
CIT 5950 Spring 2024: Midterm

Feb 28, 2024

First Name : ___

Last Name : ___

Penn ID : ___

Please fill in your information above, read the following pledge, and sign in the space below:

I neither cheated myself nor helped anyone cheat on this exam. All answers on this exam are

my own. Violation of this pledge can result in a failing grade.

Sign Here : ___

Exam Details & Instructions:

• There are 7 questions made of 12 parts (and a short bonus) worth a total of 100 points.

• You have 120 minutes to complete this exam.

• The exam is closed book. This includes textbooks, phones, laptops, wearable devices,

other electronics, and any notes outside of what is mentioned below.

• You are allowed one 8.5 x 11 inch sheet of paper (double sided) for notes.

• Any electronic or noise-making devices you do have should be turned off and put away.

• Remove all hats, headphones, and watches.

• Your explanations should be more than just stating a topic name. Don't just say

something like (for example) "because of threads" or just state some facts like

"threads are parallel and lightweight processes". State how the topic(s) relate to the

exam problem and answer the question being asked.

Advice:

• Remember that there are 7 questions made up of a total of 12 parts (and a short bonus

question). Please budget your time so you can get to every question.

• Do not be alarmed if there seems to be more space than needed for an answer, we try to

include a lot of space just in case it is needed.

• Try to relax and take a deep breath. Remember that we also want you to learn from this.

A bad grade on this exam is not the end of the world. This grade also can be overwritten

by a better grade with the Midterm “Clobber” Policy (details in the course syllabus)

Please put your PennID at the top of each page in case the pages become separated.

If you need extra space, the last page of this exam is blank for you as scratch space and to

write answers. If you use it, please clearly indicate on that page and under the

corresponding question prompt that you are using the extra page to answer that question.

Please also write your full name and PennID at the top of the sheet.

PennID: ______________________

2

Question 1 {5 pts}

Travis has written a short C++ program that deals with two dimensional vectors of integers. We

call these two-dimensional vectors a “matrix”. Here is what the main() function of this program

looks like:

int main() {

 vector<vector<int>> matrix {

 {3, 4, 5},

 {6, 3, 2},

 {1, 2, 7}

 };

 mult_matrix(matrix, 3);

 print_matrix(matrix);

}

The functions mult_matrix() and print_matrix() are written by Travis.

mult_matrix() intends to modify the input matrix so that each number in it is multiplied by

the specified number. print_matrix() simply prints the matrix using cout.

The program compiles and runs, but the program outputs the wrong thing. We would expect to

get:

9 12 15

18 9 6

3 6 21

However we actually get this as output:

3 4 5

6 3 2

1 2 7

After some debugging, we narrow down the issue to be in the mult_matrix function.

Problem continues onto the next page

PennID: ______________________

3

Line

num

Code

0

1

2

3

4

5

6

7

void mult_matrix(vector<vector<int>> matrix, int n) {

 for (size_t row_num = 0U; row_num < matrix.size(); row_num++) {

 vector<int> row = matrix.at(row_num);

 for (size_t index = 0U; index < row.size(); index++) {

 row.at(index) *= n;

 }

 }

}

There are some bugs in this code, and it is your job to fix it. Please list all the lines you would

like to change and how you would change them so that the function behaves as expected.

If you want to insert a new line, you may specify by saying something like “I would insert a new

line between line 1 and line 2”.

Please keep your answer in the box below

PennID: ______________________

4

Question 2 {24 pts}

Part 1 {12 pts}

We want to write the function count_chars() that takes in a string as input and returns a

map that maps characters to integers. The resulting map contains each character in the string

associated with the count of how many times that character shows up in the string.

The following code calls the count_chars() function

int main() {

 auto res = count_chars("please");

 for (auto& pair : res) {

 cout << pair.first << ": " << pair.second << endl;

 }

}

When run, it should print out:

a: 1

e: 2

l: 1

p: 1

s: 1

It is your job to implement the function count_chars in the box on the next page.

Note that you do not need to worry about the specific ordering of the printed output.

map<> will automatically sort the entries when they are stored in the map.

Note: You can use any C++ that was covered in class.

You may use this blank space for scratch work. Your answer goes on the next page.

PennID: ______________________

5

Note: we do not expect people to use all the space provided, but we are providing it just in

case it is needed.

map<char, int> count_chars(const string& input) {

}

PennID: ______________________

6

Part 2 {12 pts}

We want to write another function remove_duplicates() that takes in a vector of strings

and returns a new vector that has all elements of the input, but any duplicate entries are removed.

If a string shows up more than once in the input vector, we only keep the first instance of it in the

output vector.

Given the following main that calls remove_duplicates():

int main() {

 vector<string> v {"I", "am", "so", "tired", "I", "i", "am"};

 auto result = remove_duplicates(v);

 for (auto& str : result) {

 cout << str << endl;

 }

}

When run, we should get the following printed:

I

am

so

tired

i

It is your job to implement the function remove_duplicates() in the box on the next page.

Note: You can use any C++ that was covered in class.

You may use this blank space for scratch work. Your answer goes on the next page.

PennID: ______________________

7

Note: we do not expect people to use all the space provided, but we are providing it just in

case it is needed.

vector<string> remove_duplicates(const vector<string>&

 input) {

}

PennID: ______________________

8

Question 3 {12 pts}

Part 1 {6 pts}

We have a function that is called by a thread. That thread modifies a global integer variable that

is shared across threads. As is good practice, we acquire a lock before modifying the variable and

release the lock afterwards.

pthread_mutex_lock(&count_lock);

count += 1;

pthread_mutex_unlock(&count_lock);

Without seeing any other part of our multi-threaded code, do we know that modifying count will

always be safe? That there is no data race on count? You can assume that the code compiles, is

called by threads, and the variables count and count_lock are initialized properly.

Please justify your answer

PennID: ______________________

9

Part 2 {6 pts}

Suppose there is a const int global variable that is accessed by many threads frequently

across the execution of a program. An example declaration of the variable is below:

const int MAGIC_NUMBER = 13;

You can assume that the entire program (which is not shown) compiles, threads are created

properly and that const is never violated.

Without seeing anymore of the program that utilizes the const int global variable, what can

we determine about the safety of accessing the const int global variable? Is a data race on our

const int global variable possible?

Please Justify your answer.

PennID: ______________________

10

Question 4 {20 pts}

Consider the following situation where we have a global linked list of doubles that is very big

and shared across threads in a program.

struct node {

 node* next;

 double data;

};

node* global_head = nullptr; // list starts “empty”

At some point in the program, we want to initialize this list to contain 1,000,000 random doubles.

To do this we generate a random double and then call the following function to push onto the

front of the global linked list.

void push_global_list(double value) {

 node* new_node = new node();

 new_node->next = global_head;

 new_node->data = value;

 global_head = new_node;

}

Note: This question is not asking you to implement a linked list or verify the correctness of this

function. You can assume the code above compiles and correctly pushes onto the front of the

global linked list (at least without considering threads).

This operation is taking a long time to compute, so we explore three different ways to implement

this behaviour. Assume for these examples we have multiple processors.

1. We don't create any threads, and instead just have a single for loop that generates

1,000,000 random numbers and pushes them all onto the list.

2. We create 10 threads and have each thread create and push 1/10 of the data we want to

eventually store on the list. The first thread calculates creates and pushes 100,00 doubles,

The second thread generates and pushes the next 100,000 doubles etc.

3. We do the same as method #2, but we have a mutex on the overall global list. Each thread

needs to acquire the mutex of the overall list before it can do generate the number or push

onto the list, and releases the mutex when the thread is completely done.

Part 1 {8 pts}

For each of the three implementations described above, list whether or not it "works". By

"work", we mean that the program doesn't have any data races and does not have any deadlocks.

Briefly justify your answer for each implementation, a sentence or two should be sufficient.

Please put your answer in the box on the next page.

PennID: ______________________

11

Part 1 {8 pts}

See the previous page for the question.

Part 2 {12 pts}

Of the three implementations, rank them from fastest to slowest. Please justify your answer.

For this question, assume that any faulty implementations end up working correctly, even if it is

possible for there to be an error through a data-race. This question is asking purely about speed.

PennID: ______________________

12

Question 5 {18 pts}

One of the most common data structures in computer sciences is a map or a hash-map structure.

Note: you do not need to be familiar with maps, or algorithm analysis to solve this problem. This

problem is about memory, the maps are just the setting for the question.

What is a map?

I believe you should be familiar with what a map is from taking the pre-requisite course, but I've

included a brief refresher on a map here. Feel free to skip to the memory diagrams if you think

you are already familiar. You do not need to be familiar with hashing to answer this question.

A map is a data structure that has two associated types, a key type and a value type. Users can

store keys to be associated with a value. A Map is thus a collection of key-value pairs. Common

operations include adding a new pairing, setting an existing pairing to have a new value, finding

a specific pair from just the key, and iterating over all elements in the map.

Memory Diagrams

One common way to store key-value pairs is to use a chaining hash map. In memory, we can

think of it as being represented like this:

Another way key-value pairs can be stored is by storing them in an array. Structures like this are

typically called a flat map:

key = …

value = …

key = …

value = …

key = …

value = …

key = …

value = …

key = …

value = …

key = …

value = …

next = NULL

key = …

value = …

next =

key = …

value = …

next = NULL

key = …

value = …

next = NULL

Chaining Hash Map

 int size

 int num_chains

 linked_list[] Chains

5

3

Flat Map

 int size

 pair[] kv_pairs

PennID: ______________________

13

Part 1 {10 pts}

Let’s say we write code that has a huge map containing many elements. The map uses 4-byte

integers as keys and 4-byte floats as values (8 bytes together).

We analyze our code and notice that by far the most common operation performed on this

structure is to iterate through all the key value pairs in the structure. If we wanted to maximize

performance for that operation, which structure would be better? Why? Your answer should be

2-3 sentences.

Hint: if you are thinking about algorithm analysis like O(n) stuff or counting the number

instructions executed, you are doing it wrong

Part 2 {8 pts}

If the key value pairs were large (let’s say that they are 4096 bytes) we don’t get the same

performance boost we got before when iterating over the entries and the two map

implementations seem much more comparable at run-time.

Why might this be the case? Please explain why. Limit your answers to 3 sentences at maximum.

PennID: ______________________

14

Question 6 {15 pts}

Suppose we have a scheduling using round robin with a time quantum of 2. Assume our machine

is a single processor/core machine. If we have processes described in the table below

Process Name Arrival Time Job Length

A 0 5

B 1 3

C 3 2

D 4 3

Then the processes will be scheduled like this:

 0 1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

In this algorithm, if there are multiple processes to add to the “ready queue” at the same time,

assume they are put into the queue in this order:

1. any arriving processes are put into the queue first

2. any process that just finished its time slice is put into the queue last

Part 1 {10 pts}

If we were to instead schedule them with a round robin time quantum of 3, what would the

scheduling look like? Please fill in the diagram below

 0 1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

PennID: ______________________

15

Part 2 {5 pts}

If we increase the quantum size, then round robin starts approaching behaviour more similar to

First Come First Serve (FCFS). What is one way this may be good?

Question 7 {5 pts}

In HW1 BufferedFileReader, the reason we maintained a buffer was so that we could “minimize

calls to POSIX read()”. What characteristic of calling POSIX read() made it so that we wanted to

minimize the amount of times we called that function? Be specific.

PennID: ______________________

16

Question 8 {1 pt} all submissions will get this point

Select one member of the course staff. Create a piece of art (e.g. drawing, poem, anything you

like) about that person.

If you don’t want to do that, then put anything here! What’s your favourite thing about C++

programming? Anything you want to show us or want us to know?

PennID: ______________________

17

Appendix

pthread_create

SYNOPSIS

int pthread_create(pthread_t *thread, pthread_attr_t *attr,

 void *(*start_routine) (void *), void *arg);

DESCRIPTION

The pthread_create() function starts a new thread in the

calling process. The new thread starts execution by invoking

start_routine(); arg is passed as the sole argument of

start_routine().

pthread_join

SYNOPSIS

int pthread_join(pthread_t thread, void **retval);

DESCRIPTION

The pthread_join() function waits for the thread specified by

thread to terminate. If that thread has already terminated, then

pthread_join() returns immediately.

If retval is not NULL, then pthread_join() copies the return

value of the target thread into the location pointed to by

retval.

pthread_mutex_lock

SYNOPSIS

int pthread_mutex_lock(pthread_mutex_t *mutex);

DESCRIPTION

The mutex object referenced by mutex shall be locked by calling

pthread_mutex_lock(). If the mutex is already locked, the

calling thread shall block until the mutex becomes available.

This operation shall return with the mutex object referenced by

mutex in the locked state with the calling thread as its owner.

PennID: ______________________

18

pthread_mutex_unlock

SYNOPSIS

int pthread_mutex_unlock(pthread_mutex_t *mutex);

DESCRIPTION

The pthread_mutex_unlock() function shall release the mutex

object referenced by mutex.

iterator find(iterator begin, iterator end, T target);

Given a range of values specified by the begin and end

iterators, searches with the range starting at begin and ending

at (but not including) end for the specified target. If the

target value is found, then it returns an iterator to that

element. If it is not found, then end is returned.

void vector<T>::push_back(const T& value);

Member function for the vector class. Called on a vector to push

the specified value onto the end of the vector, thus extending

it to be 1 element larger.

T& vector<T>::at(size_t index);

Member of the vector class to access an element at the specified

index of the vector.

V& map<K, V>::operator[](const K& key);

Member of the map class to access the value associated with the

specified key. If the key-value pair does not exist already in

the map, then it is implicitly inserted using the default value

for the value and returning a reference to the value.

bool map<K, V>::contains(const K& key);

Member of the map class to see if the specified key exists in

the map. Returns true if it does, false if it does not.

PennID: ______________________

19

This page is intentionally left blank.

