
CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

OS: File Descriptors & Pipe()
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Administrivia

❖ retry_shell (HW04)

▪ Due 2/21 (Leaving open till 2/23)

▪ Should have everything you need

▪ Autograder and tests cases are out now

▪ Leaving autograder open longer due to delay in getting it out

❖ pipe_shell (HW05)

▪ To be released this week

▪ Demo’d in recitation tomorrow

▪ Should have everything you need after this lecture.
Will have some more practice next week that may be helpful

▪ Like retry shell, but instead of supporting a retry functionality, need to support piping
between commands.

3

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Lecture Outline

❖ File Descriptor Table & Redirections

❖ Pipe (start)

❖ Pipe motivation and in the shell

❖ Pipe Examples

4

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is just an int

– Returns -1 to indicate error

• Must manually close file when done 

5

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

 ...

 int fd = open("foo.txt", O_RDONLY);

 if (fd == -1) {

 perror("open failed");

 exit(EXIT_FAILURE);

 }

 ...

 close(fd);

Used to identify

a file w/ the OS

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Function is written in C: follows C design

• Takes in a file descriptor

• Takes in an array and length of where to store the results of the read

• Returns number of bytes read

▪ EVERY TIME we read from a file,
this function is getting called somewhere

• Even in Java or Python

• There are wrappers around this, but
they are all implemented on top of
these system calls

• The OS doesn’t speak java or python, it “speaks” assembly and C
so all languages must have a way to invoke these C functions.

6

ssize_t read(int fd, void* buf, size_t count);

Number of bytes
Stores read

result in buf

signed

Going over this quickly: the important point is not to
memorize this function; we will go over it again later.

The main thing is this: whenever we interact with a
file (even in other languages) somewhere under the
hood it is calling these C functions

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

stdout, stdin, stderr

❖ By default, there are three “files” open when a program starts

▪ stdin: for reading terminal input typed by a user

• cin in C++

• System.in in Java

▪ stdout: the normal terminal output.

• cout in C++

• System.out in Java

▪ stderr: the terminal output for printing errors

• cerr in C++

• System.err in Java

7

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

stdout, stdin, stderr

❖ stdin, stdout, and stderr all have initial file descriptors constants defined in
unistd.h

▪ STDIN_FILENO -> 0

▪ STDOUT_FILENO -> 1

▪ STDERR_FILENO -> 2

❖ These will be open on default for a process

❖ Printing to stdout with cout will use write(STDOUT_FILENO, …)

8

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

File Descriptor Table

❖ In addition to an address space, each process will have its own file descriptor
table managed by the OS

❖ The table is just an array, and the file descriptor is an index into it.

9

Terminal input

Terminal output

Foo.txt

open("Foo.txt", O_RDWR);

0

1

2

3

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

10

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

11

fork()

parent child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

12

parent child

Child is unaffected by parent calling open!

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Gap Slide

❖ Gap slide to distinguish we are moving on to a new example (that looks very
similar to the previous one)

13

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is associated with something
other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to the redirected output

❖ To do this: use dup2()

14

Terminal input

Terminal output

Foo.txt

0

1

2

3

printf is implemented using
write(STDOUT_FILENO

That’s why it is redirected
after changing stdout

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is associated with something
other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to the redirected output

❖ To do this: use dup2()

15

Terminal input

Terminal output

Foo.txt

0

1

2

3

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Closing a file descriptor

❖ If we close a file descriptor, it only closes that descriptor, not the file itself

❖ Other file descriptors to the same file will still be open

❖ use close()

16

Terminal input

Terminal output

Foo.txt

0

1

2

3

close(3);

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

dup2()

❖ ssize_t read(int fd, void* buf,

▪ Creates a copy of the file descriptor oldfd using newfd as the new file descriptor
number

▪ If newfd was a previously open file, it is silently closed before being reused

▪ Returns -1 on error.

17

int dup2(int oldfd, int newfd);

File descriptor

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

❖ Given the following code, what is the contents of "hello.txt" and what is
printed to the terminal?

18

pollev.com/tqm

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Explanation

int fd = open("hello.txt", O_WRONLY);

printf("hi\n");

19

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Explanation

close(STDOUT_FILENO);

20

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Explanation

close(STDOUT_FILENO);

printf("?\n");

21

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

// errors! Nothing printed

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Explanation

dup2(fd, STDOUT_FILENO);

22

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Explanation

dup2(fd, STDOUT_FILENO);

printf("!\n");

23

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

!

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Explanation

close(fd);

24

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

!

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Explanation

printf("*\n");

25

Terminal input

Terminal output

hello.txt

0

1

2

3

hi

!

*

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Lecture Outline

26

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Pipes

❖ Creates a unidirectional data channel for IPC

❖ Communication through file descriptors! // POSIX ☺

❖ Takes in an array of two integers, and sets each integer to be a file descriptor
corresponding to an “end” of the pipe

❖ pipefd[0] is the reading end of the pipe

❖ pipefd[1] is the writing end of the pipe

❖ In addition to copying memory, fork copies the file
descriptor table of parent

❖ Exec does NOT reset file descriptor table
27

int pipe(int pipefd[2]);

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Pipe Visualization

❖ A pipe can be thought of as a "file" that has distinct file descriptors for reading
and writing. This "file" only exists as long as the pipe exists and is maintained
by the OS.

▪ Data written to the pipe is stored in a
buffer until it is read from the pipe

28

Terminal input

Terminal output

Kernel

Pipe Buffer

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

I/O “Streams”

❖ The way files are stored is quite complicated (see CIS 5480).
But from a user level program, we have a nice “stream” abstraction.

❖ A stream is a linear sequence of bytes/characters that we can read bytes from
or write bytes too.

▪ We don’t have to worry about the time it takes to read the file (unless we want to)

▪ We don’t have to worry about how bytes of a file may not be stored “in order” in the
filesystem

▪ We don’t know the “length” of the stream until it ends and we hit EOF

❖ Is a metaphor similar to how there is a “Stream” of water. The water flows
nicely from one point to another.

29

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

EOF & Streams

❖ How reading and writing to streams can vary a lot based on what our “stream”
is over. These details are mostly hidden from you.

▪ Is this a stream for just reading a file?

▪ Is this a stream for reading data over the network?

▪ Is this a stream for reading from a pipe?

▪ Something else?

▪ In Linux and UNIX-like systems there can be some small differences, but they all act mostly
like reading or writing a file.

❖ What is EOF? End-Of-File. Indicates that there is nothing left to read from a
stream. When do we hit EOF when reading a file?

30

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and will not terminate
until then

❖ Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

31

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

❖ What does the parent print? What does the child print? why? (assume pipe,
close and fork succeed). Note: code has some bad practices

32

pipe_unidirect.cpp
on course website

pollev.com/tqm

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and will not terminate
until then

❖ Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

33

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Lecture Outline

34

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Unix Shell Control Operators

❖ cmd1 && cmd2, used to run two commands. The second is only run if cmd1
doesn’t fail
▪ E.g. "make && ./test_suite"

❖ cmd1 | cmd2, creates a pipe so that the stdout of cmd1 is redirected to the
stdin of cmd2
▪ E.g. "history | grep valgrind" and "echo hello | cat | wc -l" DEMO

❖ cmd > file, redirects the stdout of a command to be written to the
specified file

❖ Complex example:
 cat ./input.txt | ./retry_shell > out.txt
 && diff out.txt expected.txt 35

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Polls

❖ Which of the following commands will print the number of files in the current
directory?

A. ls > wc

B. cd . && ls wc

C. ls | wc

D. ls && wc

E. The correct answer is not listed
F. We’re lost…

36

cd: change directory

ls: list directory contents

wc: reads from stdin, prints the number

of words, lines, and characters read.

pollev.com/tqm

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Lecture Outline

38

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Unix Shell Control Operators: Pipe

❖ cmd1 | cmd2, creates a pipe so that the stdout of cmd1 is redirected to the
stdin of cmd2
▪ E.g. "cat ./test_files/mutual_aid.txt | grep communism"

39

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell overview

❖ In pipe_shell, you will be writing your own shell that reads from user input

▪ Each line is a command that could consist of multiple programs and pipes between them

▪ Your shell should fork a process to run each program and setup the pipes in between them

❖ Some sample programs provided to help with implementation ideas.

40

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Suggested Approach

❖ HIGHLY ENCOURAGED to follow the suggested approach

▪ Write a program that implements the basic functionality of retry_shell (no retrying
needed)

▪ Make sure that it can handle commands with no pipes

• "ls"

▪ Make sure that it can handle command line arguments

• "ls -l"

▪ Add support for commands with ONE pipe

• "ls -l | wc"

▪ Generalize to add support for any number of pipes

• "ls –l | wc | cat"

41

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line

❖ Consider the case when a user inputs
▪ "ls"

42

Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", {"ls", nullptr});

Terminal

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Hints

❖ If there are n commands in a line, there should be n-1 pipes

❖ Each pipe should be written to by exactly one process

❖ Each pipe should be read by exactly one process

▪ Different than the one writing

❖ There are three cases to consider for commands using pipes

▪ The first process, which reads from stdin and writes out to a pipe

▪ The last process, which reads from a pipe and writes to stdout

▪ Processes in between which read from one pipe and write to another

❖ More hints when HW is posted

43

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

44

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

45

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

46

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

47

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

48

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

49

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

50

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

51

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

52

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

53

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

54

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

55

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

56

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("wc", …);

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

pipe_shell Example Line 2

❖ Consider the case when a user inputs
▪ "ls | wc | cat"

58

Overall parent

Running main()
or helper_fnct()fork()

child

execvp("ls", …);
Kernel

Pipe Buffer

Terminal

Pipe Buffer

fork()

child

execvp("wc", …);

fork()
child

execvp("cat", …);

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

Suggested “Readings”:

❖ Take a look at the practice in recitation

❖ Animation on previous slide available in two_pipe_animation.pptx

❖ A piece of code that does something similar to the animation can be found in
two_pipes.cpp

59

CIT 5950, Spring 2025L06: File Descriptors & Pipe()University of Pennsylvania

That’s it for now!

❖ See you next lecture ☺

60

	Default Section
	Slide 1: OS: File Descriptors & Pipe() Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: open()/close()
	Slide 6: Reading from a File
	Slide 7: stdout, stdin, stderr
	Slide 8: stdout, stdin, stderr
	Slide 9: File Descriptor Table
	Slide 10: File Descriptor Table: Per Process
	Slide 11: File Descriptor Table: Per Process
	Slide 12: File Descriptor Table: Per Process
	Slide 13: Gap Slide
	Slide 14: Redirecting stdin/out/err
	Slide 15: Redirecting stdin/out/err
	Slide 16: Closing a file descriptor
	Slide 17: dup2()
	Slide 18
	Slide 19: Explanation
	Slide 20: Explanation
	Slide 21: Explanation
	Slide 22: Explanation
	Slide 23: Explanation
	Slide 24: Explanation
	Slide 25: Explanation
	Slide 26: Lecture Outline
	Slide 27: Pipes
	Slide 28: Pipe Visualization
	Slide 29: I/O “Streams”
	Slide 30: EOF & Streams
	Slide 31: Pipes & EOF
	Slide 32
	Slide 33: Pipes & EOF
	Slide 34: Lecture Outline
	Slide 35: Unix Shell Control Operators
	Slide 36: Polls
	Slide 38: Lecture Outline
	Slide 39: Unix Shell Control Operators: Pipe
	Slide 40: pipe_shell overview
	Slide 41: Suggested Approach
	Slide 42: pipe_shell Example Line
	Slide 43: pipe_shell Hints
	Slide 44: pipe_shell Example Line 1
	Slide 45: pipe_shell Example Line 1
	Slide 46: pipe_shell Example Line 1
	Slide 47: pipe_shell Example Line 1
	Slide 48: pipe_shell Example Line 1
	Slide 49: pipe_shell Example Line 1
	Slide 50: pipe_shell Example Line 1
	Slide 51: pipe_shell Example Line 1
	Slide 52: pipe_shell Example Line 1
	Slide 53: pipe_shell Example Line 1
	Slide 54: pipe_shell Example Line 1
	Slide 55: pipe_shell Example Line 1
	Slide 56: pipe_shell Example Line 1
	Slide 58: pipe_shell Example Line 2
	Slide 59: Suggested “Readings”:
	Slide 60: That’s it for now!

