
CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Introductions, C Refresher
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Administrivia

❖ First Assignment (HW00 simple_string)

▪ Releases Tomorrow

▪ “Due” Friday next week 01/24

▪ Extended to be due Wednesday the 28th (course selection period ends)

▪ Mostly a C refresher

❖ Check-in 00

▪ Releases tomorrow

▪ Short unlimited attempt quiz

▪ Extended to be due Wednesday the 28th (course selection period ends)

❖ Pre semester Survey

▪ Anonymous

▪ Due Wednesday the 28th
3

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C “Refresher”

▪ Context in this course

▪ memory

▪ Pointers

▪ Arrays

▪ Structs

▪ The heap

▪ const

4

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ UPenn CIS faculty member since August 2021

▪ Currently my Eighth semester at UPenn

▪ Fourth Semester with CIT 5950… and I am still trying new stuff

▪ Lots of the same content, but in a different order, new assignments and more of a focus
on C++

❖ Education: University of Washington, Seattle

▪ Masters in Computer Science in March 2021

▪ Bachelors in Computer Engineering in June 2019

▪ Instructed a course that covers very similar material

5

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I like most music

6

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I like animals and going outside
(especially birds, cats and mountains)

7

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I like video games

8

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I have a general dislike of food
(Breakfast is pretty good tho)

9

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I care a lot about your actual learning and that you have a good experience
with the course

❖ I am a human being and I know that you are one too. If you are facing
difficulties, please let me know and we can try and work something out.

❖ More on my personal website: https://www.cis.upenn.edu/~tqmcgaha/

10

https://www.cis.upenn.edu/~tqmcgaha/

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Latch/Flip-Flop

Adder

Mux/Demux

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Computer

Operating System

Process

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

“Lies-to-children”

❖ "The necessarily simplified stories we tell children and students as a
foundation for understanding so that eventually they can discover that they
are not, in fact, true."

▪ Andrew Sawyer (Narrativium and Lies-to-Children: 'Palatable Instruction in 'The Science of
Discworld' ‘)

20

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

“Lies-to-children”

❖ "A lie-to-children is a statement that is false, but which nevertheless leads the
child's mind towards a more accurate explanation, one that the child will only
be able to appreciate if it has been primed with the lie"

▪ Terry Pratchett, Ian Stewart & Jack Cohen (The Science of Discworld)

21

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Question

❖ What color is the sky?

22

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We lied to you (but in a good way)

❖ Is the LC4 model for a computer true?

❖ Is it a useful model?

23

Computer

Operating System

Process

Eh……. no

Yes

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We lied to you (but in a good way)

❖ Is memory one giant array of bytes?

❖ Is this a useful model?

24

Eh……. no
Yes

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Computer

Operating System

Process

OS does A LOT more

than just printing,

reading input, video

display, and timer

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Computer

Operating System

P1 P2 P3 Pn…

THERE IS A LOT

GOING ON TO

SUPPORT THIS

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Computer

Operating System

P1 P2 P3 Pn…

Computer

Operating System

P1 P2 P3 Pn…

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

28

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Hardware

Firmware / Drivers

Operating System / Kernel

Software / Applications

Libraries, APIs, System Calls

Algorithms
CIT 5920/5960

CIT 5910/5940

you are here!

CIT 5930

Math / Logic

Course Overview

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

I’m going to lie to you (but in a good way)

❖ "All models are wrong, but some are useful."

▪ Same source as below.

❖ "If it were necessary for us to understand how every component of our daily
lives works in order to function - we simply would not."

▪ AnRel (UNHINGED: A Guide to Revolution for Nerds & Skeptics)

❖ This course will reveal more details, but there is still a ton I am leaving out.
Even what I say that is accurate, will likely change in the future.

30

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Prerequisites

❖ Course Prerequisites:

▪ CIT 5930

❖ What you should be familiar with already:

▪ C programming experience

• Familiarity with basic data structures

▪ C Memory Model

▪ Computer Architecture Model

▪ Basic UNIX command line skills

❖ Will still review some of these with the beginning of the semester ☺

31

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

CIT 5950 Learning Objectives

❖ To leave the class with a better understanding of:

▪ C++

▪ How a lot of software level structures (e.g. vector and string) work

▪ How software “interfaces” with the Operating System

▪ How a computer runs/manages multiple programs

▪ Various system resources and how to apply those to code

• Threads, networking, file I/O

❖ Topics list/schedule can be found on course website

▪ Note: This is tentative

32

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Disclaimer

❖ A lot of the course is tentative

▪ Travis has taught this before but is CHANGING A LOT this time

❖ This is a digest, READ THE SYLLABUS

▪ https://www.seas.upenn.edu/~cit5950/current/documents/syllabus

▪ Note: Syllabus is still being updated

33

https://www.seas.upenn.edu/~cit5950/current/documents/syllabus

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Components pt. 1

❖ Lectures (~26)

▪ Introduces concepts, slides & recordings available on canvas

▪ In lecture polling.

❖ Sections (12)

▪ Reiterates lecture content, lecture clarifications, assignment & exam preparation

❖ Programming Projects (~10)

▪ Due every ~1 week

▪ Applications of course content

▪ Usually have everything you need for an assignment when it is released

❖ Check-in “Quizzes” (~12)

▪ Unlimited attempt low-stake quizzes on Ed to make sure you are caught up with the
material

▪ Lowest two are dropped 34

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Components pt. 2

❖ Final Project (1)

▪ Due at the end of the semester

▪ Can be done solo or in partners (tentatively)

▪ Further Details TBD

❖ Exams (2)

▪ Two in-person exams, two pages of notes allowed

▪ Details TBD

❖ Textbook (0)

▪ No Textbook, but using a C++ reference would probably be useful

▪ https://cplusplus.com/

▪ https://en.cppreference.com/w/

35

https://cplusplus.com/
https://en.cppreference.com/w/

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Grading (Tentative)

❖ Breakdown:

▪ Homework assignments (56%)

▪ Final Project (11%)

▪ Exams (25%)

• Midterm 10%

• Final 15%

▪ Check-in Quizzes (5%)

▪ Course-wide participation

❖ Final Grade Calculations:

▪ I would LOVE to give everyone an A+ if it is earned

▪ Final grade cut-offs will be decided privately at the end of the Semester

36

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Policies

❖ HW Late Policy

▪ Checkins are due before Monday’s lecture and cannot be turned in late

▪ HW’s cannot be turned in late, but they can be reopened

• When you submit a check-in you can also say you want to re-open ONE homework assignment.
That homework assignment will be re-opened till the next check-in is due.

• You can re-open the same assignment multiple times

• The final project can’t be re-opened

▪ End of the semester is the end
(unless there is particularly special circumstances)

❖ Midterm Clobber Policy

▪ Final is cumulative

▪ If you do better on the “midterm section” of the final, your midterm grade can be
overwritten. 37

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Collaboration Policy Violation

❖ You will be caught:

▪ Careful grading of all written homeworks by teaching staff

▪ Measure of Software Similarity (MOSS): http://theory.stanford.edu/~aiken/moss/

▪ Successfully used in several classes at Penn

❖ Zero on the assignment, (5%) deduction on final grade. F grade if caught twice.

▪ First-time offenders will be reported to Office of Student Conduct with no exceptions.
Possible suspension from school

▪ Your friend from last semester who gave the code will have their grade retrospectively
downgraded.

38

http://theory.stanford.edu/~aiken/moss/

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Collaboration Policy Violation

❖ Generative AI

▪ I am skeptical of its usefulness for your learning and for your success in the course

▪ Some articles on the topic:

• https://www.aisnakeoil.com/p/chatgpt-is-a-bullshit-generator-but

• https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks

▪ Not banned, but not recommended. 95% of the time I see students use it, they are using it
wrong. Use your best judgement.

❖ You will not help your overall grade and happiness:

▪ Quizzed individually during project demo, exams on project in finals

▪ If you can’t explain your code in OH, we can turn you away.

• This is different than being confused on a bug or with C, this is ok

▪ Personal lifelong satisfaction from completing the course

39

https://www.aisnakeoil.com/p/chatgpt-is-a-bullshit-generator-but
https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Infrastructure

❖ Course website

▪ Schedule, syllabus, assignment specifications, materials …

❖ Docker

▪ Coding environment for hw’s, code is submitted to GradeScope

❖ GradeScope

▪ Used for exam grades & HW submissions

❖ Poll Everywhere

▪ Used for lecture polls

❖ Ed

▪ Course discussion board and for check-in quizzes

❖ Canvas

▪ Grades, lecture recordings & surveys
40

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course-wide participation

❖ 3% of the final grade

❖ Threshold to get full credit is VERY low

❖ Almost everyone gets full credit

❖ Get points from

▪ Participating in poll everywhere

▪ Attending recitation

▪ Participating in Ed

▪ Filling out the surveys for the course.

41

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Getting Help

❖ Ed

▪ Announcements will be made through here

▪ Ask and answer questions

▪ Sign up if you haven’t already!

❖ Office Hours:

▪ Can be found on calendar on front page of canvas page

▪ Starts next week (hopefully)

❖ 1-on-1’s:

▪ Can schedule 1-on-1’s with Travis

▪ Should attend OH and use Ed when possible, but this is an option for when OH and Ed
can’t meet your needs 42

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We Care

❖ We are still figuring things out, but we do care about you and your experience
with the course

▪ There is a pre-semester survey available on canvas now. Please fill this out honestly and
we will do our best to incorporate people’s answers

▪ Please reach out to course staff if something comes up and you need help

❖ PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY

▪ We know that things can be tough, but please reach out if you feel tempted. We want to
help

▪ Read more on academic integrity in the syllabus

43

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns so far?

44

pollev.com/tqm

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C “Refresher”

▪ Context in this course

▪ memory

▪ Pointers

▪ Arrays

▪ Structs

▪ The heap

▪ const

45

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Context of C in this course

❖ You will be writing C++ in this course, not C

▪ Most C is legal C++

▪ For the first few assignments you will write C++ code that also mostly works as C code

❖ C++ is not C

▪ C is the foundation for C++, but C++ is very different

▪ We will refresh ourselves on this C foundation but quickly move on to C++

❖ Recitation tomorrow:

▪ More C refresher (If you need it)

▪ Not recorded, but slides will be posted

46

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory

❖ Where all data, code, etc are stored for a
program

❖ Broken up into several segments:

▪ The stack

▪ The heap

▪ The kernel

▪ Etc.

❖ Each “unit” of memory has an address

47

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory as an array of bytes

❖ Everything in memory is made of bits and bytes

▪ Bits: a single 1 or 0

▪ Byte: 8 bits

❖ Memory is a giant array of bytes where
everything* is stored

▪ Each byte has its own address (“index”)

❖ Some types take up one byte, others more

48

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

…

int main() {
 char c = 'A';
 char other = '0';
 int x = 5950;
}

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 …

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers

❖ Variables that store addresses

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition: type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address

• Trying to access that data at that address will treat the data there as an int

49

int *ptr;

type* name; type *name;

equivalent

POINTERS ARE EXTREMELY

IMPORTANT IN C & C++

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory is Huge

❖ Modern computers are called “64-bit”

▪ Addresses are 64-bits (8-bytes)

▪ There are 264 possible memory locations, each location is 1-byte

▪ 264 is 18,446,744,073,709,551,616.
▪ Pointers must be 64-bits (8-bytes) to be able to hold any address on the computer.

50

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:

51

int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 5950;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory as an array of bytes

❖ Everything in memory is made of bits and bytes

▪ Bits: a single 1 or 0

▪ Byte: 8 bits

❖ Memory is a giant array of bytes where
everything* is stored

▪ Each byte has its own address (“index”)

❖ Some types take up one byte, others more

52

int main() {
 char c = 'A';
 char other = '0';
 int x = 5950;
 int* ptr = &x;
}

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 …

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 0x0000000000000008 …

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

0x2000 a --

0x2004 b --

0x2008 c --

0x200C ptr --

Pointer Example

53

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Initial values

are garbage

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

0x2000 a 5

0x2004 b 3

0x2008 c --

0x200C ptr --

Pointer Example

54

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

x --

p --

0x2000 a 5

0x2004 b 3

0x2008 c --

0x200C ptr 0x2000

Pointer Example

55

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

x --

p --

0x2000 a 7

0x2004 b 3

0x2008 c --

0x200C ptr 0x2000

Pointer Example

56

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c 10

0x2004 ptr 0x2000

Pointer Example

57

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

58

pollev.com/tqm

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int* other = ptr;
 ptr = &arc;
 *ptr = *other
 *ptr += 3;

 // print curr and arc
 cout << curr << endl;
 cout << arc << endl;

}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: NULL

❖ NULL is a memory location that is guaranteed to be invalid

▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL causes a
segmentation fault

❖ Useful as an indicator of an uninitialized (or currently unused) pointer
or allocation error

▪ It’s better to cause a segfault than to allow the corruption of memory!

66

int main(int argc, char** argv) {

 int* p = NULL;

 *p = 1; // causes a segmentation fault

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C “Refresher”

▪ Context in this course

▪ memory

▪ Pointers

▪ Arrays

▪ Structs

▪ The heap

▪ const

67

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Arrays in C

❖ Definition: type name[size]

▪ Allocates size*sizeof(type) bytes of contiguous memory

▪ Normal usage is a compile-time constant for size
(e.g. int scores[175];)

▪ Initially, array values are “garbage”

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

▪ The programmer will have to store the length in another variable or hard-code it in

▪ No bounds checking!

68

type name[size]

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Using Arrays

❖ Initialization: type name[size] = {val0,…,valN};
▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”
▪ name[index] specifies an element of the array and can be

used as an assignment target or as a value in an expression

▪ Array name (by itself) produces the address of the start of the
array

• Cannot be assigned to / changed

69

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!

type name[size] = {val0,…,valN};

Optional when initializing

No IndexOutOfBounds

Hope for segfault

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Arrays in C

❖ Here is a memory diagram example:

70

int main() {
char c = '\0';

int arr[2] = {1, 2};
}

0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

'\0' 1 2 …

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers as C arrays

❖ Pointers can be set to an array

❖ Pointers can always be indexed into like an array

▪ Pointers don’t always have to point to the beginning of
an array!

71

0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

'\0' 1 2 …

int main() {
char c = '\0';

int arr[2] = {1, 2};

int* ptr = arr;

 int x = ptr[1] + 1;
}

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26

0x0000...08 3 …

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

▪ Hint: Draw it out!

72

pollev.com/tqm

void foo() {
int core[3] = {5940, 5930, 5960};

core[1] += 20;

int* ptr = &(core[1]);

ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

// STOP HERE
}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Strings in C

❖ Strings in C are just arrays of characters with a special character at the end to
mark the end of the string: '\0’

▪ Called the “null terminator” character

❖ C-strings are often referred to with a char[] or a char*

❖ Example:

▪ print(str) // Rain

▪ print(ptr_str) // in

73

int main() {
 char c = '\0';

 char str[5] = "Rain";

 char* ptr_str = &(str[2]);
}

0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

'R' 'a' 'i' 'n' '\0' 0x000…006 …

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ Finish this code:

▪ This function takes in a string
and returns the length of the string.

▪ Do not call any other function

▪ size_t is just an unsigned integer type

▪ Remember to index into the pointer like
an array!

▪ What marks the end of a string?

▪ You don’t have to use a while loop, but
I think it makes the most sense.

74

pollev.com/tqm

size_t strlen(char* str) {
 size_t length = 0;

 while () {

 }

 return length;
}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

The Heap

❖ For most program memory we care about,
things are stored either in the heap or stack

❖ In C we allocated with malloc() and deallocated with free()

❖ In C++ we will use new and delete.

▪ New still gives us a pointer to the heap

▪ We must deallocate the pointer with delete
when we are done with the pointer.

76

int main() {
 int* x = new int;

 *x = 3;

 // prints *x which is 3
 cout << *x << endl;

 delete x;
}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

The Heap

❖ In C++ we will use new and delete.

▪ New still gives us a pointer to the heap

▪ Can use new to allocate an array!

▪ Will need this to allocate an array of
characters (so a C-style string) in
the first homework assignment.

▪ We deallocate arrays with delete[]

❖ Will talk more about what the heap is and why it is important next lecture.
This should be enough for HW00 though.

77

int main() {

 int* arr = new int[2];

 arr[0] = 5930;
 arr[1] = 5950;

 delete[] arr;
}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structured Data

❖ A struct is a C and C++ datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Acts similarly to primitive variables

❖ Generic declaration in C++:

78

struct Point {

 float x;

 float y;

};

Point pt;

Point origin = {0.0f, 0.0f};

pt = origin; // pt now contains 0.0f, 0.0f

Default values are still garbage!

 <- Initializer List

Can be assigned into,

used as parameters, etc.

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structured Data: copied not referenced

❖ A struct is a C and C++ datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Acts similarly to primitive variables

• When we assign a

79

Point pt;

Point origin = {0.0f, 0.0f};

pt = origin; // pt now contains 0.0f, 0.0f

origin.first = 1.0f;

print(origin.first);

print(pt.first);

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Accessing struct Fields

❖ Use “.” to refer to a field in a struct

❖ Use “->” to refer to a field from a struct pointer

▪ Dereferences pointer first, then accesses field

80

struct Point {

 float x, y;

};

int main(int argc, char** argv) {

 Point p1 = {0.0, 0.0};

 Point* p1_ptr = &p1;

 p1.x = 1.0;

 p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;

 return 0;

}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Const

❖ const is a keyword in C and C++ that means that a variable cannot be
modified. It is “constant”

❖ If a struct is const in C or C++,
then its members are also const.

81

int main() {
 const int x = 3;
 int y = 5;

 x += 1; // ILLEGAL

 y += 1;

 const Point p = {0.0, 0.0};

 p.first = 1.0; // ILLEGAL
}

CIT 5950, Spring 2025L00: Intro, & C RefresherUniversity of Pennsylvania

That’s all for now!

❖ If we got through all this, you should have everything you need for the first
homework assignment from this lecture and recitation

❖ We are going a little fast because I expect you have already seen all or most of
this in CIT 5930

❖ When we get to new material it won’t be as fast

❖ Releasing tomorrow:

▪ HW00

▪ Pre-semester Survey

▪ Check-in00
82

	Default Section
	Slide 1: Introductions, C Refresher Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Instructor: Travis McGaha
	Slide 6: Instructor: Travis McGaha
	Slide 7: Instructor: Travis McGaha
	Slide 8: Instructor: Travis McGaha
	Slide 9: Instructor: Travis McGaha
	Slide 10: Instructor: Travis McGaha
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: “Lies-to-children”
	Slide 21: “Lies-to-children”
	Slide 22: Question
	Slide 23: We lied to you (but in a good way)
	Slide 24: We lied to you (but in a good way)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: I’m going to lie to you (but in a good way)
	Slide 31: Prerequisites
	Slide 32: CIT 5950 Learning Objectives
	Slide 33: Disclaimer
	Slide 34: Course Components pt. 1
	Slide 35: Course Components pt. 2
	Slide 36: Course Grading (Tentative)
	Slide 37: Course Policies
	Slide 38: Collaboration Policy Violation
	Slide 39: Collaboration Policy Violation
	Slide 40: Course Infrastructure
	Slide 41: Course-wide participation
	Slide 42: Getting Help
	Slide 43: We Care
	Slide 44: Poll: how are you?
	Slide 45: Lecture Outline
	Slide 46: Context of C in this course
	Slide 47: Memory
	Slide 48: Memory as an array of bytes
	Slide 49: Pointers
	Slide 50: Memory is Huge
	Slide 51: Pointer Operators
	Slide 52: Memory as an array of bytes
	Slide 53: Pointer Example
	Slide 54: Pointer Example
	Slide 55: Pointer Example
	Slide 56: Pointer Example
	Slide 57: Pointer Example
	Slide 58: Pointers Poll
	Slide 66: Aside: NULL
	Slide 67: Lecture Outline
	Slide 68: Arrays in C
	Slide 69: Using Arrays
	Slide 70: Arrays in C
	Slide 71: Pointers as C arrays
	Slide 72: Pointer as Array Poll
	Slide 73: Strings in C
	Slide 74: Pointer as Array Poll
	Slide 76: The Heap
	Slide 77: The Heap
	Slide 78: Structured Data
	Slide 79: Structured Data: copied not referenced
	Slide 80: Accessing struct Fields
	Slide 81: Const
	Slide 82: That’s all for now!

