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Poll: how are you?

❖ How are you?
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Administrivia

❖ First Assignment (HW00 simple_string)

▪ “Due” Friday 01/24

▪ Extended to be due Wednesday the 28th (course selection period ends)

▪ Mostly a C refresher

❖ Check-in 00

▪ Releases tomorrow

▪ Short unlimited attempt quiz

▪ Extended to be due Wednesday the 28th (course selection period ends)
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Administrivia

❖ Second Assignment (HW01 Vector)

▪ Releases Friday

▪ Due Friday 01/31

▪ Implementing a simple C++ object

❖ Pre semester Survey

▪ Anonymous

▪ Due Wednesday the 28th
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Lecture Outline

❖ Hello World in C++

❖ Memory

▪ The heap

▪ nullptr

▪ Memory Layout & Diagrams

❖ C++ Classes

▪ Syntax

▪ Construction

5
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Aside: Hello World in C++

❖ Looks simple enough…

▪ Let’s walk through the program step-by-step to highlight some differences
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

using namespace std;

int main() {

  cout << "Hello, World!" << endl;

  return EXIT_SUCCESS;

}

helloworld.cpp
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Aside: Hello World in C++

❖ iostream is part of the C++ standard library

▪ Note: you don’t write “.h” when you include C++ standard library headers

• But you do for local headers (e.g. #include "Deque.hpp")

▪ iostream declares stream object instances

• e.g. cin,  cout,  cerr
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

using namespace std;

int main() {

  cout << "Hello, World!" << endl;

  return EXIT_SUCCESS;

}

helloworld.cpp
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Aside: Hello World in C++

❖ cstdlib is the C standard library’s stdlib.h

▪ Nearly all C standard library functions are available to you

• For C header math.h, you should #include <cmath>

▪ We include it here for EXIT_SUCCESS
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

using namespace std;

int main() {

  cout << "Hello, World!" << endl;

  return EXIT_SUCCESS;

}

helloworld.cpp
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Aside: Hello World in C++

❖ using namespace std;

▪ It is there because I said so (can’t use it in header files tho)

▪ We include it here so that I can say cout instead of std::cout

9

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

using namespace std;

int main() {

  cout << "Hello, World!" << endl;

  return EXIT_SUCCESS;

}

helloworld.cpp

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main() {

  std::cout << "Hello, World!" << std:: endl;

  return EXIT_SUCCESS;

}
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Aside: Hello World in C++

❖ “cout” is an object instance declared by iostream, C++’s name for stdout

▪ std::cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/ 

▪ Used to format and write output to the console

▪ We use << to send data to cout to get printed
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

using namespace std;

int main() {

  cout << "Hello, World!" << endl;

  return EXIT_SUCCESS;

}

helloworld.cpp

http://www.cplusplus.com/reference/ostream/ostream/
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Aside: Hello World in C++

❖ endl is a pointer to a “manipulator” function

▪ This manipulator function writes newline ('\n') to the ostream it is invoked on and 
then flushes the ostream’s buffer

▪ This enforces that something is printed to the console at this point
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

using namespace std;

int main() {

  cout << "Hello, World!" << endl;

  return EXIT_SUCCESS;

}

helloworld.cpp
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Lecture Outline

❖ Hello World in C++

❖ Memory

▪ The heap

▪ nullptr

▪ Memory Layout & Diagrams

❖ C++ Classes

▪ Syntax

▪ Construction
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❖ What does this code print?
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int main(int argc, char** argv) {

  int x = 5

  int y = 10;

  int* z = &x;

  *z += 1;

   x += 1;  

   z  = &y;  

  *z += 1;  

  cout << "x: " <<  x << endl;

  cout << "y: " <<  y << endl;

  cout << "z: " << *z << endl;

  return EXIT_SUCCESS;

}

pollev.com/tqm
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  

   x += 1;  

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

x 5

y 10

z

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  

   x += 1;  

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

x 5

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

x 6

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  // sets x (and *z) to 7

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

x 7

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  // sets x (and *z) to 7

   z = &y;  // sets z to the address of y

  *z += 1;  

  return EXIT_SUCCESS;

}

x 7

y 10

z 0x7fff…a0

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

 int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  // sets x (and *z) to 7

   z = &y;  // sets z to the address of y

  *z += 1;  // sets y (and *z) to 11

  return EXIT_SUCCESS;

}

x 7

y 11

z 0x7fff…a0

Note: Arrow points 
to next instruction.
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C++ nullptr

❖ C++ can have pointers that refer to nothing by assigning pointers the value 
nullptr

❖ nullptr is a useful indicator to indicate that the pointer is currently 
uninitialized or not in use. 

❖ Trying to dereference or “access the value at” a pointer holding nullptr, will 
guarantee* your program to crash 

20
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Stack Example: 

21

#include <iostream>

#include <cstdlib>

int sum(int n) {

  int sum = 0;

  for (int i = 0; i < n; i++) {

    sum += i;

  }

  return sum;

}

int main() {

  int sum = sum(3);

  cout << "sum: " << sum;

  cout << endl;  

  return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

int n;

int sum;

int i;

Stack frame for
sum()
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Stack Example 1: 

22

#include <iostream>

#include <cstdlib>

int sum(int n) {

  int sum = 0;

  for (int i = 0; i < n; i++) {

    sum += i;

  }

  return sum;

}

int main() {

  int sum = sum(3);

  cout << "sum: " << sum;

  cout << endl;  

  return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

sum()’s stack frame 
goes away after 
sum() returns.

main()’s stack frame 
is now top of the stack 
and we keep executing 
main()

????
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Stack Example: 

23

#include <iostream>

#include <cstdlib>

int sum(int n) {

  int sum = 0;

  for (int i = 0; i < n; i++) {

    sum += i;

  }

  return sum;

}

int main() {

  int sum = sum(3);

  cout << "sum: " << sum;

  cout << endl;  

  return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for
cout << string

????
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Stack

❖ Grows, but has a static max size
▪ Can find the default size limit with the command ulimit –all

(May be a different command in different shells and/or linux versions. Works in bash on 
Ubuntu though)

▪ Can also be found at runtime with getrlimit(3)

❖ Max Size of a stack can be changed
▪ at run time with setrlimit(3)

▪ At compilation time for some systems (not on Linux it seems)

▪ (or at the creation of a thread)

24



CIT 5950, Spring 2025L01:  Memory, Heap, ClassesUniversity of Pennsylvania

Poll: Struct Return

❖ Does this function work as intended?

25

struct Point {
 float x;
 float y;

}; 

Point make_point() {
 Point p;
 p.x = 2.0f;
 p.y = 1.0f;
 return p;

}

int main() {
 Point c = make_point();
 cout << c.x << " " << c.y << endl;
 return EXIT_SUCCESS;

}

pollev.com/tqm
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Poll: Pointer to Struct Return

❖ Does this function work as intended?

31

pollev.com/tqm

struct Point {
 float x;
 float y;

}; 

Point* make_point() {
 Point p;
 p.x = 2.0f;
 p.y = 1.0f;

  Point* ptr = &p;
 return ptr;

}

int main() {
 Point* c = make_point();
 cout << c->x << " " << c->y << endl;
 return EXIT_SUCCESS;

}
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❖ Does this function work as intended?

37

pollev.com/tqm

int* make_c_array() {
 int array[10];
 for (size_t i = 0; i < 10; i++) {
  array[i] = 10;
 }
 return array;

}

int main() {
 int* arr = make_c_array();
 cout << arr[0] << " " << arr[9] << endl;
 return EXIT_SUCCESS;

}
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Memory Allocation

❖ So far, we have seen two kinds of memory allocation:

int counter = 0;    // global var

int main() {

  counter++;

  cout << "count = " << counter;

  cout << endl;

  return 0;

}

int foo(int a) {

  int x = a + 1;     // local var

  return x;

}

int main() {

  int y = foo(10);   // local var

  cout << "y = " << y << endl;

  return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

43



CIT 5950, Spring 2025L01:  Memory, Heap, ClassesUniversity of Pennsylvania

What is Dynamic Memory Allocation?

❖ We want Dynamic Memory Allocation

▪ Dynamic means “at run-time”

▪ The compiler and the programmer don’t have enough information to make a final decision 
on how much to allocate or how long the data “should live”.

❖ Dynamic memory can be of variable size:

▪ Your program explicitly requests more memory at run time

▪ The language allocates it at runtime, probably with help of the OS

❖ Dynamically allocated memory persists until either:

▪ A garbage collector collects it (automatic memory management)

▪ Your code “explicitly” deallocates it (manual memory management)

44
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The Heap

❖ The Heap is a large pool of available memory to use for Dynamic allocation

❖ This pool of memory is kept track of with a small data structure indicating 
which portions have been allocated, and which portions are currently 
available.

45
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C++ keyword: new

❖ C++ keyword new is used to allocate space on the heap.

▪ We specify a type and initial value which will be constructed and/or initialized for us.

46

int *get_heapy_int() {

  int *greeting = new int(5);

  return greeting;

}

int main(int argc, char** argv) {

  int *s = get_heapy_int();

  cout << *s << endl;

  return EXIT_SUCCESS;

}
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Dynamic Memory Deallocation

❖ Dynamic memory has a dynamic “lifetime”

▪ Stack data is deallocated when the function returns

▪ Heap data is deallocated when our program deallocates it

❖ In high level languages like Java or Python, garbage collection is used to 
deallocate data

▪ This has significant overhead for larger programs

❖ C requires you to manually manage memory

▪ And so is easy to screw up

❖ C++ and Rust have RAII (more on this later next week)

▪ Harder to screw-up, and much less overhead

47
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Dynamic Memory Deallocation

❖ When is what we allocate deallocated?

48

int *get_heapy_int() {

  int *greeting = new int(5);

  return greeting;

}

int main(int argc, char** argv) {

  int *s = get_heapy_int();

  cout << *s << endl;

  return EXIT_SUCCESS;

}
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C++ keyword: delete

❖ C++ keyword delete is used to deallocate space on the heap.

49

int *get_heapy_int() {

  int *greeting = new int(5);

  return greeting;

}

int main(int argc, char** argv) {

  int *s = get_heapy_int();

  cout << *s << endl;

  delete s;

  return EXIT_SUCCESS;

}
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The Heap

❖ The Heap is a large pool of available memory to use for Dynamic allocation

❖ This pool of memory is kept track of with a small data structure indicating 
which portions have been allocated, and which portions are currently 
available.

❖ new:

▪ searches for a large enough unused block of memory 

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ delete:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

50

KEY TAKEAWAY: allocating on the 
heap is not free, it has overhead
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Why would I use new?

❖ Consider our simple_string “object”, could we implement it without a 
pointer to the heap?

51

struct simple_string {
 char* data;
 size_t len;

};
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Why would I use new?

❖ Consider our simple_string “object”, could we implement it without a 
pointer to the heap?

❖ This doesn’t work why?

52

struct simple_string {
 char* data;
 size_t len;

};

struct simple_string {
 char data[10];
 size_t len;

};
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Why would I use new?

❖ Consider our simple_string “object”, could we implement it without a 
pointer to the heap?

❖ This doesn’t work why?

53

struct simple_string {
 char* data;
 size_t len;

};

simple_string make_simple_string(char* cstring) {
 simple_string ret;
 char arr[strlen(cstring) + 1];
 for (size_t i = 0; i <= strlen(cstring); i++) {
  arr[i] = cstring[i]
 }
 ret.data = arr;
 ret.len = strlen(cstring);

 return ret;
}
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Why would I use new?

❖ Consider our simple_string “object”, could we implement it without a 
pointer to the heap?

❖ No! We must dynamically allocate the data

▪ To handle the fact that the string could be of variable length

▪ So that the string characters don’t get deallocated when a “constructor” returns

54

struct simple_string {
 char* data;
 size_t len;

};
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Why would I use new?

❖ In “real” or “modern” C++ code, you would not explicitly use new or delete 
yourself.

❖ In most cases, a string, vector or other data structure can be used, and you 
never have to allocate memory yourself

❖ Whenever you are using objects from the C++ standard library (more next 
week), those objects will do memory allocation.

55
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❖ Given this code, where are
the following variables in
memory? Assume the code
is executing and is just about
to finish the init_arr function.

▪ res

▪ to_init

▪ new_len

▪ a

▪ a.data

▪ a.data[0]

▪ res.len

56

pollev.com/tqm

void init_arr(arr* to_init, size_t new_len) {
 arr res;
 res.data = new int[new_len];
 res.len = new_len;
 for (size_t i = 0; i < new_len; i++) {
  // 0 out the array
  res.data[i] = 0;
 }
 *to_init = res;

  //  WE ARE RIGHT HERE. ABOUT TO RETURN
}

int main() {
 arr a;
 init_arr(&a, 3);
 // ...

}

struct arr {
 int* data;
 size_t len;

};
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❖ If we wanted to make sure
everything was properly
deallocated, how many calls
to delete do we need?

Where should we delete?

58

pollev.com/tqm

void init_arr(arr* to_init, size_t new_len) {
 arr res;
 res.data = new int[new_len];
 res.len = new_len;
 for (size_t i = 0; i < new_len; i++) {
  // 0 out the array
  res.data[i] = 0;
 }

 *to_init = res;
}

int main() {
 arr a;
 init_arr(&a, 3);
 // ...

}

struct arr {
 int* data;
 size_t len;

};
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Dynamic Memory Pitfalls

❖ Buffer Overflows (E.g. ask for 10 bytes, but write 11 bytes)

▪ Could overwrite information needed to manage the heap

▪ Common when forgetting the null-terminator on allocated strings

❖ Giving delete a pointer to the middle of an allocated region

▪ Delete won’t recognize the block of memory and probably crash

❖ delete-ing a pointer that has already been freed

▪ Will interfere with the management of the heap and likely crash

❖ new does NOT initialize memory unless you give it an initial value

❖ Using the wrong delete  (e.g. delete vs delete[])
59
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Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we allocate something, but don’t delete it?

▪ That block of memory cannot be reallocated, even if we don’t use it anymore, until it is 
delete-d

▪ If this happens enough, we run out of heap space and program  may slow down and 
eventually crash

❖ Garbage Collection

▪ Automatically “frees” anything once the program has lost all references to it

▪ Affects performance, but avoid memory leaks

▪ Java has this, C++ doesn’t

▪ C++ has RAII which is VERY GOOD (but more on that next week)

60
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Discuss: What is wrong with this code? (Multiple bugs)
You can assume this compiles.

61

// assume this function works
size_t strlen(char* str) {
 size_t len = 0;
 while (str[len] != '\0') {
  len++;
 }
 return len;

}

char* dup_str(char* to_copy) {
 size_t len = str_len(to_copy);
 char* res = new char[len];
 for (size_t i = 0; i < len; i++) {
  res[i] = to_copy[i];
 }
 return res;

}

int main() {
 char* literal = "Hello!";
 char* duplicate = dup_str(literal);
 char* sub = duplicate;
 size_t index = 0U;

 while (sub[0] != '\0') {
  cout << sub << endl;
  // print line is fine
  index += 1;
  sub = &(duplicate[index]);
 }

 delete duplicate;
 delete ptr;
 delete literal;

}
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Lecture Outline

❖ Hello World in C++

❖ Memory

▪ The heap

▪ nullptr

▪ Memory Layout & Diagrams

❖ C++ Classes

▪ Syntax

▪ Construction

62
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Structs in C

❖ In C, we only had structs, which could only bundle together data fields

❖ Struct example definition:

❖ What is missing from this compared to objects/classes in languages other 
languages?

▪ Methods

▪ Access modifiers (public vs private)

▪ Inheritance

63

struct Point {  // Declare struct, usually used typedef

  // Declare fields & types here

  int x;

  int y;

};
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Classes in C++

❖ In C++, we have classes.

▪ Think of these as C structs, but with methods, access modifiers, and inheritance.

❖ Class example definition:

❖ In C++, we call fields and methods “members”

64

class Point {  // Declare class, typedef usually not used

 public:

  Point(int x, int y);  // constructor

  int get_x();          // getter 

  int get_y();          // getter

 private:

  int x_;               // fields

  int y_;

};

Similar syntax for declaration

Access

modifiers methods

Fields
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Classes Syntax

❖ Class definition syntax (in a .hpp file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cpp file):

▪ (1) define within the class definition or (2) declare within the class definition and then 
define elsewhere

65

class Name {

 public:

  // public member definitions & declarations go here

 private:

  // private member definitions & declarations go here

};  // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {

  // body statements

}
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Class Definition (.hpp file)

66

#ifndef POINT_HPP_

#define POINT_HPP_

class Point {

 public:

  Point(int x, int y);     // constructor

  int get_x() { return x_; }     // inline member function

  int get_y() { return y_; }     // inline member function

  double dot_prod(Point p);      // member function

  void set_location(int x, int y); // member function

 private:

  int x_;  // data member

  int y_;  // data member

};  // class Point

#endif  // POINT_HPP_

Point.hpp

C++ naming conventions for data members

Inline definition ok for simple 

getters/setters

D
e
cl
a
ra

t
io

n
s
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Class Member Definitions (.cpp file)

67

#include "Point.hpp"

Point::Point(int x, int y) {

  x_ = x;

  this->y_ = y;  // "this->" is optional unless name conflicts

}

double Point::dot_prod(Point p) {

  // We can access p’s x_ and y_ variables either through the

  // get_x(), get_y() accessor functions or the x_, y_ private

  // member variables directly, since we’re in a member

  // function of the same class.

  double prod = x_ * p.get_x();

  prod += (y_ * p.y_);

  return prod;

}

void Point::set_location(int x, int y) {

  x_ = x;

  y_ = y;

}

Point.cpp

This code uses bad style for 

demonstration purposes

Equivalent to y_=y;

“this” is a  Point* const

We have access to x_, could 

have used x_ instead.
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Class Usage (.cpp file)

68

#include <iostream>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

  Point p1(1, 2);  // construct a new Point on the Stack

  Point p2(4, 6);  // construct a new Point on the Stack

  cout << p1.get_x() << endl;

  cout << p2.get_y() << endl;

  cout << "rod : " << p1.dot_prod(p2) << endl;

  return 0;

}

usepoint.cpp

Calls constructor to define an

object on the stack.

(no “new” keyword)

Dot notation to call function

(like java)
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Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameters

• Which one is invoked depends on how the object is instantiated

▪ A constructor is always invoked when creating a new instance of an object.

❖ Written with the class name as the method name:

69

Point(const int x, const int y);
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What is wrong with this code?

❖ There are a few bugs in this code that prevent it from
compiling correctly. What are they?

70

arr::arr(size_t len) {
 len_ = len;
 this.data = new int[len];

}

int at(size_t index) {
 // ignoring out of bounds for now
 return this.data[index]

}

destroy() {
 delete this->data;

}

pollev.com/tqm

class arr {  // dynamic array object
public:
 arr(size_t len); // constructor

  
  // access an element at given index 
 int at(size_t index);

 destroy(); // clean up this array
private:
 int* data_;
 size_t len_;

}
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Aside: std::string!

❖ string is part of the C++ standard library

▪ We still have to #include it

• No more char* !  (sometimes we need a char*)

❖ This code constructs a string with the contents “Travis”

❖ You cannot use this in HW00. First I want you to make sure you understand 
how strings work, but we will use them soon ☺ 71

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main() {

  string expected ("Travis");

  // ...

}
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Aside: Java “Object” variables

❖ Does this java compile?

❖ What about this C++?

72

public static String foo() {

  return null;

}

string foo() {

  return nullptr;

}
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Aside: Java “Object” variables

❖ In high level languages (like java), object variables don’t actually contain an 
object, they contain a reference to an object.

▪ References in these languages can be null

73

String s = new String("Java");

String other = null;

main’s stack frame

s

other null "Java"

heap
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Aside: Java “Object” variables

❖ In C++, a string variable is itself a string object

74

string s("C++");

// below does not do what you think it 

// does. It will probably crash

string other = nullptr; 

main’s stack frame

s "C++"
The string object does store it’s characters 
on the heap (like we do in simple_string)

but the object containing the char* and 
size_t are on the stack
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That’s it for now!

❖ More next lecture ☺

75
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