
CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Memory, Heap, Classes
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Administrivia

❖ First Assignment (HW00 simple_string)

▪ “Due” Friday 01/24

▪ Extended to be due Wednesday the 28th (course selection period ends)

▪ Mostly a C refresher

❖ Check-in 00

▪ Releases tomorrow

▪ Short unlimited attempt quiz

▪ Extended to be due Wednesday the 28th (course selection period ends)

3

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Administrivia

❖ Second Assignment (HW01 Vector)

▪ Releases Friday

▪ Due Friday 01/31

▪ Implementing a simple C++ object

❖ Pre semester Survey

▪ Anonymous

▪ Due Wednesday the 28th

4

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Lecture Outline

❖ Hello World in C++

❖ Memory

▪ The heap

▪ nullptr

▪ Memory Layout & Diagrams

❖ C++ Classes

▪ Syntax

▪ Construction

5

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: Hello World in C++

❖ Looks simple enough…

▪ Let’s walk through the program step-by-step to highlight some differences

6

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

helloworld.cpp

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: Hello World in C++

❖ iostream is part of the C++ standard library

▪ Note: you don’t write “.h” when you include C++ standard library headers

• But you do for local headers (e.g. #include "Deque.hpp")

▪ iostream declares stream object instances

• e.g. cin, cout, cerr

7

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

helloworld.cpp

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: Hello World in C++

❖ cstdlib is the C standard library’s stdlib.h

▪ Nearly all C standard library functions are available to you

• For C header math.h, you should #include <cmath>

▪ We include it here for EXIT_SUCCESS

8

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

helloworld.cpp

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: Hello World in C++

❖ using namespace std;

▪ It is there because I said so (can’t use it in header files tho)

▪ We include it here so that I can say cout instead of std::cout

9

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

helloworld.cpp

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main() {

 std::cout << "Hello, World!" << std:: endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: Hello World in C++

❖ “cout” is an object instance declared by iostream, C++’s name for stdout

▪ std::cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/

▪ Used to format and write output to the console

▪ We use << to send data to cout to get printed

10

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

helloworld.cpp

http://www.cplusplus.com/reference/ostream/ostream/

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: Hello World in C++

❖ endl is a pointer to a “manipulator” function

▪ This manipulator function writes newline ('\n') to the ostream it is invoked on and
then flushes the ostream’s buffer

▪ This enforces that something is printed to the console at this point

11

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

helloworld.cpp

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Lecture Outline

❖ Hello World in C++

❖ Memory

▪ The heap

▪ nullptr

▪ Memory Layout & Diagrams

❖ C++ Classes

▪ Syntax

▪ Construction

12

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

❖ What does this code print?

13

int main(int argc, char** argv) {

 int x = 5

 int y = 10;

 int* z = &x;

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 cout << "x: " << x << endl;

 cout << "y: " << y << endl;

 cout << "z: " << *z << endl;

 return EXIT_SUCCESS;

}

pollev.com/tqm

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

14

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

x 5

y 10

z

Note: Arrow points
to next instruction.

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

15

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

16

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

17

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

18

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y

 *z += 1;

 return EXIT_SUCCESS;

}

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

19

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y

 *z += 1; // sets y (and *z) to 11

 return EXIT_SUCCESS;

}

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

C++ nullptr

❖ C++ can have pointers that refer to nothing by assigning pointers the value
nullptr

❖ nullptr is a useful indicator to indicate that the pointer is currently
uninitialized or not in use.

❖ Trying to dereference or “access the value at” a pointer holding nullptr, will
guarantee* your program to crash

20

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Stack Example:

21

#include <iostream>

#include <cstdlib>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 cout << "sum: " << sum;

 cout << endl;

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

int n;

int sum;

int i;

Stack frame for
sum()

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Stack Example 1:

22

#include <iostream>

#include <cstdlib>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 cout << "sum: " << sum;

 cout << endl;

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

sum()’s stack frame
goes away after
sum() returns.

main()’s stack frame
is now top of the stack
and we keep executing
main()

????

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Stack Example:

23

#include <iostream>

#include <cstdlib>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 cout << "sum: " << sum;

 cout << endl;

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for
cout << string

????

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Stack

❖ Grows, but has a static max size
▪ Can find the default size limit with the command ulimit –all

(May be a different command in different shells and/or linux versions. Works in bash on
Ubuntu though)

▪ Can also be found at runtime with getrlimit(3)

❖ Max Size of a stack can be changed
▪ at run time with setrlimit(3)

▪ At compilation time for some systems (not on Linux it seems)

▪ (or at the creation of a thread)

24

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Poll: Struct Return

❖ Does this function work as intended?

25

struct Point {
 float x;
 float y;

};

Point make_point() {
 Point p;
 p.x = 2.0f;
 p.y = 1.0f;
 return p;

}

int main() {
 Point c = make_point();
 cout << c.x << " " << c.y << endl;
 return EXIT_SUCCESS;

}

pollev.com/tqm

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Poll: Pointer to Struct Return

❖ Does this function work as intended?

31

pollev.com/tqm

struct Point {
 float x;
 float y;

};

Point* make_point() {
 Point p;
 p.x = 2.0f;
 p.y = 1.0f;

 Point* ptr = &p;
 return ptr;

}

int main() {
 Point* c = make_point();
 cout << c->x << " " << c->y << endl;
 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

❖ Does this function work as intended?

37

pollev.com/tqm

int* make_c_array() {
 int array[10];
 for (size_t i = 0; i < 10; i++) {
 array[i] = 10;
 }
 return array;

}

int main() {
 int* arr = make_c_array();
 cout << arr[0] << " " << arr[9] << endl;
 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Memory Allocation

❖ So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main() {

 counter++;

 cout << "count = " << counter;

 cout << endl;

 return 0;

}

int foo(int a) {

 int x = a + 1; // local var

 return x;

}

int main() {

 int y = foo(10); // local var

 cout << "y = " << y << endl;

 return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

43

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

What is Dynamic Memory Allocation?

❖ We want Dynamic Memory Allocation

▪ Dynamic means “at run-time”

▪ The compiler and the programmer don’t have enough information to make a final decision
on how much to allocate or how long the data “should live”.

❖ Dynamic memory can be of variable size:

▪ Your program explicitly requests more memory at run time

▪ The language allocates it at runtime, probably with help of the OS

❖ Dynamically allocated memory persists until either:

▪ A garbage collector collects it (automatic memory management)

▪ Your code “explicitly” deallocates it (manual memory management)

44

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for Dynamic allocation

❖ This pool of memory is kept track of with a small data structure indicating
which portions have been allocated, and which portions are currently
available.

45

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

C++ keyword: new

❖ C++ keyword new is used to allocate space on the heap.

▪ We specify a type and initial value which will be constructed and/or initialized for us.

46

int *get_heapy_int() {

 int *greeting = new int(5);

 return greeting;

}

int main(int argc, char** argv) {

 int *s = get_heapy_int();

 cout << *s << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Dynamic Memory Deallocation

❖ Dynamic memory has a dynamic “lifetime”

▪ Stack data is deallocated when the function returns

▪ Heap data is deallocated when our program deallocates it

❖ In high level languages like Java or Python, garbage collection is used to
deallocate data

▪ This has significant overhead for larger programs

❖ C requires you to manually manage memory

▪ And so is easy to screw up

❖ C++ and Rust have RAII (more on this later next week)

▪ Harder to screw-up, and much less overhead

47

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Dynamic Memory Deallocation

❖ When is what we allocate deallocated?

48

int *get_heapy_int() {

 int *greeting = new int(5);

 return greeting;

}

int main(int argc, char** argv) {

 int *s = get_heapy_int();

 cout << *s << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

C++ keyword: delete

❖ C++ keyword delete is used to deallocate space on the heap.

49

int *get_heapy_int() {

 int *greeting = new int(5);

 return greeting;

}

int main(int argc, char** argv) {

 int *s = get_heapy_int();

 cout << *s << endl;

 delete s;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for Dynamic allocation

❖ This pool of memory is kept track of with a small data structure indicating
which portions have been allocated, and which portions are currently
available.

❖ new:

▪ searches for a large enough unused block of memory

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ delete:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

50

KEY TAKEAWAY: allocating on the
heap is not free, it has overhead

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Why would I use new?

❖ Consider our simple_string “object”, could we implement it without a
pointer to the heap?

51

struct simple_string {
 char* data;
 size_t len;

};

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Why would I use new?

❖ Consider our simple_string “object”, could we implement it without a
pointer to the heap?

❖ This doesn’t work why?

52

struct simple_string {
 char* data;
 size_t len;

};

struct simple_string {
 char data[10];
 size_t len;

};

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Why would I use new?

❖ Consider our simple_string “object”, could we implement it without a
pointer to the heap?

❖ This doesn’t work why?

53

struct simple_string {
 char* data;
 size_t len;

};

simple_string make_simple_string(char* cstring) {
 simple_string ret;
 char arr[strlen(cstring) + 1];
 for (size_t i = 0; i <= strlen(cstring); i++) {
 arr[i] = cstring[i]
 }
 ret.data = arr;
 ret.len = strlen(cstring);

 return ret;
}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Why would I use new?

❖ Consider our simple_string “object”, could we implement it without a
pointer to the heap?

❖ No! We must dynamically allocate the data

▪ To handle the fact that the string could be of variable length

▪ So that the string characters don’t get deallocated when a “constructor” returns

54

struct simple_string {
 char* data;
 size_t len;

};

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Why would I use new?

❖ In “real” or “modern” C++ code, you would not explicitly use new or delete
yourself.

❖ In most cases, a string, vector or other data structure can be used, and you
never have to allocate memory yourself

❖ Whenever you are using objects from the C++ standard library (more next
week), those objects will do memory allocation.

55

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

❖ Given this code, where are
the following variables in
memory? Assume the code
is executing and is just about
to finish the init_arr function.

▪ res

▪ to_init

▪ new_len

▪ a

▪ a.data

▪ a.data[0]

▪ res.len

56

pollev.com/tqm

void init_arr(arr* to_init, size_t new_len) {
 arr res;
 res.data = new int[new_len];
 res.len = new_len;
 for (size_t i = 0; i < new_len; i++) {
 // 0 out the array
 res.data[i] = 0;
 }
 *to_init = res;

 // WE ARE RIGHT HERE. ABOUT TO RETURN
}

int main() {
 arr a;
 init_arr(&a, 3);
 // ...

}

struct arr {
 int* data;
 size_t len;

};

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

❖ If we wanted to make sure
everything was properly
deallocated, how many calls
to delete do we need?

Where should we delete?

58

pollev.com/tqm

void init_arr(arr* to_init, size_t new_len) {
 arr res;
 res.data = new int[new_len];
 res.len = new_len;
 for (size_t i = 0; i < new_len; i++) {
 // 0 out the array
 res.data[i] = 0;
 }

 *to_init = res;
}

int main() {
 arr a;
 init_arr(&a, 3);
 // ...

}

struct arr {
 int* data;
 size_t len;

};

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Dynamic Memory Pitfalls

❖ Buffer Overflows (E.g. ask for 10 bytes, but write 11 bytes)

▪ Could overwrite information needed to manage the heap

▪ Common when forgetting the null-terminator on allocated strings

❖ Giving delete a pointer to the middle of an allocated region

▪ Delete won’t recognize the block of memory and probably crash

❖ delete-ing a pointer that has already been freed

▪ Will interfere with the management of the heap and likely crash

❖ new does NOT initialize memory unless you give it an initial value

❖ Using the wrong delete (e.g. delete vs delete[])
59

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we allocate something, but don’t delete it?

▪ That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
delete-d

▪ If this happens enough, we run out of heap space and program may slow down and
eventually crash

❖ Garbage Collection

▪ Automatically “frees” anything once the program has lost all references to it

▪ Affects performance, but avoid memory leaks

▪ Java has this, C++ doesn’t

▪ C++ has RAII which is VERY GOOD (but more on that next week)

60

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Discuss: What is wrong with this code? (Multiple bugs)
You can assume this compiles.

61

// assume this function works
size_t strlen(char* str) {
 size_t len = 0;
 while (str[len] != '\0') {
 len++;
 }
 return len;

}

char* dup_str(char* to_copy) {
 size_t len = str_len(to_copy);
 char* res = new char[len];
 for (size_t i = 0; i < len; i++) {
 res[i] = to_copy[i];
 }
 return res;

}

int main() {
 char* literal = "Hello!";
 char* duplicate = dup_str(literal);
 char* sub = duplicate;
 size_t index = 0U;

 while (sub[0] != '\0') {
 cout << sub << endl;
 // print line is fine
 index += 1;
 sub = &(duplicate[index]);
 }

 delete duplicate;
 delete ptr;
 delete literal;

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Lecture Outline

❖ Hello World in C++

❖ Memory

▪ The heap

▪ nullptr

▪ Memory Layout & Diagrams

❖ C++ Classes

▪ Syntax

▪ Construction

62

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Structs in C

❖ In C, we only had structs, which could only bundle together data fields

❖ Struct example definition:

❖ What is missing from this compared to objects/classes in languages other
languages?

▪ Methods

▪ Access modifiers (public vs private)

▪ Inheritance

63

struct Point { // Declare struct, usually used typedef

 // Declare fields & types here

 int x;

 int y;

};

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Classes in C++

❖ In C++, we have classes.

▪ Think of these as C structs, but with methods, access modifiers, and inheritance.

❖ Class example definition:

❖ In C++, we call fields and methods “members”

64

class Point { // Declare class, typedef usually not used

 public:

 Point(int x, int y); // constructor

 int get_x(); // getter

 int get_y(); // getter

 private:

 int x_; // fields

 int y_;

};

Similar syntax for declaration

Access

modifiers methods

Fields

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Classes Syntax

❖ Class definition syntax (in a .hpp file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cpp file):

▪ (1) define within the class definition or (2) declare within the class definition and then
define elsewhere

65

class Name {

 public:

 // public member definitions & declarations go here

 private:

 // private member definitions & declarations go here

}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {

 // body statements

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Class Definition (.hpp file)

66

#ifndef POINT_HPP_

#define POINT_HPP_

class Point {

 public:

 Point(int x, int y); // constructor

 int get_x() { return x_; } // inline member function

 int get_y() { return y_; } // inline member function

 double dot_prod(Point p); // member function

 void set_location(int x, int y); // member function

 private:

 int x_; // data member

 int y_; // data member

}; // class Point

#endif // POINT_HPP_

Point.hpp

C++ naming conventions for data members

Inline definition ok for simple

getters/setters

D
e
cl
a
ra

t
io

n
s

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Class Member Definitions (.cpp file)

67

#include "Point.hpp"

Point::Point(int x, int y) {

 x_ = x;

 this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::dot_prod(Point p) {

 // We can access p’s x_ and y_ variables either through the

 // get_x(), get_y() accessor functions or the x_, y_ private

 // member variables directly, since we’re in a member

 // function of the same class.

 double prod = x_ * p.get_x();

 prod += (y_ * p.y_);

 return prod;

}

void Point::set_location(int x, int y) {

 x_ = x;

 y_ = y;

}

Point.cpp

This code uses bad style for

demonstration purposes

Equivalent to y_=y;

“this” is a Point* const

We have access to x_, could

have used x_ instead.

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Class Usage (.cpp file)

68

#include <iostream>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

 Point p1(1, 2); // construct a new Point on the Stack

 Point p2(4, 6); // construct a new Point on the Stack

 cout << p1.get_x() << endl;

 cout << p2.get_y() << endl;

 cout << "rod : " << p1.dot_prod(p2) << endl;

 return 0;

}

usepoint.cpp

Calls constructor to define an

object on the stack.

(no “new” keyword)

Dot notation to call function

(like java)

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameters

• Which one is invoked depends on how the object is instantiated

▪ A constructor is always invoked when creating a new instance of an object.

❖ Written with the class name as the method name:

69

Point(const int x, const int y);

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

What is wrong with this code?

❖ There are a few bugs in this code that prevent it from
compiling correctly. What are they?

70

arr::arr(size_t len) {
 len_ = len;
 this.data = new int[len];

}

int at(size_t index) {
 // ignoring out of bounds for now
 return this.data[index]

}

destroy() {
 delete this->data;

}

pollev.com/tqm

class arr { // dynamic array object
public:
 arr(size_t len); // constructor

 // access an element at given index
 int at(size_t index);

 destroy(); // clean up this array
private:
 int* data_;
 size_t len_;

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: std::string!

❖ string is part of the C++ standard library

▪ We still have to #include it

• No more char* ! (sometimes we need a char*)

❖ This code constructs a string with the contents “Travis”

❖ You cannot use this in HW00. First I want you to make sure you understand
how strings work, but we will use them soon ☺ 71

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main() {

 string expected ("Travis");

 // ...

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: Java “Object” variables

❖ Does this java compile?

❖ What about this C++?

72

public static String foo() {

 return null;

}

string foo() {

 return nullptr;

}

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: Java “Object” variables

❖ In high level languages (like java), object variables don’t actually contain an
object, they contain a reference to an object.

▪ References in these languages can be null

73

String s = new String("Java");

String other = null;

main’s stack frame

s

other null "Java"

heap

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

Aside: Java “Object” variables

❖ In C++, a string variable is itself a string object

74

string s("C++");

// below does not do what you think it

// does. It will probably crash

string other = nullptr;

main’s stack frame

s "C++"
The string object does store it’s characters
on the heap (like we do in simple_string)

but the object containing the char* and
size_t are on the stack

CIT 5950, Spring 2025L01: Memory, Heap, ClassesUniversity of Pennsylvania

That’s it for now!

❖ More next lecture ☺

75

	Default Section
	Slide 1: Memory, Heap, Classes Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Aside: Hello World in C++
	Slide 7: Aside: Hello World in C++
	Slide 8: Aside: Hello World in C++
	Slide 9: Aside: Hello World in C++
	Slide 10: Aside: Hello World in C++
	Slide 11: Aside: Hello World in C++
	Slide 12: Lecture Outline
	Slide 13
	Slide 14: Pointers Reminder
	Slide 15: Pointers Reminder
	Slide 16: Pointers Reminder
	Slide 17: Pointers Reminder
	Slide 18: Pointers Reminder
	Slide 19: Pointers Reminder
	Slide 20: C++ nullptr
	Slide 21: Stack Example:
	Slide 22: Stack Example 1:
	Slide 23: Stack Example:
	Slide 24: Stack
	Slide 25: Poll: Struct Return
	Slide 31: Poll: Pointer to Struct Return
	Slide 37
	Slide 43: Memory Allocation
	Slide 44: What is Dynamic Memory Allocation?
	Slide 45: The Heap
	Slide 46: C++ keyword: new
	Slide 47: Dynamic Memory Deallocation
	Slide 48: Dynamic Memory Deallocation
	Slide 49: C++ keyword: delete
	Slide 50: The Heap
	Slide 51: Why would I use new?
	Slide 52: Why would I use new?
	Slide 53: Why would I use new?
	Slide 54: Why would I use new?
	Slide 55: Why would I use new?
	Slide 56
	Slide 58
	Slide 59: Dynamic Memory Pitfalls
	Slide 60: Memory Leaks
	Slide 61: Discuss: What is wrong with this code? (Multiple bugs) You can assume this compiles.
	Slide 62: Lecture Outline
	Slide 63: Structs in C
	Slide 64: Classes in C++
	Slide 65: Classes Syntax
	Slide 66: Class Definition (.hpp file)
	Slide 67: Class Member Definitions (.cpp file)
	Slide 68: Class Usage (.cpp file)
	Slide 69: Constructors
	Slide 70: What is wrong with this code?
	Slide 71: Aside: std::string!
	Slide 72: Aside: Java “Object” variables
	Slide 73: Aside: Java “Object” variables
	Slide 74: Aside: Java “Object” variables
	Slide 75: That’s it for now!

