calling process. The new thread starts execution by invoking

start_routine(); arg is passed as the sole argument of

start_routine().

pthread_join

SYNOPSIS

int pthread_join(pthread_t thread, void **retval);

DESCRIPTION

The pthread_join() function waits for the thread specified by

thread to terminate. If that thread has already terminated, then

pthread_join() returns immediately.

If retval is not NULL, then pthread_join() copies the return

value of the target thread into the location pointed to by

retval.

pthread_mutex_lock

SYNOPSIS

int pthread_mutex_lock(pthread_mutex_t *mutex);

DESCRIPTION

The mutex object referenced by mutex shall be locked by calling

pthread_mutex_lock(). If the mutex is already locked, the

calling thread shall block until the mutex becomes available.

This operation shall return with the mutex object referenced by

mutex in the locked state with the calling thread as its owner.

PennID: ______________________

16

pthread_mutex_unlock

SYNOPSIS

int pthread_mutex_unlock(pthread_mutex_t *mutex);

DESCRIPTION

The pthread_mutex_unlock() function shall release the mutex

object referenced by mutex.

iterator find(iterator begin, iterator end, T target);

Given a range of values specified by the begin and end

iterators, searches with the range starting at begin and ending

at (but not including) end for the specified target. If the

target value is found, then it returns an iterator to that

element. If it is not found, then end is returned.

size_t vector<T>::size();

Member function for the vector class. Returns the number of

elements in the vector.

void vector<T>::push_back(const T& value);

Member function for the vector class. Called on a vector to push

the specified value onto the end of the vector, thus extending

it to be 1 element larger.

T& vector<T>::at(size_t index);

Member of the vector class to access an element at the specified

index of the vector.

V& map<K, V>::operator[](const K& key);

Member of the map class to access the value associated with the

specified key. If the key-value pair does not exist already in

the map, then it is implicitly inserted using the default value

for the value and returning a reference to the value.

bool map<K, V>::contains(const K& key);

Member of the map class to see if the specified key exists in

the map. Returns true if it does, false if it does not.

PennID: ______________________

17

This page is intentionally left blank.

