
CIT 5950, Spring 2025L03: More C++University of Pennsylvania

More C++
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Administrivia

❖ Third Assignment (HW02)

▪ Released! Should have everything you need after this lecture

▪ Due This Friday

▪ Porting simple_string into C++ and adding some more complex functionality

❖ Simplekv (HW03)

▪ To be released soon

▪ Due next Friday (2/14)

▪ Recommend taking a look sooner rather than later

• Once you figure out what data members you need, consider talking to a TA or I about it

▪ Is more work than previous assignments, not a lot though.

3

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Aside: Const objects

❖ Just like with primitive types and structs, we can have a const object

❖ A const object cannot change its values

❖ A const object cannot call a non-const member functions

▪ Consider how we previously declared the point object:

▪ If we left it as this, then this code would not compile

5

int main() {
const Point p(3, 2);

}

class Point {
public:
 Point(int x, int y);
 int get_x() { return x_; }
 int get_y() { return y_; }
 …

int main() {
const Point p(3, 2);
cout << p.get_x() << endl;

}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Aside: Const objects

❖ We need to mark member functions that do not modify any data members as
const.

❖ This tells the compiler that it is ok for const objects to call these member
functions.

❖ This code becomes OK now:

6

class Point {
public:
 Point(int x, int y);
 int get_x() const { return x_; }
 int get_y() const { return y_; }
 …

int main() {
const Point p(3, 2);
cout << p.get_x() << endl;

}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

❖ What else could be marked const in Point?

7

pollev.com/tqm

class Point {
public:
 Point(int x, int y); // constructor
 int get_x() const { return x_; }
 int get_y() const { return y_; }
 double dot_prod(Point p);
 void set_location(int x, int y);

private:
 int x_; // data member
 int y_; // data member
}; // class Point

Point::Point(int x, int y) {
 x_ = x;
 y_ = y;
}

double Point::dot_prod(Point p) {
 double prod = x_ * p.x_;
 prod += (y_ * p.y_);
 return prod;
}

void Point::set_location(int x, int y) {
 x_ = x;
 y_ = y;
}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Const for non-inline functions

❖ For functions that aren’t only in the header (like the get_x and get_y
functions). If we wanted to make them const, we need to do it inn the cpp and
hpp files:

8

class Point {
public:
 Point(int x, int y); // constructor
 int get_x() const { return x_; }
 int get_y() const { return y_; }
 double dot_prod(Point p) const;
 void set_location(int x, int y);

private:
 int x_; // data member
 int y_; // data member
}; // class Point

Point::Point(int x, int y) {
 x_ = x;
 y_ = y;
}

double Point::dot_prod(Point p) const {
 double prod = x_ * p.x_;
 prod += (y_ * p.y_);
 return prod;
}

void Point::set_location(int x, int y) {
 x_ = x;
 y_ = y;
}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Lecture Outline

❖ Copying

▪ Overhead

❖ Destructors & Lifetimes

❖ More STL

▪ std::variant

▪ std::unordered_map

❖ Clang-tidy

9

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

❖ How many vectors are made?

❖ If you have time:

▪ How many times is a vector
destructor run?

▪ What does this print?

10

pollev.com/tqm

vector<int> prefix_sum(vector<int> input) {
 vector<int> res{};
 int sum = 0;
 for (int i : input) {
 sum += i;
 res.push_back(i);
 }
 return res;
}

int main() {
 vector<int> nums {3, 1, 2};
 vector<int> pre_sum = prefix_sum(nums);

 for (int i : pre_sum) {
 cout << i << endl;
 }
}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from
another object of the same
type:

▪ You pass a non-reference
object as a value parameter
to a function:

▪ You return a non-reference
object value from a function:

11

void foo(Point x) { ... }

Point y; // default ctor

foo(y); // copy ctor

Point x; // default ctor

Point y(x); // copy ctor

Point z = y; // copy ctor

Point foo() {

 Point y; // default ctor

 return y; // copy ctor

}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Why Copying is an issue

❖ Consider this code again.

▪ What happens when we run
the copy constructor of a vector?

▪ What do we do with memory?

▪ What is the time complexity of
a copy?

❖ Copying means we have to make
an independent copy of the vector.

▪ This requires iterating over the
elements

▪ This requires dynamic memory
allocation.

12

vector<int> prefix_sum(vector<int> input) {
 vector<int> res{};
 int sum = 0;
 for (int i : input) {
 sum += i;
 res.push_back(i);
 }
 return res;
}

int main() {
 vector<int> nums {3, 1, 2};
 vector<int> pre_sum = prefix_sum(nums);

 for (int i : pre_sum) {
 cout << i << endl;
 }
}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Why Copying is an issue: Depending on the type

❖ Copying means we have to make an independent copy of the vector.

▪ This requires iterating over the elements

▪ This requires dynamic memory allocation.

❖ The cost to make a copy varies on what type we are copying.

▪ Do you think this “point” class takes a lot to copy?

• No: low time complexity and no memory allocation

▪ What about a Hash Map?

• Yes: need to reallocate all key/value pairs and iterate
over the original hash map.

13

class Point {
 ...
private:
 int x_;
 int y_;
};

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Not all operations are equal time

❖ Previously: We focus on time complexity for how expensive an algorithm is

▪ Not all operations are equal!

▪ Adding two numbers is really quick

▪ Using the heap can take a lot longer.

• Allocation involves searching the heap for a space big enough to handle our request.
Searching the heap can take some time

• Deallocating memory is usually quicker than allocating, but some work may be done still
to make future allocations take less time

❖ Dynamic memory is still needed, we should just not over use it

▪ This also applies to other languages as well, you just don’t have to worry about when to
deallocate things.

14

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Const reference most parameters

❖ To avoid creating copies, we pass most things in as a const references to the
function.

▪ References make it so we do not copy the object

▪ Const makes it so that we do not accidentally modify the value if we do not need it to be
modified

❖ We do similar things in
range for loops:

15

vector<int> prefix_sum(const vector<int>& input) {
 vector<int> res{};
 int sum = 0;
 for (const int& i : input) {
 sum += i;
 res.push_back(i);
 }
 return res;
}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for Dynamic allocation

❖ This pool of memory is kept track of with a small data structure indicating
which portions have been allocated, and which portions are currently
available.

❖ new:

▪ searches for a large enough unused block of memory

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ delete:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

16

KEY TAKEAWAY: allocating on the
heap is not free, it has overhead

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Free Lists

❖ One way that allocation can be implemented is by maintaining an implicit list
of the space available and space allocated.

❖ Before each chunk of allocated/free memory, we’ll also have this metadata:

17

// this is simplified

// not what malloc/new really does

struct alloc_info {

 alloc_info* prev;

 alloc_info* next;

 bool allocated;

 size_t size;

};

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

❖ free_list ->

Dynamic Memory Example

18

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header

{

 NULL,

 NULL,

 false,

 1024

}

This diagram is

not to scale

The metadata is at

the beginning of the

chunk of memory

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

❖ free_list

Dynamic Memory Example

19

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 NULL,

 false,

 1020

}

"new"

return

value

Free chunks can

be split to

allocate blocks of

specific size

new gets a

pointer to just

after the

metadata

free_list

points to first

free chunk

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

❖ free_list

Dynamic Memory Example

20

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

"new"

return

value

{

 0x…,

 NULL,

 false,

 996

}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

❖ free_list

Dynamic Memory Example

21

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

❖ free_list

Dynamic Memory Example

22

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 false,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

❖ free_list

Dynamic Memory Example

23

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header

{

 NULL,

 0x…,

 false,

 1024

}

Once a block has been

freed, we can try to

“coalesce” it with

their neighbors

The first delete

couldn’t be coalesced,

only neighbor was

allocated

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Key Takeaway

❖ Dynamic memory allocation is not free and can have considerable overhead

❖ Performant C++ code minimizes the number of dynamic allocations and/or
custom allocators

24

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Lecture Outline

❖ Copying

▪ Overhead

❖ Destructors & Lifetimes

❖ More STL

▪ std::variant

▪ std::unordered_map

❖ Clang-tidy

25

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Temporal Safety

❖ A concern in systems programming is that we can sometimes still try to
access/use some data after it no longer exists

▪ After the data is deallocated from the heap

▪ After the data is popped off of the stack

▪ The object is destructed

▪ Etc.

❖ An important part of understanding how our basic data structures work, is so
that we know how these issues can come up.

26

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Temporal Safety

❖ What is the issue in this code?

27

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

 vector<int> v {3, 4, 5};

 int& first = v.front();

 cout << first << endl;

 v.push_back(6);

 cout << v.size() << endl;

 cout << first << endl;

}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Lifetimes & Reference Invalidation

❖ If you read the documentation for many C++ classes, there will be sections on
iterator / reference invalidation.

❖ An example from push_back:

▪ If after the operation the new size() is greater than old capacity() a reallocation takes
place, in which case all iterators (including the end() iterator) and all references to the
elements are invalidated.

❖ Even if we don’t have to allocate and deallocate things ourselves much in C++,
we must still be aware of it.

28

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Temporal Safety

❖ What is the issue in this code?

29

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

 v1.push_back(v2.front());

}

int main() {

 vector<int> x{3, 4, 5};

 func(x, x);

}

pollev.com/tqm

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Temporal Safety

❖ What is the issue in this code?

30

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

 v1.push_back(v2.front());

}

int main() {

 vector<int> x{3, 4, 5};

 func(x, x);

}

push_back takes in an int&

push_back may need to resize, if it does, the reference to its front becomes invalid

pollev.com/tqm

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Lecture Outline

❖ Copying

▪ Overhead

❖ Destructors & Lifetimes

❖ More STL

▪ std::variant

▪ std::unordered_map

❖ Clang-tidy

31

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

std::variant

❖ Similar to how std::optional can store 1 type or nothing,
std::variant can store one of two or more different values

32

int main() {

 variant<int, string> var {3};

 cout << holds_alternative<int>(var) << endl;

 cout << get<int>(var) << endl

 cout << holds_alternative<string>(var) << endl;

 cout << get<string>(var) << endl;

}

Can hold an int or string
currently holding a string

Prints “true” and “3”

Prints “false”

Throws an exception

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

STL unordered_map

❖ One of C++’s associative containers: a key/value table, implemented as a
Chaining Hash Map

▪ http://www.cplusplus.com/reference/unordered_map/

▪ General form:

▪ Keys must be unique

• multimap allows duplicate keys

▪ Efficient lookup (O(1)) and insertion (O(1))

• Access value via operator[] (example: map_name[key])

– if key doesn’t exist in map, it is added to the map with a “default” value

▪ Elements are type pair<key_type, value_type>
(key is field first, value is field second)

• Key type must be hashable

33

unordered_map<key_type, value_type> name;

Independent types

http://www.cplusplus.com/reference/unordered_map/

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

unordered_map Example

34

int main(int argc, char** argv) {

 unordered_map<int,string> table{};

 unordered_map<int,string>::iterator it{};

 table.insert(pair<int,string>(2, "hello"));

 table[4] = "NGNM";

 table[6] = "mutual aid"; // inserts a value

 table[6] = "sleep"; // updates a value

 cout << "table[6]:" << table[6] << endl;

 if (table.contains(4)) {

 cout << "4 exists as a key in the map" << endl;

 }

 cout << "iterating:" << endl;

 for (auto& p : table) {

 cout << "[" << p.first << "," << p.second << "]" << endl;

 }

 return 0;

}

#include <unordered_map>

Map elements

Equivalent

behavior

use .contains() to see if a key exists

Access the key and value

stored in the pair

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

STL unordered_set

❖ One of C++’s associative containers: a container of unique values,
implemented as a hash set

▪ http://www.cplusplus.com/reference/unordered_set/

▪ General form:

▪ elements must be unique

• multiset allows duplicate elements

▪ Efficient lookup (O(1)) and insertion (O(1))

▪ Inserting an element that already exists does nothing

▪ Can use contains(element) to see if the element exists

▪ Elements are stored in unsorted order

• element type must be hashable

35

unordered_set<element_type> name;

http://www.cplusplus.com/reference/unordered_set/

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

unordered_set Example

36

#include <unordered_set>

int main(int argc, char** argv) {

 unordered_set<string> names {};

 names.insert("bjarne");

 names.insert("ken");

 names.insert("dennis");

 names.insert("travis");

 names.insert("bjarne");

 bool exists = names.contains("bjarne");

 cout << "Is bjarne in the set?: " << exists << endl;

 numbers.erase("travis");

 for (string& name : names) {

 cout << name << endl;

 }

 return EXIT_SUCCESS;

}

prints "true"

Doesn’t insert duplicate elements

Removes the element “travis”

Prints every name in the set

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Ordered Containers (C++11)

❖ map, set

▪ Average case for key access is O(log(n)), so generally not preferred

• But range iterators can be more efficient than unordered map/set

▪ See C++ Primer, online references for details

37

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Unordered vs Ordered Containers

❖ The comparison between unordered_map vs map is similar to how
HashMap vs TreeMap are related in java.

▪ Both use the same interface

▪ Have different implementations

▪ If you want things to be in sorted order, use map (TreeMap)

▪ In almost all other cases, use unordered_map (HashMap)

38

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

map Example

39

int main(int argc, char** argv) {

 map<int,string> table{};

 map<int,string>::iterator it{};

 table.insert(pair<int,string>(2, "hello"));

 table[4] = "NGNM";

 table[6] = "mutual aid"; // inserts a value

 table[6] = "sleep"; // updates a value

 cout << "table[6]:" << table[6] << endl;

 it = table.find(4);

 if (it != table.end()) {

 cout << "4 exists as a key in the map" << endl;

 }

 cout << "iterating:" << endl;

 for (pair<int, string>& p : table) {

 cout << "[" << p.first << "," << p.second << "]" << endl;

 }

 return 0;

}

#include <map>

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

❖ Does this code
work as expected?

40

pollev.com/tqm

// given a sequence of integers, return a map that maps
// each value to how many times it shows up.
// e.g.
// count_nums([5, 9 , 5, 0, 32]) should result in:
// {
// (5, 2),
// (9, 1),
// (0, 1),
// (32, 1),
// }
unordered_map<int, int> count_nums(const vector<int>& nums) {
 unordered_map<int, int> res;

 for (const int i : nums) {
 res[i] += 1;
 }

 return res;
}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Lecture Outline

❖ Copying

▪ Overhead

❖ Destructors & Lifetimes

❖ More STL

▪ std::variant

▪ std::unordered_map

❖ Clang-tidy

41

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Clang Tidy

❖ Starting in HW03, we will be using something that will automatically check the
style of your code

❖ You can run it inside your docker container to fix things locally
▪ make tidy-check

❖ If it runs and you have no style errors, it will look something like this:

42

Error while trying to load a compilation database:
Could not auto-detect compilation database for file "SimpleKV.cpp"
No compilation database found in /workspace/simplekv or any parent directory
fixed-compilation-database: Error while opening fixed database: No such file or directory
json-compilation-database: Error while opening JSON database: No such file or directory
Running without flags.
4 warnings generated.
Suppressed 4 warnings (4 in non-user code).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display
errors from system headers as well.

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Cognitive Complexity

❖ Most errors are straight forward enough just from reading what the error says.

▪ e.g.

❖ There is one that is not clear and shows up enough to be worth going over
now: “Cognitive complexity”

▪ The tool calculates “cognitive complexity” of your code and will complain about anything
that is too complex. This means you should think about how to break your code into
helpers, because if you don’t, clang-tidy will complain and you will face a deduction.

43

error: parameter name 'i' is too short, expected at least 3 characters
[readability-identifier-length,-warnings-as-errors]
 size_t i,

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Cognitive Complecity

❖ This function has Cognitive Complexity of 3.

❖ Each if statement, loop, etc adds a +1. How “nested” it is can make it worth
more

44

int function3(bool var1, bool var2) {
 if(var1) { // +1, nesting level +1
 if(var2) // +2 (1 + current nesting level of 1), nesting level +1
 return 42;
 }

 return 0;
}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

Cognitive Complecity

❖ Consider the code on the left

❖ It has a much higher complexity than the one on the right

45

bool foo(string param) {
 if (!error1) {
 if (!error2) {
 if (!error3){
 // do some computation
 return true;
 }
 }
 }
 return false;
}

bool foo(string param) {
 if (error1) {
 return false;
 }
 if (error2) {
 return false;
 }
 if (error3) {
 return false;
 }
 // do some computation
 return true;
}

CIT 5950, Spring 2025L03: More C++University of Pennsylvania

That’s it for now!

❖ More next lecture ☺

46

	Default Section
	Slide 1: More C++ Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 5: Aside: Const objects
	Slide 6: Aside: Const objects
	Slide 7
	Slide 8: Const for non-inline functions
	Slide 9: Lecture Outline
	Slide 10
	Slide 11: When Do Copies Happen?
	Slide 12: Why Copying is an issue
	Slide 13: Why Copying is an issue: Depending on the type
	Slide 14: Not all operations are equal time
	Slide 15: Const reference most parameters
	Slide 16: The Heap
	Slide 17: Free Lists
	Slide 18: Dynamic Memory Example
	Slide 19: Dynamic Memory Example
	Slide 20: Dynamic Memory Example
	Slide 21: Dynamic Memory Example
	Slide 22: Dynamic Memory Example
	Slide 23: Dynamic Memory Example
	Slide 24: Key Takeaway
	Slide 25: Lecture Outline
	Slide 26: Temporal Safety
	Slide 27: Temporal Safety
	Slide 28: Lifetimes & Reference Invalidation
	Slide 29: Temporal Safety
	Slide 30: Temporal Safety
	Slide 31: Lecture Outline
	Slide 32: std::variant
	Slide 33: STL unordered_map
	Slide 34: unordered_map Example
	Slide 35: STL unordered_set
	Slide 36: unordered_set Example
	Slide 37: Ordered Containers (C++11)
	Slide 38: Unordered vs Ordered Containers
	Slide 39: map Example
	Slide 40
	Slide 41: Lecture Outline
	Slide 42: Clang Tidy
	Slide 43: Cognitive Complexity
	Slide 44: Cognitive Complecity
	Slide 45: Cognitive Complecity
	Slide 46: That’s it for now!

