University of Pennsylvania

LOO: Intro, & C Refresher

Introductions, C Refresher
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

C

g}r()‘T\(T\E3f

pro

| fear no man.

Segmentation fault
(core dumped)

But that thing...

It scares me.

CIT 5950, Spring 2025

!

!
;

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

0 Poll Eve rywhere pollev.com/tqgm

+» How are you?

University of Pennsylvania LOO: Intro, & C Refresher

Administrivia

% First Assignment (HWOO simple_string)
= Releases Tomorrow
= “Due” Friday next week 01/24
= Extended to be due Wednesday the 28t (course selection period ends)
" Mostly a C refresher
+» Check-in 00
= Releases tomorrow
= Short unlimited attempt quiz

= Extended to be due Wednesday the 28" (course selection period ends)

+ Pre semester Survey
" Anonymous
= Due Wednesday the 28t

CIT 5950, Spring 2025

University of Pennsylvania

Lecture Outline

Introduction & Logistics

= Assignments & Exams

Course Overview

Policies

C “Refresher”

Context in this course
memory

Pointers

Arrays

Structs

The heap

const

LOO: Intro, & C Refresher

CIT 5950, Spring 2025

University of Pennsylvania

LOO: Intro, & C Refresher

CIT 5950, Spring 2025

Instructor: Travis McGaha

%+ UPenn CIS faculty member since August 2021
" Currently my Eighth semester at UPenn
® Fourth Semester with CIT 5950... and | am still trying new stuff

® | ots of the same content, but in a different order, new assignments and more of a focus
on C++

+ Education: University of Washington, Seattle
= Masters in Computer Science in March 2021
= Bachelors in Computer Engineering in June 2019

" |nstructed a course that covers very similar material

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

}&’ﬁ&
Instructor: Travis McGaha —

) o

s aa@n =
R ¥ = >
S likres S

S SA e

« | like most music

MADVILLAIN

B o B =
KANKYO ONGAKU

lops

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

How it feels sharing the bed with my

Instructor: Travis McGaha < N .

% | like animals and going outside
(especially birds, cats and mountains)

LOO: Intro, & C Refresher CIT 5950, Spring 2025

University of Pennsylvania

Instructor: Travis McGahc

= | like video games HE

. BN T
W D, v

WARFRAME -~

. ‘ .«‘.& ¥ _ ' P :
o~ VAR, O\ e <7 AT
PALLOUT: ~ ¥ &~ \\ , {g :] R :
NEWNEGAS & -#% \ % // &

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Instructor: Travis McGaha

+ | have a general dislike of food

(Breakfast is pretty good tho) G "’WMQ;,;;‘ CEIp: g

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Instructor: Travis McGaha

» | care a lot about your actual learning and that you have a good experience
with the course

» | am a human being and | know that you are one too. If you are facing
difficulties, please let me know and we can try and work something out.

- More on my personal website: https://www.cis.upenn.edu/~tgmcgaha/

10

https://www.cis.upenn.edu/~tqmcgaha/

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

v

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

1

Memory Unit

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

Process

Operating System

Computer

LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

“Lies-to-children”

%+ "The necessarily simplified stories we tell children and students as a
foundation for understanding so that eventually they can discover that they
are not, in fact, true."”

= Andrew Sawyer (Narrativium and Lies-to-Children: 'Palatable Instruction in 'The Science of
Discworld' ‘)

20

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

“Lies-to-children”

» "Alie-to-children is a statement that is false, but which nevertheless leads the
child's mind towards a more accurate explanation, one that the child will only
be able to appreciate if it has been primed with the lie"

= Terry Pratchett, lan Stewart & Jack Cohen (The Science of Discworld)

21

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Question

%+ What color is the sky?

22

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

We lied to you (but in a good way)

+ |s the LC4 model for a computer true? Eh....... no

« |Is it a useful model? Yes

Process
Operating System

23

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

We lied to you (but in a good way)

+ |s memory one giant array of bytes? Eh....... no
% Is this a useful model? Yes

24

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

OS does A LOT wore

Process thaw just privting,
Operating System [P reading nput, Video

display, and timer

Computer

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

THERE IS A LOT
GOTING ON TO
Operating System SUPPORT THTS

Computer

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

Operating System Operating System

Computer Computer

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Overview

28

University of Pennsylvania LOO: Intro, & C Refresher

Course Overview

Math / Logic

Algorithms

Operating System / Kernel

Firmware / Drivers

Hardware

\

~— CIT 5920/5960

> CIT 5910/5940

~

you are here!

> CIT 5930

CIT 5950, Spring 2025

LOO: Intro, & C Refresher CIT 5950, Spring 2025

University of Pennsylvania

I’m going to lie to you (but in a good way)

» "All models are wrong, but some are useful."

= Same source as below.

+» "If it were necessary for us to understand how every component of our daily
lives works in order to function - we simply would not."
= AnRel (UNHINGED: A Guide to Revolution for Nerds & Skeptics)

« This course will reveal more details, but there is still a ton | am leaving out.
Even what | say that is accurate, will likely change in the future.

30

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Prerequisites

+» Course Prerequisites:
= CIT 5930

+ What you should be familiar with already:
= C programming experience
- Familiarity with basic data structures
= C Memory Model
= Computer Architecture Model
= Basic UNIX command line skills

+ Will still review some of these with the beginning of the semester ©

31

University of Pennsylvania LOO: Intro, & C Refresher

CIT 5950 Learning Objectives

+» To leave the class with a better understanding of:
" C++
" How a lot of software level structures (e.g. vector and string) work
" How software “interfaces” with the Operating System
" How a computer runs/manages multiple programs

= Various system resources and how to apply those to code
- Threads, networking, file I/0

+ Topics list/schedule can be found on course website
" Note: This is tentative

CIT 5950, Spring 2025

32

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Disclaimer

+ A lot of the course is tentative
" Travis has taught this before but is CHANGING A LOT this time

« This is a digest, READ THE SYLLABUS

" https://www.seas.upenn.edu/~cit5950/current/documents/syllabus

= Note: Syllabus is still being updated

33

https://www.seas.upenn.edu/~cit5950/current/documents/syllabus

University of Pennsylvania LOO: Intro, & C Refresher

Course Components pt. 1

% Lectures (~26)
" |ntroduces concepts, slides & recordings available on canvas
" |n lecture polling.
% Sections (12)
= Reiterates lecture content, lecture clarifications, assighment & exam preparation
%+ Programming Projects (~10)
" Due every ~1 week
= Applications of course content
= Usually have everything you need for an assignment when it is released
» Check-in “Quizzes” (~12)

= Unlimited attempt low-stake quizzes on Ed to make sure you are caught up with the
material

J
*

= |Lowest two are dropped

CIT 5950, Spring 2025

34

University of Pennsylvania LOO: Intro, & C Refresher

Course Components pt. 2

% Final Project (1)
" Due at the end of the semester
® Can be done solo or in partners (tentatively)
= Further Details TBD

% Exams (2)

= Two in-person exams, two pages of notes allowed
= Details TBD

+ Textbook (0)

= No Textbook, but using a C++ reference would probably be useful
= https://cplusplus.com/

" https://en.cppreference.com/w/

CIT 5950, Spring 2025

35

https://cplusplus.com/
https://en.cppreference.com/w/

University of Pennsylvania LOO: Intro, & C Refresher

Course Grading (Tentative)

» Breakdown:
" Homework assighnments (56%)
" Final Project (11%)
= Exams (25%)
- Midterm 10%
 Final 15%

" Check-in Quizzes (5%)
" Course-wide participation

+ Final Grade Calculations:
= | would LOVE to give everyone an A+ if it is earned
" Final grade cut-offs will be decided privately at the end of the Semester

CIT 5950, Spring 2025

36

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Policies

+» HW Late Policy

® Checkins are due before Monday’s lecture and cannot be turned in late

" HW’s cannot be turned in late, but they can be reopened

- When you submit a check-in you can also say you want to re-open ONE homework assignment.
That homework assignment will be re-opened till the next check-in is due.

« You can re-open the same assignment multiple times
- The final project can’t be re-opened

= End of the semester is the end
(unless there is particularly special circumstances)

«» Midterm Clobber Policy

® Final is cumulative

" |f you do better on the “midterm section” of the final, your midterm grade can be
overwritten.

37

LOO: Intro, & C Refresher CIT 5950, Spring 2025

University of Pennsylvania

Collaboration Policy Violation

+ You will be caught:
= Careful grading of all written homeworks by teaching staff
= Measure of Software Similarity (MOSS): http://theory.stanford.edu/~aiken/moss/

= Successfully used in several classes at Penn

+» Zero on the assignment, (5%) deduction on final grade. F grade if caught twice.

= First-time offenders will be reported to Office of Student Conduct with no exceptions.
Possible suspension from school

= Your friend from last semester who gave the code will have their grade retrospectively
downgraded.

38

http://theory.stanford.edu/~aiken/moss/

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Collaboration Policy Violation

+» Generative Al
= | am skeptical of its usefulness for your learning and for your success in the course

= Some articles on the topic:
« https://www.aisnakeoil.com/p/chatgpt-is-a-bullshit-generator-but

« https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks

= Not banned, but not recommended. 95% of the time | see students use it, they are using it
wrong. Use your best judgement.

+ You will not help your overall grade and happiness:
" Quizzed individually during project demo, exams on project in finals

" |f you can’t explain your code in OH, we can turn you away.
« This is different than being confused on a bug or with C, this is ok

= Personal lifelong satisfaction from completing the course

39

https://www.aisnakeoil.com/p/chatgpt-is-a-bullshit-generator-but
https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course Infrastructure

+» Course website
= Schedule, syllabus, assignment specifications, materials ...

+» Docker
" Coding environment for hw’s, code is submitted to GradeScope

% GradeScope

= Used for exam grades & HW submissions

+ Poll Everywhere
= Used for lecture polls
+ Ed
® Course discussion board and for check-in quizzes

» Canvas

" Grades, lecture recordings & surveys
40

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Course-wide participation

%+ 3% of the final grade

+» Threshold to get full credit is VERY low
+ Almost everyone gets full credit

%+ Get points from
= Participating in poll everywhere
= Attending recitation
= Participating in Ed
= Filling out the surveys for the course.

41

University of Pennsylvania LOO: Intro, & C Refresher

Getting Help

= Announcements will be made through here
= Ask and answer questions
= Sign up if you haven’t already!

«» Office Hours:

® Can be found on calendar on front page of canvas page
= Starts next week (hopefully)

s 1-on-1’s:
® Can schedule 1-on-1’s with Travis

= Should attend OH and use Ed when possible, but this is an option for when OH and Ed
can’t meet your needs

CIT 5950, Spring 2025

42

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

We Care

» We are still figuring things out, but we do care about you and your experience

with the course

" There is a pre-semester survey available on canvas now. Please fill this out honestly and
we will do our best to incorporate people’s answers

" Please reach out to course staff if something comes up and you need help

PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY

= We know that things can be tough, but please reach out if you feel tempted. We want to
help

= Read more on academic integrity in the syllabus

43

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

0 Poll Eve rywhere pollev.com/tqgm

» Any questions, comments or concerns so far?

44

University of Pennsylvania

Lecture Outline

% Introduction & Logistics

Course Overview
Assignments & Exams
Policies

s C “Refresher”

Context in this course
memory

Pointers

Arrays

Structs

The heap

const

LOO: Intro, & C Refresher

CIT 5950, Spring 2025

45

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Context of C in this course

% You will be writing C++ in this course, not C
" Most Cis legal C++

" For the first few assignments you will write C++ code that also mostly works as C code

% C++isnotC
= Cis the foundation for C++, but C++ is very different

= We will refresh ourselves on this C foundation but quickly move on to C++

+ Recitation tomorrow:
= More C refresher (If you need it)
" Not recorded, but slides will be posted

46

University of Pennsylvania LOO: Intro, & C Refresher

Memory

Where all data, code, etc are stored for a
program

Broken up into several segments:
" The stack

" The heap

" The kernel

" Etc.

Each “unit” of memory has an address

Stack

!

I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

CIT 5950, Spring 2025

47

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Memory as an array of bytes

+» Everything in memory is made of bits and bytes
= Bits:asinglelorO
= Byte: 8 bits

int main() A
char ¢ = 'A’";

+ Memory is a giant array of bytes where o
char other = '0°';

everything™* is stored

® Each byte has its own address (“index”)

int x = 5950;

+» Some types take up one byte, others more

Ox04 Ox05 Ox06 O0OxO07 Ox08 O0Ox09 OxOA O0OxOB OxOC OxOD OxOE OxOF Ox10 Ox11 O0x12

48

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

POINTERS ARE EXTREMELY

Pointer
ointers IMPORTANT IN C & C++

+» Variables that store addresses
" |t stores the address to somewhere in memory
" Must specify a type so the data at that address can be interpreted

equivalent

» Generic definition: type* {type* name; |*ntype *name; |

= Example: [int *ptr; |

- Declares a variable that can contain an address
- Trying to access that data at that address will treat the data there as an int

49

University of Pennsylvania LOO: Intro, & C Refresher

CIT 5950, Spring 2025

Memory is Huge

+» Modern computers are called “64-bit”
= Addresses are 64-bits (8-bytes)

" There are 2% possible memory locations, each location is 1-byte

. 1:18,446,744,073,709,551,616.

" Pointers must be 64-bits (8-bytes) to be able to hold any address on the computer.

50

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Pointer Operators

+ Dereference a pointer using the unary * operator

= Access the memory referred to by a pointer
" Can be used to read or write the memory at the address

= Example: int *ptr = ...; // Assume initialized
int a = *ptr; // read the value
*ptr = a + 2; // write the value

« Get the address of a variable with &

= &foo getsthe address of foo in memory

= Example: int a = 5950;
int *ptr = &a;
*ptr = 2; // ‘a’ now holds 2

51

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Memory as an array of bytes

+» Everything in memory is made of bits and bytes
= Bits:asinglelorO

= Byte: 8 bits . .
int main() A

+~ Memory is a giant array of bytes where char ¢ = "A°;

everything* is stored char other = "0°;

int x = 5950;
int* ptr = &x;

® Each byte has its own address (“index”)

+» Some types take up one byte, others more

Ox04 Ox05 Ox06 O0Ox07 Ox08 O0Ox09 OxOA OxOB OxO0C OxOD OxOE OxOF Ox10 Ox11 Ox12

Ox04 O0x05 O0x06 O0x07 (0x08 O0x09 OxOA Ox0B OxOC OxOD OxOE \ OxOF 0x10 Ox11 O0x12
0X00000000000000038

CIT 5950, Spring 2025

University of Pennsylvania

Pointer Example

LOO: Intro, & C Refresher

.

int main (int argc,
int a, b, c;
int* ptr;

)
|

return 0;

char** argv)

{

// ptr 1is a polinter to an 1int

TIuitial values
are @WW\@@

0x2000| a —=
0x2004 | b -=
0x2008 | e —=
0x200C | ptr - =

53

University of Pennsylvania

LOO: Intro, & C Refresher

CIT 5950, Spring 2025

Pointer Example

.

int a, b, c;

int* ptr;
T a = 5;
T b = 3;

ptr = &a;

*ptr = 7;

return 0;

int main(int argc, char** argv) {

// ptr 1is a polinter to an 1int

0x2000
0x2004
0x2008
0x200C

54

University of Pennsylvania

LOO: Intro, & C Refresher

CIT 5950, Spring 2025

Pointer Example

.

int main (int argc,
int a, b, c;
int* ptr;
a = 5;
b = 3;
+— ptr = &a;

*ptr = 7;

return 0;

char** argv) {

// ptr 1is a polinter to an 1int

0x2000
0x2004
0x2008
0x200C

a 5

b 3

c __
ptr | 0x2000

55

University of Pennsylvania

LOO: Intro, & C Refresher

CIT 5950, Spring 2025

Pointer Example

.

int main (int argc,
int a, b, c;

int* ptr;
a = 5;
b = 3;
ptr = &a;

+— *ptr = 7/;

return 0;

char** argv) {

// ptr 1is a polinter to an 1int

0x2000
0x2004
0x2008
0x200C

a 7

b 3

c ——
ptr | 0x2000

56

University of Pennsylvania

LOO: Intro, & C Refresher

CIT 5950, Spring 2025

Pointer Example

.

int main (int argc,
int a, b, c;
int* ptr;
a = 5;
b = 3;
ptr = &a;

*ptr = 7;

return 0;

char** argv) {

// ptr 1is a polinter to an 1int

0x2001
0x2002
0x2003
0x2004

a I

b 3

C 10
ptr | 0x2000

57

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

+» What does this print? int main() {

_ _ int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

®" Try drawing with boxes and arrows!

int* other = ptr;
ptr = &arc;

*ptr = *other
*ptr += 3;

cout << curr << endl;
cout << arc << endl;

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Aside: NULL

+» NULL is a memory location that is guaranteed to be invalid

" |In Con Linux, NULL is 0x0 and an attempt to dereference NULL causes a
segmentation fault

<£¥ Useful as an indicator of an uninitialized (or currently unused) pointer
or allocation error

" |t’s better to cause a segfault than to allow the corruption of memory!

[int main (int argc, char** argv) {

int* p = NULL;

*p = 1; // causes a segmentation fault
return EXIT SUCCESS;

|}

66

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Lecture Outline

% Introduction & Logistics
" Course Overview
= Assignments & Exams
= Policies

s C “Refresher”

= Context in this course
" memory

" Pointers

" Arrays

" Structs

" The heap

= const

67

University of Pennsylvania

LOO: Intro, & C Refresher

Arrays in C

+ Definition: type [type name[size]]

" Allocates size*sizeof (type) bytes of contiguous memory

= Normal usage is a compile-time constant for size
(e.q. scores[175];)

" |nitially, array values are “garbage”

« Size of an array

= Not stored anywhere — array does not know its own size!

" The programmer will have to store the length in another variable or hard-code it in
" No bounds checking!

CIT 5950, Spring 2025

68

LOO: Intro, & C Refresher

University of Pennsylvania

CIT 5950, Spring 2025

Using Arrays Optional when initializing

(
Initialization:[type name [size] = {ValO,...,valN};]

= {1} initialization can only be used at time of definition

" |f no size supplied, infers from length of array initializer

/7
0’0

+ Array name used as identifier for “collection of data”
" name [index] specifies an element of the array and can be
used as an assignment target or as a value in an expression

@Array name (by itself) produces the address of the start of the

array
- Cannot be assigned to / changed

= {2, 3, 5, 6, 11, 13};

int primes[6]
prines o] = 0 No TwdexOutOfBound
. _ 0, hi o IndexOu ounds
primes [100] 0 // memory smas Hope for seafault
69

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Arrays in C

int main() A
char ¢ = "\@';

+» Here is a memory diagram example:

int arr[2] = {1, 2};

¥

Ox06 O0x07/ Ox08 0x09 OxOA OxOB OxOC OxOD OxOE OxOF O0x10 Ox11 Ox12 O0Ox13 O0x14

o : :

70

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Pointers as C arrays

main() A

c = '\0';
+» Pointers can be set to an array
arr[2] = {1, 2};

* ptr = arr;

+» Pointers can always be indexed into like an array

= Pointers don’t always have to point to the beginning of X = ptr[1l] + 1;
an array!

Ox06 O0x0/ O0x08 O0x09 OxOA O0x0OB Ox0OC OxOD OxOE OxOF 0x10 O0Ox11 Ox12 O0Ox13 O0x14

o' N 1 2
0x18 0x19/0x1A Ox1B OxIC Ox1D Ox1E OxIF 0x20 Ox21 Ox22 O0x23 Ox24 Ox25 O0x26
0X0000. . .08 e 3 71

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

«» What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

®" Hint: Draw it out! core[1l] += 20;

void foo() {
int core[3] = {5940, 5930, 5960},

int* ptr = &(core[1]);
ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

University of Pennsylvania LOO: Intro, & C Refresher

Strings in C

+ Strings in C are just arrays of characters with a special character at the end to
mark the end of the string: " \0”’

= Called the “null terminator” character

» C-strings are often referred to with a char[] or a char¥*

int main() A
char ¢ = "\0';
+» Example:
= print(str) // Rain char str[5] = "Rain”;
" print(ptr_str) // in char* ptr_str = &(str[2]);
}

0x06 Ox0/\ _0Ox08 O0x09 OxOA O0x0OB OxO0C OxOD /OxOE OxOF 0x10 O0Ox11 Ox12 O0Ox13 O0x14

0X000...006

73

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

« Finish this code:

This function takes in a string
and returns the length of the string.

size t strlen(char* str) {
size t length = 0;

Do not call any other function while () {

size_tis just an unsigned integer type

Remember to index into the pointer like

an array!

What marks the end of a string? }

You don’t have to use a while loop, but
| think it makes the most sense. return length;

¥

University of Pennsylvania LOO: Intro, & C Refresher

The Heap

%~ For most program memory we care about,
things are stored either in the heap or stack

» In C we allocated with malloc () and deallocated with free()

int main() {

. s Atk _ st
+ In C++ we will use and . Int® x = new 1nt;

= New still gives us a pointer to the heap

" We must deallocate the pointer with delete

when we are done with the pointer. // prints *x which is 3
cout << *x << endl;

delete x;

}

CIT 5950, Spring 2025

76

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

The Heap

« In C++ we will use and))
int main() {

= New still gives us a pointer to the heap
= Can use new to allocate an array! int* arr = new

= Will need this to allocate an array of
characters (so a C-style string) in
the first homework assignment.

arr[0] 5930;

arr[1] 5950;

= We deallocate arrays with delete[] arr;

¥

« Will talk more about what the heap is and why it is important next lecture.
This should be enough for HWO0O though.

77

LOO: Intro, & C Refresher CIT 5950, Spring 2025

University of Pennsylvania

Structured Data

« A struct isa Cand C++ datatype that contains a set of fields
= Similar to a Java class, but with no methods or constructors
= Useful for defining new structured types of data
<€YActs similarly to primitive variables
+~ @Generic declaration in C++:

rstruct Point { ‘
float x;
float vy; .
T Default values are still gprbage!
Point pt; . .
Point origin = {0.0f, 0.0f}; <- Initializer List
pt = origin; // pt now contains 0.0f, 0.0f

Can be assigued nto,
used as parameters, etc.

78

University of Pennsylvania

Structured Data: copied not referenced

« A struct isa Cand C++ datatype that contains a set of fields

= Similar to a Java class, but with no methods or constructors

LOO: Intro, & C Refresher

= Useful for defining new structured types of data

<€YActs similarly to primitive variables
« When we assign a

Point pt;
Point origin = {0.0f, 0.0f};
pt = origin; // pt now contains 0.0f,

origin.first = 1.0f;

print (origin.first);
print (pt.first);

0.

Of

CIT 5950, Spring 2025

79

University of Pennsylvania

LOO: Intro, & C Refresher

CIT 5950, Spring 2025

Accessing struct Fields

« Use “.” toreferto a field in a struct

+» Use “—>" to refer to a field from a struct pointer

= Dereferences pointer first, then accesses field

. A
(Struct Point {
float x, vy;

b g

int main(int argc, char** argv) {
Point pl = {0.0, 0.0};
Point* pl ptr = &pl;

pl.x = 1.0;
pl ptr->y =
return 0;

}

2.0; // equivalent to (*pl ptr).y = 2.0;

\.

80

University of Pennsylvania LOO: Intro, & C Refresher CIT 5950, Spring 2025

Const
2 is a keyword in C and C++ that means that a variable cannot be
modified. It is “constant” int main() {
const int x = 3;
int y = 5;
% |f a structis in C or C++,
then its members are also . x +=1; // ILLEGAL

y += 1;

const Point p = {0.0, 0.0},;

p.first = 1.0; // ILLEGAL

81

University of Pennsylvania LOO: Intro, & C Refresher

That’s all for now!

+ |f we got through all this, you should have everything you need for the first
homework assignment from this lecture and recitation

+» We are going a little fast because | expect you have already seen all or most of
this in CIT 5930

+» When we get to new material it won’t be as fast

» Releasing tomorrow:
= HWO0O0

" Pre-semester Survey
= Check-in00

CIT 5950, Spring 2025

82

	Default Section
	Slide 1: Introductions, C Refresher Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Instructor: Travis McGaha
	Slide 6: Instructor: Travis McGaha
	Slide 7: Instructor: Travis McGaha
	Slide 8: Instructor: Travis McGaha
	Slide 9: Instructor: Travis McGaha
	Slide 10: Instructor: Travis McGaha
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: “Lies-to-children”
	Slide 21: “Lies-to-children”
	Slide 22: Question
	Slide 23: We lied to you (but in a good way)
	Slide 24: We lied to you (but in a good way)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: I’m going to lie to you (but in a good way)
	Slide 31: Prerequisites
	Slide 32: CIT 5950 Learning Objectives
	Slide 33: Disclaimer
	Slide 34: Course Components pt. 1
	Slide 35: Course Components pt. 2
	Slide 36: Course Grading (Tentative)
	Slide 37: Course Policies
	Slide 38: Collaboration Policy Violation
	Slide 39: Collaboration Policy Violation
	Slide 40: Course Infrastructure
	Slide 41: Course-wide participation
	Slide 42: Getting Help
	Slide 43: We Care
	Slide 44: Poll: how are you?
	Slide 45: Lecture Outline
	Slide 46: Context of C in this course
	Slide 47: Memory
	Slide 48: Memory as an array of bytes
	Slide 49: Pointers
	Slide 50: Memory is Huge
	Slide 51: Pointer Operators
	Slide 52: Memory as an array of bytes
	Slide 53: Pointer Example
	Slide 54: Pointer Example
	Slide 55: Pointer Example
	Slide 56: Pointer Example
	Slide 57: Pointer Example
	Slide 58: Pointers Poll
	Slide 66: Aside: NULL
	Slide 67: Lecture Outline
	Slide 68: Arrays in C
	Slide 69: Using Arrays
	Slide 70: Arrays in C
	Slide 71: Pointers as C arrays
	Slide 72: Pointer as Array Poll
	Slide 73: Strings in C
	Slide 74: Pointer as Array Poll
	Slide 76: The Heap
	Slide 77: The Heap
	Slide 78: Structured Data
	Slide 79: Structured Data: copied not referenced
	Slide 80: Accessing struct Fields
	Slide 81: Const
	Slide 82: That’s all for now!

