University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

OS: Processes (cont.)
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao
Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

University of Pennsylvania LOS5: OS cont. CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

+» How are you?

University of Pennsylvania

LO5: OS cont.

Administrivia

+» Simplekv (HWO03)
" Due Friday (2/14)
= Recommend taking a look sooner rather than later

« Once you figure out what data members you need, consider talking to a TA or | about it
" |s more work than previous assignments, not a lot though.

«» Check-in 02

" To be posted tomorrow

+ retry_shell (HWO04)

= Posted Tomorrow or Friday
" Due 2/21

= Should have everything you need after this lecture

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Lecture Outline

+ Processes & fork() (wrapup)
+» execvp()

" C++ Interoperability

+» wait(), waitpid() and exit status

University of Pennsylvania LOS5: OS cont.

CIT 5950, Spring 2025

Processes & Fork Summary

+» Processes are instances of programs that:

= Each have their own independent address space

® Each process is scheduled by the OS

- Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

" Processes are created by fork() system call

- Only difference between processes is their process id and
the return value from fork() each process gets

University of Pennsylvania LOS5: OS cont. CIT 5950, Spring 2025

@ Poll Everyw here pollev.com/tqm

+» Are the following outputs possible?

PAE_E temls Lefe = fHerasi) f Sequence 1: Sequence 2:
if (fork ret == 0) { Hi 1 Hi 3
fork ret = fork(); -

if (fork ret == 0) { B¥e H% !
cout << "Hi 3!" << endl; Hi 2 Hi 2
} else { Bye Bye
cout << "Hi 2!" << endl; Bye Bye
} Hi 3 Bye
} else {
cout << "Hi 1!" << endl;
}
cout << "Bye" << endl; l\'
B. No Yes
Hint 1: there are three processes
| | | C. Yes No
Hint 2 Bach prints ont twice
“Hi” and “Bye” D. Yes Yes

E. We're lost...

LOS5: OS cont. CIT 5950, Spring 2025

University of Pennsylvania

Lecture Outline

» Processes & fork() (wrapup)

+» C++ Interoperability

+» execvp()

+» wait(), waitpid() and exit status
» Documentation Reading

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

std::array

+» Similar to vector, we have array

® Both contain a sequence of data that we can index into

%+ Main differences: the size
= Vector is resizable (grows to whatever length we need)
" Array is a static size (size is determined at compile time)

+» Main differences: the allocation
" To support being resizable, vector uses a lot of dynamic allocation
= Array does not use any dynamic allocation

10

LO5: OS cont.

CIT 5950, Spring 2025

University of Pennsylvania

array example

(int main (int argc, char* argv([]) {

array<int, 3> arr {6, 5, 4};
// arr.push back (3); push back does not exist!

cout << arr.size () << endl; // prints 3
cout << arr.at(2) << endl; // prints 4

// iterates through all elements and prints them

for (const auto& element : arr) {
cout << element << endl;

return EXIT_SUCCESS;

11

LOS5: OS cont. CIT 5950, Spring 2025

University of Pennsylvania

C++ Arrays

+» Carrays are considered dangerous, and not safe to use

= Length is not attached to the array
" There is no bounds checking

= Arrays are not readable code /é eximple fgom LS §4f0
. . struct parsed comman
Consider this CIS 5480 Example: int num commands;
What do you think “commands” char*** commands;
represents? b5

+ In our code, we will use C++ Arrays instead, but we need to call C code that
expects C arrays...

12

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

C++ Arrays -> C array

%+ Can use .data() and .size() to convert to a C array

(int sumAll (int* a, int size) | R
int i, sum = 0;
for (1 = 0; 1 < size; 1i++) {
sum += af[i];
}
return sum;
}
int main () {
array<int, 1024> arr{};
sumAll (arr.data(), arr.size());
}
_ J

13

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

C++ Vectors -> C array

+» Can use .data() and .size() to access the underlying C array

(int sumAll (int* a, int size) | R
int i, sum = 0;
for (1 = 0; 1 < size; 1i++) {
sum += af[i];
}
return sum;
}
int main () {
vector<int> vec{3, 4, 5};
sumAll (vec.data(), vec.size());
}
_ J

14

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

C++ Vectors -> C array

+» Can use .data() and .size() to access the underlying C array

(int sumAll (int* a, int size) | R
int i, sum = 0;
for (1 = 0; 1 < size; 1i++) {
sum += af[i];
}
return sum;
}
int main () {
vector<int> vec{3, 4, 5};
sumAll (vec.data(), vec.size());
}
_ J

15

University of Pennsylvania

@ Poll Everywhere

% Does this code correctly
print 107

= Assume this code compiles

LOS5: OS cont. CIT 5950, Spring 2025

pollev.com/tqm

int sum_carr(int* arr, size t len) {

¥

int sum =
for (size t i = 0; i < len; i++) {
sum += arr[i];

¥

return sum;

int* vec_to_carr(vector<int> vec) {

¥

return vec.data();

int main() {

¥

vector<int> my vals {1, 2, 3, 4};
int* arr = vec_to_carr(my vals);
cout << sum_carr(arr, my vals.size()) << endl;

LO5: OS cont.

CIT 5950, Spring 2025

University of Pennsylvania

C++ Strings -> C Strings

% C++ Strings can grant access to the underlying C-String through the function

.c_str()

+ This is useful for when interfacing with C code from C++:

(#include <fcntl.h> // for open()
#include <unistd.h> // for close ()

string fname{"foo.txt"};
const char* fname cstr =
int fd = open(fname cstr,
if (£d == -1) {
perror ("open failed");
exit (EXIT FAILURE) ;

}

close (fd) ;

fname.c_str();
O_RDONLY) ;

17

LOS5: OS cont. CIT 5950, Spring 2025

University of Pennsylvania

Lecture Outline

» Processes & fork() (wrapup)
% C++ Interoperability

+» execvp()
+» wait(), waitpid() and exit status

» Documentation Reading

18

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

execvp()

*|int execvp (const char *file,
char* const argvl[]);

+» Duplicates the action of the shell (terminal) in terms of finding the
command/program to run

« Argv is an array of char*, the same kind of argv that is passedtomain () ina
C/C++ program
" argv[0] MUST have the same contents as the file parameter

= argv must have nullptr as the last entry of the array

<« Returns -1 on error. Does NOT return on success

19

University of Pennsylvania

Exec Visualization

LO5: OS cont.

+» Exec takes a process and discards or “resets” most of it

Stack

Shared Libraries

Stack

SP==

1
T

PC=

Shared Libraries

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

example.cpp

v

T

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

other.cpp

NOTE that the following
DO change

- The stack

- The heap

- Globals

- Loaded code

- Registers

NOTE that the following
do NOT change

- Process ID

- Open files

- The kernel

CIT 5950, Spring 2025

20

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Exec Demo

+ See exec example.cpp

= Brief code demo to see how exec works
" What happens when we call exec?

21

University of Pennsylvania LOS5: OS cont. CIT 5950, Spring 2025

Aside: Exiting a Process

RS vold exit(i1nt status);

= Causes the current process to exit normally

= Automatically called by main () when main returns

= Exits with a return status (e.g. EXIT SUCCESS or EXIT FAILURE)
« This is the same int returned by main ()

= The exit status is accessible by the parent process with wait () orwaitpid (). (more
on these functions next lecture)

22

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Exec Demo

+ See exec example.cpp

= Brief code demo to see how exec works
" What happens when we call exec?

" What happens if we use fork() and exec() together?

23

University of Pennsylvania LOS5: OS cont.

@ Poll Everywhere

CIT 5950, Spring 2025

pollev.com/tqm

+ In each of these, how oftenis " :) " printed? Assume functions don’t fail

rint main (int argc, char* argv([]) {

pid t pid = fork();
if (pid == 0) ({
// we are the child
array<const char*,
"echo", "hello",

3> argv = {
nullptr
i

execvp (argv.at(0), const cast<char**>(argv.data());

cout << ":)" << endl;

return EXIT SUCCESS;

int main(int argc, char* argvl[])
pid t pid = fork();
if (pid == 0) {
// we are the child
return EXIT SUCCESS;
}

cout << ":)" << endl;

return EXIT SUCCESS;

{

\

24

University of Pennsylvania

@ Poll Everywhere

int main(int argc,

{

char* argv|[])

// fork a process to exec clang
pid t clang pid = fork();

1f (clang pid == 0) {
// we are the child
array<const char*, 5> argv = {
"clang-15",

} i

execvp (argv.at(0),

exit(EXIT_FAILURE);

w_ ~n
Oy

}

// fork to run the compiled program

pid t hello pid = fork();

i1f (hello pid == 0) {
// the process created by fork
array<const char?*,
execvp (argv.at(0),
exit(EXITiFAILURE);

}
return EXIT SUCCESS;

"hello","hello world.c",

const cast<char**>(argv.data()));

2> argv {"./hello",
const cast<char**>(argv.data()));

LOS5: OS cont. CIT 5950, Spring 2025

pollev.com/tqm

This code is broken. It compiles,
but it doesn’t do what we want.
It is trying to compile some code
and then runit.

nullptr

Why is this broken?

" Clangis a C compiler

= Assume exec’ing the compiler
works (hello_world.c compiles
correctly)

nullptr};

= Assume | gave the correct args
to exec in both cases 25

broken_autograder.cpp)

LOS5: OS cont. CIT 5950, Spring 2025

University of Pennsylvania

Lecture Outline

» Processes & fork() (wrapup)
% C++ Interoperability

+» execvp()
+» wait(), waitpid() and exit status

27

CIT 5950, Spring 2025

University of Pennsylvania LOS5: OS cont.

From a previous poll:

(int main (int argc, char* argv([]) { ThIS COde iS brOken |t
/./ fork a process to exec clang Compiles, but it doesn’t
pid t clang pid = fork();
always do what we want.

1f (clang pid == 0) { 3

// we are the child Why

array<const char*, 5> argv = {

"clang-15", "-o", "hello","hello world.c", nullptr

bi " Clangis a C compiler

execvp (argv.at (0), const cast<char**>(argv.data())); _ _

exit (EXIT FAILURE) ; = Assume it compiles
}

= Assume | gave the correct

// fork to run the compiled program args to exec
pid t hello pid = fork();
if (hello pid == 0) {

// the process created by fork

array<const char*, 2> argv {"./hello", nullptr};

execvp (argv.at (0), const cast<char**>(argv.data()));

exit(EXITiFAILURE) ;
}
return EXIT SUCCESS; 28

_) B Yy,

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

“waiting” for updates on a Process

Usual change n status

NS 1] I * d
» |pid t wait(int *wstatus); <+ “tormvated”

= Calling process waits for any child process to change status
- Also cleans up the child process if it was a zombie/terminated
= Gets the exit status of child process through output parameter wstatus

= Returns process ID of child who was waited for or =1 on error

29

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Execution Blocking

« When a process calls wait () and there is a process to wait on, the calling
process blocks

+ |f a process blocks or is blocking it is not scheduled for execution.

® |t is not run until some condition “unblocks” it

" Forwait (), it unblocks once there is a status update in a child

30

University of Pennsylvania LOS5: OS cont.

Fixed code from broken_autograder.c

rint main (int argc, char* argv([]) {
// fork a process to exec clang
pid t clang pid = fork():;

1f (clang pid == 0) {
// we are the child
array<const char*, 5> argv = {
"clang-15", "-o", "hello","hello world.c", nullptr
}i
execvp (argv.at(0), const cast<char**>(argv.data())):
exit(EXIT_FAILURE);
}
wait (NULL); // should error check, not enough slide space
// fork to run the compiled program
pid t hello pid = fork();
if (hello pid == 0) {
// the process created by fork
array<const char*, 2> argv {"./hello", nullptr};

execvp (argv.at(0), const cast<char**>(argv.data())):;
exit(EXIT_FAILURE);

}
return EXIT SUCCESS;

autograder.c)

CIT 5950, Spring 2025

31

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Demo: wait example

+ Seewalt example.cpp

" Brief demo to see how a process blocks when it calls wait()
= Makes use of fork (), execve (), andwait ()

« Execution timeline:

Child exec’s sleep 10

Child exits
< J
Program starts \
> @ R Y o ——
fork () Parent Parent is blocked Parent is unblocked
calls wait finishes wait ()

exits

32

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

What if the child finishes first?

+ In the timeline | drew, the parent called wait before the child executed.
= |n the program, it is extremely likely this happens if the child is calling sleep 10

" What happens if the child finishes before the parent calls wait?
Will the parent not see the child finish?

33

CIT 5950, Spring 2025

University of Pennsylvania LOS5: OS cont.

Process Tables & Process Control Blocks

+ The operating system maintains a table of all processes that aren’t “completely
done”

+» Each process in this table has a process control block (PCB) to hold information
about it.

+ A PCB can contain:

Process ID

Parent Process ID

Child process IDs

Process Group ID

Status (e.g. running/zombie/etc)

Other things (file descriptors, register values, etc)

34

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Zombie Process

+» Answer: processes that are terminated become “zombies”
m Zombie processes deallocate their address space, don’t run anymore
= still “exists”, has a PCB still, so that a parent can check its status one final time

= |f the parent call’s wait(), the zombie becomes “reaped” all information related to it has
been freed (No more PCB entry)

35

University of Pennsylvania

LO5: OS cont.

Diagram: wait_example.cpp

User Processes

OS

Process Table

CIT 5950, Spring 2025

36

University of Pennsylvania

LO5: OS cont.

Diagram: wait_example.cpp

User Processes

OS

./wait example

pid = 100
[08 e proteced |

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

Process Table

100 J—

PCB: wait_example
id = 100
status = running

CIT 5950, Spring 2025

37

University of Pennsylvania

LO5: OS cont.

Diagram: wait_example.cpp

User Processes

OS

./wait example

pid = 100
[08 e proteced |

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

Process Table

100 J—

PCB: wait_example
id = 100
status = running

CIT 5950, Spring 2025

38

University of Pennsylvania

LO5: OS cont.

Diagram: wait_example.cpp

User Processes

OS

./wait example

pid

= 100

SP=>

Stack

I

t

Shared Libraries

t

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments
.text, .rodata

fork ()

Process Table

100

PCB: wait_example
id = 100

| _—""| status = running
-

CIT 5950, Spring 2025

39

University of Pennsylvania

LO5: OS cont.

Diagram: wait_example.cpp

User Processes

OS

./wait example
= 100

pid

Py Stack

(12 =4 Read-Only Segments

I

t
Shared Libraries
1
Heap [malloc/free)
Read/Write Segments
.data, .bss

.text, .rodata

f or k () Shared Lbraries

./wait example

pid = 101
B

[SPl=> Stack

I

1

Heap (mallac/free)

> Read/Write Segments
-data, .bss

(|2 =4 Read-Only Segments
-text, .rodata

Process Table

100

101

//

PCB: wait_example
id = 100
status = running

PCB: wait_example
id = 101
status = running

CIT 5950, Spring 2025

40

University of Pennsylvania

LO5: OS cont.

Diagram: wait_example.cpp

User Processes

OS

./wait example
= 100

pid

SP=>

Stack

I

t

Shared Libraries

t

Heap [malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments

./wait example

pid = 101
(o]

[SPl=> Stack

I

1
Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
-data, .bss

(|2 =4 Read-Only Segments
-text, .rodata

walt (&status)

Process Table

100

101

//

PCB: wait_example
id = 100
status = blocked

PCB: wait_example
id = 101
status = running

CIT 5950, Spring 2025

41

University of Pennsylvania

LO5: OS cont.

Diagram: wait_example.cpp

User Processes

OS

./wait_example | /wait example

pid

SP=>

= 100

Stack

I

t

Shared Libraries

t

Heap [malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments

pid = 101
(o]

[SPl=> Stack

I

1
Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
-data, .bss

(|2 =4 Read-Only Segments
-text, .rodata

walt (&status) exec (/bin/sleep)

Process Table

100

101

//

PCB: wait_example
id = 100
status = blocked

PCB: wait_example
id = 101
status = running

CIT 5950, Spring 2025

42

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Diagram: wait_example.cpp

User Processes | . /wait example /bin/sleep
pid = 100 pid = 101
[ostammisroteemar
= 5‘31"‘ Stack
! 5 Shared Libraries
t
Heap [malloc/free) Heap (malloc/free)
Read/Write Segments Read/Write Segment
.data, .bss .dota, .bss
95} Resc-Ony Segmees e tent rodeta

walt (&status) exec (/bin/sleep)

OS PCB: wait_example
Process Table id = 100
100 ’/ status = blocked
101 —
PCB: /bin/sleep
id = 101
status = running

43

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Diagram: wait_example.cpp

User Processes | . /wait example /bin/sleep
pid = 100 pid = 101
[os termel protectea |
= SYTk Stack
T dLb = Shared Libraries
GI’E'FB"ES
S e
wait (&status) exit ()
0S PCB: wait_example
Process Table id = 100
100 ,/ status = blocked
101
PCB: /bin/sleep
id = 101
status = running
a4

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Diagram: wait_example.cpp

User Processes | . /wait example
pid = 100
[ostammisroteemar

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

walt (&status)

OS PCB: wait_example
Process Table id = 100

100 _| status = blocked

o1
PCB: /bin/sleep
id = 101

status = ZOMBIE

45

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Diagram: wait_example.cpp

User Processes | . /wait example

pid = 100
[08 ermel protectea |
Py Srick
t
Shared I'.\branes
Heap (malloc/free)
nead,f:{;l:; .s:‘émenu
1P =2 Matg‘:\ﬁmenu
walt (&status) N
0S PCB: wait_example \'
Process Table id = 100

status = RUNNING

/
PCB: /bin/sleep
\ilel /

status = ZOMBIE

100
101

46

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Diagram: wait_example.cpp

User Processes | . /wait example
pid = 100
[ostammisroteemar

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

OS PCB: wait_example
Process Table id = 100

100 1—| status = RUNNING

47

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

Diagram: wait_example.cpp

User Processes | . /wait example
pid = 100
[ostammisroteemar

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

exit ()

OS PCB: wait_example
Process Table id = 100

100 1—| status = RUNNING

48

University of Pennsylvania

LO5: OS cont.

Diagram: wait_example.cpp

User Processes

OS

./wait example
Is reaped by i+s
parent. In our
example, that is the
terminal shell

Process Table

CIT 5950, Spring 2025

49

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

More: waitpid()

o [pid_t waitpid(pid t pid, int *wstatus, 1int options);

= Calling process waits for a child process (specified by pid) to exit
- Also cleans up the child process
= Gets the exit status of child process through output parameter wstatus

= options are optional, passin O for default options in most cases
= Returns process ID of child who was waited for or =1 on error

50

University of Pennsylvania LOS5: OS cont. CIT 5950, Spring 2025

wait() status

» status output fromwait () can be passed to a macro to see what changed
WIFEXITED () | true iff the child exited nomrally

WIFSIGNALED () [true iff the child was signaled to exit

WIFSTOPPED () [true iff the child stopped

WIFCONTINUED () |true iff child continued

» Demo: see exampleinexit status.cpp

51

CIT 5950, Spring 2025

University of Pennsylvania LOS5: OS cont.

@ Poll Everyw here pollev.com/tqm

{

int main(int argc, char* argv([])
// fork a process to exec clang

id 1 id = fork(); :
pid_t clang_pid = fork() We take our previous code that
if/;clang_pid == 0) { we fixed and modify it. Now we

we are the child . .
Array<const char*, 5> argv = | call wait twice at the end of the
"clang-15", "-o", "hello","hello world.c", nullptr program

i
execvp (argv.at(0), const cast<char**>(argv.data())):
exit (EXIT FAILURE) ;

} | What happens?
// fork to run the compiled program
pid t hello pid = fork(); Does our code still always work?
if (hello pid == 0) {
// the process created by fork
array<const char*, 2> argv {"./hello", nullptr};

execvp (argv.at (0), const cast<char**>(argv.data()));
exit (EXIT FAILURE) ;

}

wait (NULL); // previously before second fork()

wait (NULL) ;

return EXIT SUCCESS; 52

University of Pennsylvania LO5: OS cont. CIT 5950, Spring 2025

That’s it for now!

+ More next lecture ©

53

	Default Section
	Slide 1: OS: Processes (cont.) Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Processes & Fork Summary
	Slide 6: Polling Question
	Slide 9: Lecture Outline
	Slide 10: std::array
	Slide 11: array example
	Slide 12: C++ Arrays
	Slide 13: C++ Arrays -> C array
	Slide 14: C++ Vectors -> C array
	Slide 15: C++ Vectors -> C array
	Slide 16
	Slide 17: C++ Strings -> C Strings
	Slide 18: Lecture Outline
	Slide 19: execvp()
	Slide 20: Exec Visualization
	Slide 21: Exec Demo
	Slide 22: Aside: Exiting a Process
	Slide 23: Exec Demo
	Slide 24: Poll: how are you?
	Slide 25: Any questions so far?
	Slide 27: Lecture Outline
	Slide 28: From a previous poll:
	Slide 29: “waiting” for updates on a Process
	Slide 30: Execution Blocking
	Slide 31: Fixed code from broken_autograder.c
	Slide 32: Demo: wait_example
	Slide 33: What if the child finishes first?
	Slide 34: Process Tables & Process Control Blocks
	Slide 35: Zombie Process
	Slide 36: Diagram: wait_example.cpp
	Slide 37: Diagram: wait_example.cpp
	Slide 38: Diagram: wait_example.cpp
	Slide 39: Diagram: wait_example.cpp
	Slide 40: Diagram: wait_example.cpp
	Slide 41: Diagram: wait_example.cpp
	Slide 42: Diagram: wait_example.cpp
	Slide 43: Diagram: wait_example.cpp
	Slide 44: Diagram: wait_example.cpp
	Slide 45: Diagram: wait_example.cpp
	Slide 46: Diagram: wait_example.cpp
	Slide 47: Diagram: wait_example.cpp
	Slide 48: Diagram: wait_example.cpp
	Slide 49: Diagram: wait_example.cpp
	Slide 50: More: waitpid()
	Slide 51: wait() status
	Slide 52: Any questions so far?
	Slide 53: That’s it for now!

