
CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

OS: Shell & File Descriptors
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Administrivia

❖ retry_shell (HW04)

▪ Due 2/21

▪ Should have everything you need after the first part of this lecture

▪ Tests cases & autograder posted tonight or tomorrow (Sorry for delay)

▪ Demo later in this lecture.

3

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ waitpid() and exit status

❖ Brief History of Unix & Linux

❖ Unix Shell & hierarchical file system

❖ File descriptor System Calls

❖ File Descriptor Table & Redirections

❖ Pipe (start)

4

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Processes & Fork Summary

❖ Processes are instances of programs that:

▪ Each have their own independent address space

▪ Each process is scheduled by the OS

• Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

▪ Processes are created by fork() system call

• Only difference between processes is their process id and
the return value from fork() each process gets

5

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

More: waitpid()

❖

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter wstatus

▪ options are optional, pass in 0 for default options in most cases

▪ Returns process ID of child who was waited for or -1 on error

6

pid_t waitpid(pid_t pid, int *wstatus, int options);

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

wait() status

❖ status output from wait() can be passed to a macro to see what changed

❖ Fdddddddddddd true iff the child exited nomrally

❖ Sss true iff the child was signaled to exit

❖ Ssss true iff the child stopped

❖ Ssssddddddddddddd true iff child continued

❖ Demo: see example in exit_status.cpp

7

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Any questions so far?

8

We take our previous code that
we fixed and modify it. Now we
call wait twice at the end of the
program.

What happens?

Does our code still always work?

pollev.com/tqm

int main(int argc, char* argv[]) {

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 array<const char*, 5> argv = {

 "clang-15", "-o", "hello","hello_world.c", nullptr

 };

 execvp(argv.at(0), const_cast<char**>(argv.data()));

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 array<const char*, 2> argv {"./hello", nullptr};

 execvp(argv.at(0), const_cast<char**>(argv.data()));

 exit(EXIT_FAILURE);

 }

 wait(NULL); // previously before second fork()

 wait(NULL);

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Lecture Outline

9

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Multics: The Precursor

❖ Multiplexed Information and Computing Service

❖ Early time-sharing operating system

▪ Time sharing: the sharing of a computer (mainframe) across
multiple users at the same time

▪ Necessary pre – personal computers (~1975)

❖ Started development in 1964

▪ funded in part by Bell labs

❖ Bell Labs pulls out of
Multics in 1969

10

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

"Unics"

❖ Ken Thompson and Dennis Ritchie
lead the development of Unix

▪ Both worked on Multics under
Bell Labs

❖ Took some inspiration from Multics

▪ Hierarchical file system

▪ Text command line shell

▪ The name:

• Multics: Multiplexed Information and Computing Service

• Unics: Uniplexed Information and Computing Service

• At some point "Unics" became "Unix“

▪ Unix rejected the overcomplexity of Multics
11

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

UNIX

❖ Originally (1970) was
a singletasking system,
without name or backing,
and written in PDP assembly

❖ Functionality and multitasking added as other departments in Bell Labs needed
them

❖ Departments kept adopting UNIX instead of built in OS’s.

▪ As a result, a support team was created, a UNIX Programmer’s Manual was written, and
man pages were created

12

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

UNIX and C

❖ B programming language by Ken Thompson

▪ Was intended for writing UNIX utilities

❖ Dennis Ritchie modified B to make New B

▪ Added things like types! (int, char, etc.)

❖ More features were added to New B, heavily influenced by its use in UNIX

❖ UNIX was soon re-written in C

▪ One of the first operating systems (re)written in a higher-level-language (aka, not
assembly)

13

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Unix Adoption

❖ 1973: Unix was first presented formally outside of Bell Labs. Leading to many
requests for the system

❖ Due to a 1956 decree, Bell System could not turn UNIX into a commercial
product.

▪ Bell had to license the product to anyone who asked

▪ Code was “open source” of sorts.

❖ UNIX was continually updated, and C was as well.

▪ Included the addition of pipes and other features

▪ These updates made UNIX more portable to other systems.

14

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

UNIX Design Philosophy

❖ Philosophy behind development of UNIX that spread to standards for
developing software generally.

▪ Arguable more influential than UNIX itself

❖ Short version:

▪ Programs should "Do One Thing And Do It Well."

▪ Programs should be written to work together

▪ Write programs that handle text streams, since text streams is a universal* interface.

❖ Extra short version: "Keep it Simple, Stupid."

15

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

GNU

❖ In 1983, Bell Systems split up due to anti-trust laws.

▪ A successor (AT&T) then turned UNIX into a commercial product, limiting rights to
distribute/change/adapt/etc. UNIX

❖ Later that year, GNU is founded by Richard Stallman

▪ GNU Not Unix

▪ Copyleft

▪ Goal: create a complete UNIX compatible system composed entirely of free software

▪ Developed many required programs (libraries, editors, shell, compilers …) but missing low
level elements like the kernel

16

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Linux

❖ By 1991, a UNIX-like kernel that was
Free Software did not exist

❖ Linus Torvalds was studying operating systems and wrote his own called
Linux

▪ This would be published under GPL 2 (GNU Public License)

❖ Blew up in popularity due to being free and open source

17

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Unix-Like

❖ Almost all operating systems are UNIX related

▪ “Genetically” related with historical connection to the original code base

▪ Through the UNIX trademark once a system meets the Single UNIX Specification and is
certified

▪ Through “functionally” being UNIX-like. Behaving in a manner that is consistent with UNIX
design and specification

• Linux falls under this one

❖ Most Operating systems are Unix Like

▪ Linux, macOS, iOS, Chrome OS, Android, etc.

▪ Pretty much everything that is not Windows lol

18

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Lecture Outline

19

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Unix Shell

❖ A user level process that reads in commands

▪ This is the terminal you use to compile, and run your code

❖ Commands can either specify one of our programs to run or specify one of the
already installed programs

▪ Other programs can be installed easily.

❖ There are many different shells, in this class we use Bash

▪ Others like zsh, fish, etc exit.

❖ There are many commonly used bash programs, we will go over a few and
other important bash things.

22

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Current Working Directory & Hierarchical File System

❖ Folder and Directory are pretty much synonyms. Technically there is a
difference, but it is not worth covering.

❖ In some ways a shell is like File Explorer or Finder

▪ Has a concept of a “Current Working Directory” which is the directory we are in right now

▪ We change which directory we are in and can use it to explore the contents of other
directories as we wish.

❖ Directories can contain other Directories

▪ Subdirectory is used to describe a directory
contained in another

▪ a few directories being the “overall root”

▪ “parent” and “child” terminology returns here.
23

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

. / ..

❖ "/" is used to connect directory and file names together to create a file path.
▪ E.g. "workspace/595/hello/"

❖ "." is used to specify the current directory.
▪ E.g. "./test_suite" tells to look in the current directory for a file called

"test_suite"

❖ ".." is like "." but refers to the parent directory.
▪ E.g. "./example/../test_suite" would be effectively the same as the previous

example.

24

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

❖ Are these valid paths to files? Assume that
the current working directory is “home”

❖ ./test_suite

❖ /home/../bin/echo

❖ ../bin/sleep

❖ ./workspace/hello

25

pollev.com/tqm

/

home bin

workspace
hws

echo sleep

hello test_suiteretry_shell

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Common Commands (Pt. 1)

❖ "ls" lists out the entries in the specified directory (or current directory if
another directory is not specified

❖ "cd" changes directory to the specified directory

▪ E.g. "cd ./solution_binaries"

❖ "exit" closes the terminal

❖ "mkdir" creates a directory of specified name

❖ "touch" creates a specified file. If the file already exists, it just updates the
file’s time stamp

26

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Common Commands (Pt. 2)

❖ "echo" takes in command line args and simply prints those args to stdout

▪ "echo hello!" simply prints "hello!"

❖ "wc" reads a file or from stdin some contents. Prints out the line count, word
count, and byte count

❖ "cat" prints out the contents of a specified file to stdout. If no file is specified,
prints out what is read from stdin

❖ "head" print the first 10 line of specified file or stdin to stdout

27

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Common Commands (Pt. 3)

❖ "grep" given a pattern (regular expression) searches for all occurrences of
such a pattern. Can search a file, search a directory recursively or stdin. Results
printed to stdout

❖ "history" prints out the history of commands used by you on the terminal

❖ "cron" a program that regularly checks for and runs any commands that are
scheduled via "crontab"

❖ "wget" specify a URL, and it will download that file for you

28

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Unix Shell Commands

❖ Commands can also specify flags
▪ E.g. "ls -l" lists the files in the specified directory in a more verbose format

❖ Revisiting the design philosophy:

▪ Programs should "Do One Thing And Do It Well."

▪ Programs should be written to work together

▪ Write programs that handle text streams, since text streams is a universal interface.

❖ These programs can be easily combined with UNIX Shell operators to solve
more interesting problems (More in a later lecture)

29

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

The shell just fork-exec’s your commands*

❖ Whenever you type in a command like `echo hello`

▪ echo is the name of a program (just like test_suite or check-time)

▪ By default the shell will search in /bin/ for a program of specified name and fork-exec it

▪ execvp will automatically search /bin/ for you

❖ When we have a ./ before the name (like ./test_suite) it tells us to look in the
current directory instead of /bin/

❖ YOU DO NOT NEED TO IMPLEMENT “echo” SPECIFICALLY

▪ E.g. you should never have to check to see if user input contains the word “echo” in
retry_shell. Just fork-exec the process.

30

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

retry_shell Demo

❖ In HW4, you will be writing your own shell that reads from user input

▪ Each line is a command that could consist of a programs and it’s command line args

▪ Your shell should fork a process to run each program and also support a “retry” feature”

❖ Some sample programs provided to help with implementation ideas.

❖ Also demo: /bin/

31

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Fork-exec

❖ Fork-exec lets us write programs that do what can be done in the shell

▪ We can execute other programs from our program

▪ Those other programs can be written in any language! As long as it can run on your system

❖ This functionality is a fundamental tool.

❖ This is an Immensely useful tool so it can be found in other languages:
▪ Java has the RunTime class

▪ Python has the subprocess module

▪ Rust has the Command API

▪ Node.Js has the child_process module

▪ Usually, it is a bit more user friendly than what we have in C and C++

32

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Lecture Outline

36

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Aside: File I/O & Disk

❖ File System:

▪ Provides long term storage of data:

• Persist after a program terminates

• Persists after computer turns off

▪ Data is organized into files & directories

• A directory is pretty much a “folder”

▪ Interaction with the file system is
handled by the operating system
and hardware. (To make sure a
program doesn’t put the entire
file system into an invalid state)

37

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

C Standard Library I/O

❖ In 5930, you’ve seen the C standard library to access files
▪ Use a provided FILE* stream abstraction

▪ fopen(), fread(), fwrite(), fclose(), fseek()

❖ These are convenient and portable

▪ They are buffered*

▪ They are implemented using lower-level OS calls

38

ALL FILE I/O IS BUILT ON TOP OF LOWER-LEVEL OS CALLS

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

From C to POSIX

❖ Most UNIX-en support a common set of lower-level file access APIs: POSIX –
Portable Operating System Interface
▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ C and C++ stdlib doesn’t provide everything POSIX does

• You will have to use these to read file system directories and for network I/O, so we might as
well learn them now

39

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is just an int

– Returns -1 to indicate error

• Must manually close file when done 

40

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

 ...

 int fd = open("foo.txt", O_RDONLY);

 if (fd == -1) {

 perror("open failed");

 exit(EXIT_FAILURE);

 }

 ...

 close(fd);

Used to identify

a file w/ the OS

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Function is written in C: follows C design

• Takes in a file descriptor

• Takes in an array and length of where to store the results of the read

• Returns number of bytes read

▪ EVERY TIME we read from a file,
this function is getting called somewhere

• Even in Java or Python

• There are wrappers around this, but
they are all implemented on top of
these system calls

• The OS doesn’t speak java or python, it “speaks” assembly and C
so all languages must have a way to invoke these C functions.

41

ssize_t read(int fd, void* buf, size_t count);

Number of bytes
Stores read

result in buf

signed

Going over this quickly: the important point is not to
memorize this function; we will go over it again later.

The main thing is this: whenever we interact with a
file (even in other languages) somewhere under the
hood it is calling these C functions

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Example Read Code

43

int fd = open(filename, O_RDONLY);

array<char, 1024> buf {}; // buffer of appropriate size

ssize_t result;

result = read(fd, buf.data(), 1024);

if (result == -1) {

 // an error happened, so exit the program

 // print out some error message to cerr

 exit(EXIT_FAILURE);

}

// If we want to construct a string from the bytes read

// we need to say how many bytes to take from the array.

string data_read(buf.data(), result);

// Whenever we are done with the file, we must close it

close(fd);

Going over this quickly: the important point is not
to memorize this function; we will go over it again
later.

The main thing is this: whenever we interact with a
file (even in other languages) somewhere under
the hood it is calling these C functions

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Lecture Outline

44

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

stdout, stdin, stderr

❖ By default, there are three “files” open when a program starts

▪ stdin: for reading terminal input typed by a user

• cin in C++

• System.in in Java

▪ stdout: the normal terminal output.

• cout in C++

• System.out in Java

▪ stderr: the terminal output for printing errors

• cerr in C++

• System.err in Java

45

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

stdout, stdin, stderr

❖ stdin, stdout, and stderr all have initial file descriptors constants defined in
unistd.h

▪ STDIN_FILENO -> 0

▪ STDOUT_FILENO -> 1

▪ STDERR_FILENO -> 2

❖ These will be open on default for a process

❖ Printing to stdout with cout will use write(STDOUT_FILENO, …)

46

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

File Descriptor Table

❖ In addition to an address space, each process will have its own file descriptor
table managed by the OS

❖ The table is just an array, and the file descriptor is an index into it.

47

Terminal input

Terminal output

Foo.txt

open("Foo.txt", O_RDWR);

0

1

2

3

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

48

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

49

fork()

parent child

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

50

parent child

Child is unaffected by parent calling open!

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Gap Slide

❖ Gap slide to distinguish we are moving on to a new example (that looks very
similar to the previous one)

51

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is associated with something
other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to the redirected output

❖ To do this: use dup2()

52

Terminal input

Terminal output

Foo.txt

0

1

2

3

printf is implemented using
write(STDOUT_FILENO

That’s why it is redirected
after changing stdout

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is associated with something
other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to the redirected output

❖ To do this: use dup2()

53

Terminal input

Terminal output

Foo.txt

0

1

2

3

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Closing a file descriptor

❖ If we close a file descriptor, it only closes that descriptor, not the file itself

❖ Other file descriptors to the same file will still be open

❖ use close()

54

Terminal input

Terminal output

Foo.txt

0

1

2

3

close(3);

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

dup2()

❖ ssize_t read(int fd, void* buf,

▪ Creates a copy of the file descriptor oldfd using newfd as the new file descriptor
number

▪ If newfd was a previously open file, it is silently closed before being reused

▪ Returns -1 on error.

55

int dup2(int oldfd, int newfd);

File descriptor

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

❖ Given the following code, what is the contents of "hello.txt" and what is
printed to the terminal?

56

pollev.com/tqm

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Lecture Outline

64

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Pipes

❖ Creates a unidirectional data channel for IPC

❖ Communication through file descriptors! // POSIX ☺

❖ Takes in an array of two integers, and sets each integer to be a file descriptor
corresponding to an “end” of the pipe

❖ pipefd[0] is the reading end of the pipe

❖ pipefd[1] is the writing end of the pipe

❖ In addition to copying memory, fork copies the file
descriptor table of parent

❖ Exec does NOT reset file descriptor table
65

int pipe(int pipefd[2]);

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Pipe Visualization

❖ A pipe can be thought of as a "file" that has distinct file descriptors for reading
and writing. This "file" only exists as long as the pipe exists and is maintained
by the OS.

▪ Data written to the pipe is stored in a
buffer until it is read from the pipe

66

Terminal input

Terminal output

Kernel

Pipe Buffer

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and will not terminate
until then

❖ Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

67

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

❖ What does the parent print? What does the child print? why? (assume pipe,
close and fork succeed)

68

pipe_unidirect.cpp
on course website

pollev.com/tqm

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and will not terminate
until then

❖ Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

69

CIT 5950, Spring 2025L06: Shell & File DescriptorsUniversity of Pennsylvania

That’s it for now!

❖ More next lecture ☺

❖ Especially more on pipes()

70

	Default Section
	Slide 1: OS: Shell & File Descriptors Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Processes & Fork Summary
	Slide 6: More: waitpid()
	Slide 7: wait() status
	Slide 8: Any questions so far?
	Slide 9: Lecture Outline
	Slide 10: Multics: The Precursor
	Slide 11: "Unics"
	Slide 12: UNIX
	Slide 13: UNIX and C
	Slide 14: Unix Adoption
	Slide 15: UNIX Design Philosophy
	Slide 16: GNU
	Slide 17: Linux
	Slide 18: Unix-Like
	Slide 19: Lecture Outline
	Slide 22: Unix Shell
	Slide 23: Current Working Directory & Hierarchical File System
	Slide 24: . / ..
	Slide 25
	Slide 26: Common Commands (Pt. 1)
	Slide 27: Common Commands (Pt. 2)
	Slide 28: Common Commands (Pt. 3)
	Slide 29: Unix Shell Commands
	Slide 30: The shell just fork-exec’s your commands*
	Slide 31: retry_shell Demo
	Slide 32: Fork-exec
	Slide 36: Lecture Outline
	Slide 37: Aside: File I/O & Disk
	Slide 38: C Standard Library I/O
	Slide 39: From C to POSIX
	Slide 40: open()/close()
	Slide 41: Reading from a File
	Slide 43: Example Read Code
	Slide 44: Lecture Outline
	Slide 45: stdout, stdin, stderr
	Slide 46: stdout, stdin, stderr
	Slide 47: File Descriptor Table
	Slide 48: File Descriptor Table: Per Process
	Slide 49: File Descriptor Table: Per Process
	Slide 50: File Descriptor Table: Per Process
	Slide 51: Gap Slide
	Slide 52: Redirecting stdin/out/err
	Slide 53: Redirecting stdin/out/err
	Slide 54: Closing a file descriptor
	Slide 55: dup2()
	Slide 56
	Slide 64: Lecture Outline
	Slide 65: Pipes
	Slide 66: Pipe Visualization
	Slide 67: Pipes & EOF
	Slide 68
	Slide 69: Pipes & EOF
	Slide 70: That’s it for now!

