
CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

OS Start: Processes & Fork
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Administrivia

❖ Simplekv (HW04)

▪ Due Friday (2/14)

▪ Recommend taking a look sooner rather than later

• Once you figure out what data members you need, consider talking to a TA or I about it

▪ Is more work than previous assignments, not a lot though.

❖ Check-in 01

▪ Was “Due” before this lecture, extended to Wednesday

▪ Will re-open assignments soon.

3

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ Processes & fork()

❖ execvp()

4

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Hardware

Firmware / Drivers

Operating System / Kernel

Software / Applications

Libraries, APIs, System Calls

Algorithms

Today, we are here!

Math / Logic

Remember This?

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are portable

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs have permission to access which files, memory locations, pixels on the
screen, etc. and when

6

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

7

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
 …

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

System Call Trace (high-level view)

8

OS
(trusted)

HW (trusted)

User Process
(untrusted)A CPU (thread of

execution) is running user-
level code in Process A;

the CPU is set to
unprivileged mode.

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

User Process
(untrusted)

System Call Trace (high-level view)

9

Code in Process invokes a
system call; the hardware

then sets the CPU to
privileged mode and traps
into the OS, which invokes

the appropriate system
call handler.

sy
st

em
 c

al
l

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

System Call Trace (high-level view)

10

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

User Process
(untrusted)

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

System Call Trace (high-level view)

11

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

User Process
(untrusted)

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

System Call Trace (high-level view)

12

User Process
(untrusted)The process continues

executing whatever
code is next after the

system call invocation.

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one
of several places:

• In your program’s code

• In glibc, a shared library containing
the C standard library, POSIX,
support, and more

• In the Linux architecture-independent
code

• In Linux x86-64 code

13

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 1

❖ Some routines your program
invokes may be entirely handled
by glibc without involving the
kernel

▪ e.g. strcmp() from stdio.h

▪ There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

• But after symbols are resolved,
invoking glibc routines is basically
as fast as a function call within your
program itself!

14

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 2

❖ Some routines may be handled
by glibc, but they in turn
invoke Linux system calls

▪ e.g. POSIX wrappers around Linux
syscalls

• POSIX readdir() invokes the
underlying Linux readdir()

▪ e.g. C stdio functions that read
and write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
close(), write(), etc.

15

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 3

❖ Your program can choose to
directly invoke Linux system calls
as well

▪ Nothing is forcing you to link with
glibc and use it

▪ But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

16

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

A System Call Analogy

❖ The OS is a very wise and knowledgeable wizard

▪ It has many dangerous and powerful artifacts, but it doesn’t trust others to use them. Will
perform tasks on request.

❖ If a civilian wants to access a “magical” feature, they must fill out a request to
the wizard.

▪ It takes some time for the wizard to start processing the request, they must ensure they
do everything safely

▪ The wizard will handle the powerful artifacts themselves. The user WILL NOT TOUCH
ANYTHING.

▪ Wizard will take a second to analyze results and put away artifacts before giving results
back to the user.

17

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/

❖ man, section 2: Linux system calls

▪ man 2 intro

▪ man 2 syscalls

❖ man, section 3: glibc/libc library functions

▪ man 3 intro

❖ The book: The Linux Programming Interface by Michael Kerrisk (keeper of the
Linux man pages)

18

http://www.kernel.org/

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ Processes & fork()

❖ execvp()

19

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

20

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

* This isn’t quite true

more in CIS 4480/5480

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors, CMOS, gates, etc.

❖ Once we got to programming, our computer looks something like:

❖ This model is still useful, and can be
used in many settings

21

Computer

Operating System

Process

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

22

Computer

Operating System

P1 P2 P3 Pn…

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

23

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(u

n
tr

u
st

ed
)

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate
process

• Scheduling of processors onto
cores done by kernel

▪ This is called “Parallelism”

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CPU

Registers

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Any questions so far?

❖ What I just went through was the big picture of processes. Many details left,
some will be gone over in future lectures

❖ Any questions, comments or concerns so far?

30

pollev.com/tqm

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the current process (the
“parent”)

• *almost everything

▪ The new process has a separate virtual address space from the parent

▪ Returns a pid_t which is an integer type.

31

pid_t fork();

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

32

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

33

parent

OS

fork()

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

34

parent child

OS

clone

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

35

parent child

OS

child pid 0

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

36

fork();

cout << "Hello!" << endl;

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

❖ "Hello!\n" is printed twice

37

fork();

cout << "Hello!" << endl;

fork();

cout << "Hello!" << endl;

Parent Process (PID = X) Child Process (PID = Y)

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

38

fork();

fork();

cout << "Hello!" << endl;

pollev.com/tqm

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

39

int x = 3;

fork();

x++;

cout << x << endl;

pollev.com/tqm

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork() example

40

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

pollev.com/tqm

❖ What does this print?

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork() example

41

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

Parent Process (PID = X) Child Process (PID = Y)

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork() example

42

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

Parent Process (PID = X) Child Process (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

Prints "Parent" Prints "Child"Which prints first?

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Process States (incomplete)

FOR NOW, we can think of a process
as being in one of three states:

❖ Running

▪ Process is currently executing

❖ Ready

▪ Process is waiting to be executed and will eventually be
scheduled (i.e., chosen to execute) by the kernel

❖ Terminated
▪ Process is stopped permanently

More states in

future lectures

Scheduler to be covered

in a later lecture

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Process State Lifetime (incomplete)
More states in

future lecturesProcess creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Terminated

Processes can be “interrupted” to

stop running. Through something

like a hardware timer interrupt

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Context Switching

❖ Processes are managed by a shared chunk of memory-resident OS code
called the kernel

▪ Important: the kernel is not a separate process, but rather runs as part of some
existing process.

❖ Control flow passes from one process to another via a context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

OS: The Scheduler

❖ When switching between processes, the OS will run some kernel code

called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling processes

▪ Choosing which one to run

▪ Deciding how long to run it

46

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide what runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of

time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more...

❖ More on this later. For now: think of scheduling as non-
deterministic, details handled by the OS.

47

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork() example

48

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

Always prints "Hello"

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork() example

49

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

Always prints "Hello"

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork() example

50

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

fork()

Child Process (PID = Y)Parent Process (PID = X)

Does NOT print "Hello"

fork_ret = Y fork_ret = 0

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

fork() example

51

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

fork()

Child Process (PID = Y)Parent Process (PID = X)

Always prints "5678" Always prints "1234"

fork_ret = Y fork_ret = 0

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait() or waitpid().

52

void exit(int status);

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

❖ How many
numbers are
printed? What
number(s) get
printed from
each process?

53

pollev.com/tqm

int global_num = 1;

void function() {

 global_num++;

 cout << global_num << endl;

}

int main() {

 pid_t id = fork();

 if (id == 0) {

 function();

 id = fork();

 if (id == 0) {

 function();

 }

 return EXIT_SUCCESS;

 }

 global_num += 2;

 cout << global_num << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

❖ How many times is ":)" printed?

54

int main(int argc, char* argv[]) {

 for (int i = 0; i < 4; i++) {

 fork();

 }

 cout << ":)\n"; // "\n" is similar to endl

 return EXIT_SUCCESS;

}

pollev.com/tqm

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Polling Question

❖ Are the following outputs possible?

55

pid_t fork_ret = fork();

if (fork_ret == 0) {

 fork_ret = fork();

 if (fork_ret == 0) {

 cout << "Hi 3!" << endl;

 } else {

 cout << "Hi 2!" << endl;

 }

} else {

 cout << "Hi 1!" << endl;

}

cout << "Bye" << endl;
A. No No

B. No Yes

C. Yes No

D. Yes Yes

E. We’re lost…

Sequence 1:
Hi 1

Bye

Hi 2

Bye

Bye

Hi 3

Sequence 2:
Hi 3

Hi 1

Hi 2

Bye

Bye

Bye

Hint 1: there are three processes

Hint 2: Each prints out twice

 “Hi” and “Bye”

pollev.com/tqm

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Polling Question

❖ Are the following outputs possible?

56

pid_t fork_ret = fork();

if (fork_ret == 0) {

 fork_ret = fork();

 if (fork_ret == 0) {

 cout << "Hi 3!" << endl;

 } else {

 cout << "Hi 2!" << endl;

 }

} else {

 cout << "Hi 1!" << endl;

}

cout << "Bye" << endl;
A. No No

B. No Yes

C. Yes No

D. Yes Yes

E. We’re lost…

Sequence 1:
Hi 1

Bye

Hi 2

Bye

Bye

Hi 3

Sequence 2:
Hi 3

Hi 1

Hi 2

Bye

Bye

Bye

Hint 1: there are three processes

Hint 2: Each prints out twice

 “Hi” and “Bye”

Hint 3: Events within a single process

 are “ordered normally”

Hint #2

“Hi 3”

must be

before a “Bye”

pollev.com/tqm

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Polling Question

❖ Are the following outputs possible?

57

pid_t fork_ret = fork();

if (fork_ret == 0) {

 fork_ret = fork();

 if (fork_ret == 0) {

 cout << "Hi 3!" << endl;

 } else {

 cout << "Hi 2!" << endl;

 }

} else {

 cout << "Hi 1!" << endl;

}

cout << "Bye" << endl;
A. No No

B. No Yes

C. Yes No

D. Yes Yes

E. We’re lost…

Sequence 1:
Hi 1

Bye

Hi 2

Bye

Bye

Hi 3

Sequence 2:
Hi 3

Hi 1

Hi 2

Bye

Bye

Bye

Hint 1: there are three processes

Hint 2: Each prints out twice

 “Hi” and “Bye”

Hint 3: Events within a single process

 are “ordered normally”

OK

Each “hi”

comes

before a

“bye”

Order

across

processes

not

guaranteed

pollev.com/tqm

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Processes & Fork Summary

❖ Processes are instances of programs that:

▪ Each have their own independent address space

▪ Each process is scheduled by the OS

• Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

▪ Processes are created by fork() system call

• Only difference between processes is their process id and
the return value from fork() each process gets

58

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ Processes & fork()

❖ execvp()

59

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

execvp()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of finding the
command/program to run

❖ Argv is an array of char*, the same kind of argv that is passed to main() in a
C/C++ program
▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL/nullptr as the last entry of the array

❖ Returns -1 on error. Does NOT return on success

60

int execvp(const char *file,

 char* const argv[]);

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

61

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cpp

other.cpp

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Exec Demo

❖ See exec_example.cpp

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens if we open some files before exec?

▪ What happens if we replace stdout with a file?

❖ NOTE: When a process exits, then it will close all of its open files by default

62

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Aside: Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait() or waitpid(). (more
on these functions next lecture)

63

void exit(int status);

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Exec Demo

❖ See exec_example.cpp

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

64

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

Poll: how are you?

❖ In each of these, how often is ":)" printed? Assume functions don’t fail

65

int main(int argc, char* argv[]) {

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"echo",

 "hello",

 NULL};

 execvp(argv[0], argv);

 }

 cout << ":)" << endl;

 return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 return EXIT_SUCCESS;

 }

 cout << ":)" << endl;

 return EXIT_SUCCESS;

}

pollev.com/tqm

CIT 5950, Spring 2025L04: OS StartUniversity of Pennsylvania

That’s it for now!

❖ More next lecture ☺

68

	Default Section
	Slide 1: OS Start: Processes & Fork Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5
	Slide 6: What’s an OS?
	Slide 7: OS: Abstraction Provider
	Slide 8: System Call Trace (high-level view)
	Slide 9: System Call Trace (high-level view)
	Slide 10: System Call Trace (high-level view)
	Slide 11: System Call Trace (high-level view)
	Slide 12: System Call Trace (high-level view)
	Slide 13: “Library calls” on x86/Linux
	Slide 14: “Library calls” on x86/Linux: Option 1
	Slide 15: “Library calls” on x86/Linux: Option 2
	Slide 16: “Library calls” on x86/Linux: Option 3
	Slide 17: A System Call Analogy
	Slide 18: If You’re Curious
	Slide 19: Lecture Outline
	Slide 20: Definition: Process
	Slide 21: Computers as we know them now
	Slide 22: Multiple Processes
	Slide 23: OS: Protection System
	Slide 24: Multiprocessing: The Illusion
	Slide 25: Multiprocessing: The (Traditional) Reality
	Slide 26: Multiprocessing: The (Traditional) Reality
	Slide 27: Multiprocessing: The (Traditional) Reality
	Slide 28: Multiprocessing: The (Traditional) Reality
	Slide 29: Multiprocessing: The (Modern) Reality
	Slide 30: Any questions so far?
	Slide 31: Creating New Processes
	Slide 32: fork() and Address Spaces
	Slide 33: fork()
	Slide 34: fork()
	Slide 35: fork()
	Slide 36: "simple" fork() example
	Slide 37: "simple" fork() example
	Slide 38: "simple" fork() example
	Slide 39: "simple" fork() example
	Slide 40: fork() example
	Slide 41: fork() example
	Slide 42: fork() example
	Slide 43: Process States (incomplete)
	Slide 44: Process State Lifetime (incomplete)
	Slide 45: Context Switching
	Slide 46: OS: The Scheduler
	Slide 47: Scheduler Considerations
	Slide 48: fork() example
	Slide 49: fork() example
	Slide 50: fork() example
	Slide 51: fork() example
	Slide 52: Exiting a Process
	Slide 53
	Slide 54
	Slide 55: Polling Question
	Slide 56: Polling Question
	Slide 57: Polling Question
	Slide 58: Processes & Fork Summary
	Slide 59: Lecture Outline
	Slide 60: execvp()
	Slide 61: Exec Visualization
	Slide 62: Exec Demo
	Slide 63: Aside: Exiting a Process
	Slide 64: Exec Demo
	Slide 65: Poll: how are you?
	Slide 68: That’s it for now!

