
CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Caches, Memory Allocation, std::move
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Administrivia

❖ pipe_shell (HW05)

▪ Demo’d in recitation last week

▪ Like retry shell, but piping instead of retrying

▪ Extended autograder opening to Sunday this week.

❖ Midterm next week ☺
▪ Midterm review in recitation this week

▪ Midterm review in lecture on Tuesday

▪ Policies posted soon

❖ Travis’ Office Hours on Friday moved to Sunday

▪ Travis at a conference ☺

3



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Lecture Outline

❖ Locality

❖ Caches

❖ Memory Allocation & fragmentation

❖ Being aware of memory allocation in C++

❖ std::move

4

Did not get to std::move in lecture



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Memory Hierarchy

5



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Principle of Locality

❖ The tendency for the Programs to access the same set of memory locations 
over a short period of time

❖ Two main types:

▪ Temporal Locality: If we access a portion of memory, we will likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely reference memory close 
to it in the near future.

❖ Data that is accessed frequently can be stored in hardware that is quicker to 
access.

6



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Numbers Everyone Should Know

❖ There is a set of numbers that called “numbers everyone you should know”

❖ From Jeff Dean in 2009

❖ Numbers are out of date
but the relative orders of
magnitude are
about the same

❖ More up to date numbers:
https://colin-
scott.github.io/personal_website/research/interactive_latency.html

7

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html


CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ Suppose we have a large vector of strings that we want to print to a file (an 
ofstream). Which code prints the vector faster?

▪ (You can assume this code compiles)

8

pollev.com/tqm

void print_vec(ofstream& to_print, const vector<string>& words) {
 for (auto& word : words) {
  to_print << word << endl;
 }
}

void print_vec(ofstream& to_print, vector<string>& words) {
 for (size_t i = 0; i < words.size(); i++) {
  string& word = words[i];
  to_print << word;
  to_print << "\n";
 }
}



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

How to flush/modify an iostream buffer

❖ For C++ iostream stdio:

▪ Fflush

▪ Flushes the stream to the OS/filesystem

▪ Fflush

▪ Flushes the stream to the OS/filesystem and prints a new line

▪ setvbuf

▪ Can set the stream to be unbuffered or a specified buffer 

9

std::flush

std::pubsetbuf

std::endl



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Lecture Outline

❖ Locality

❖ Caches

❖ Memory Allocation & fragmentation

❖ Being aware of memory allocation in C++

❖ std::move

10



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Poll: how are you?

❖ Data Structures Review: I want to randomly generate a sequence of sorted 
numbers. To do this, we generate a random number and insert the number so 
that it remains sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly generate an index and 
remove that index from the sequence until it is empty. Would this be faster on 
a LinkedList or an ArrayList? 

11

e.g. if I have sequence [5, 9, 23] and I randomly 
generate 12, I will insert 12 between 9 and 23

pollev.com/tqm



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

12



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to access

▪ We see this already with registers. Data in registers is stored on the chip and is faster to 
access than registers

13



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Memory Hierarchy

14

Each layer can be thought 

of as a “cache” of the layer 

below



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space goes up, but access 
times increase

15



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on 
performance

▪ It is important that data is quick to access to get better CPU 
utilization 16



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons, valuables, supplies, 
etc.

❖ Computer: Memory with shorter access time used for the storage of data for 
increased performance. Data is usually either something frequently and/or 
recently used.

▪ Physical memory is a “Cache” of page frames which may be stored on disk. (Instead of 
going to disk, we can go to physical memory which is quicker to access)

17



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Memory (as we know it now)

❖ The CPU directly uses an address to access a location in 
memory

18

CPU

0:

1:

2:

3:

4:

5:

...

data



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Virtual Address Translation
❖ Programs don’t know about many of things going on 

under the hood with memory. they send an address to 
the MMU, and the MMU will help get the data 

19

CPU

0:

1:

2:

3:

4:

5:

...

Virtual address 
(0x300)

data

MMU

Physical address 
(0x3)

Memory
Management
Unit

RAM

Also checks 
Caches 

Caches



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Cache Analogy

❖ If we are at home and we are hungry, were do we get food from?

▪ We get it from our refrigerator!

▪ If the refrigerator is empty, we go to the grocery store

▪ When at the grocery store, we don’t just get what we want right now, but also get other 
things we think we want in the near future (so that it will be in our fridge when we want it)

20



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish 

21

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830


CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Cache Performance

❖ Accessing data in the cache allows for much better utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck: CPU would have to 
wait for data to come from memory.

❖ How is data loaded into a Cache?

22



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Cache Lines

❖ Imagine memory as a big array of data:

❖ We can split memory into 64-byte “lines” or “blocks”(64 bytes on most 
architectures)

❖ When we access data at an address, we bring the whole cache line (cache 
block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!

23

Access this data
Neighboring data brought into the cache



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Principle of Locality

❖ The tendency for the CPU to access the same set of memory locations over a 
short period of time

❖ Two main types:

▪ Temporal Locality: If we access a portion of memory, we will likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely reference memory close 
to it in the near future.

❖ Caches take advantage of these tendencies to help with cache management

24



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines inside it.

❖ When we access data not in the cache, and the cache is full, we must evict an 
existing entry.

❖ When we access a line, we can do a quick calculation on the address to 
determine which entry in the cache we can store it in. (Depending on 
architecture, 1 to 12 possible slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the entries a line can be stored in

25



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

LRU (Least Recently Used)

❖ If a cache line is used recently, it is likely to be used again in the near future

❖ Use past knowledge to predict the future

❖ Replace the cache line that has had the longest time since it was last used

26



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a sequence of sorted 
numbers. To do this, we generate a random number and insert the number so 
that it remains sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly generate an index and 
remove that index from the sequence until it is empty. Would this be faster on 
a LinkedList or an ArrayList? 

27



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we understand the memory 
layout of these data structures

❖ ArrayList In C++:

28

int main() {

  vector<int> array_list {1, 2, 3};

  // … 

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data = 

1 2 3

stack:

Elements are next to each 
other in memory ☺



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we understand the memory 
layout of these data structures

❖ LinkedList In C++:

29

int main() {

  list<int> linked_list {1, 2, 3, 4};

  // … 

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail = 

head = 

stack:

Elements are not next
to each other in memory 



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from spatial complexity (and 
temporal complexity from being iterated through in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your default in C++, Rust, etc 
should be a vector

▪ If you are doing something where performance matters, your best bet is to experiment try 
all options and analyze which is better.

30



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object, you have an instance of 
that object. If you declare it as a local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the memory model is 
slightly different. Instead, all object variables are object references, that refer 
to an object on the heap

31



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object variables are object 
references, that refer to an object on the heap

32

public class MemoryModel {

  public static void main(String[] args) {

    ArrayList l = new ArrayList({1, 2, 3}); 

   // … 

  }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data = 

1

2

3
heap:

stack:



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000

33



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I 
want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

34

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/tqm



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I 
want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

35

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

pollev.com/tqm



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take advantage of the cache

36



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches instructions. There is a 
separate cache for this
▪ which is why you may see something like L1I cache and L1D cache, for Instructions and 

Data respectively

❖ Consider the following three fake objects linked in inheritance

37

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 38

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> l = new ArrayList<A>(); 

    // … 

    for (A item : l) {

       item.compute();

    }

  }

}

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

39

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> la = new ArrayList<A>();

    ArrayList<B> lb = new ArrayList<B>(); 

    ArrayList<C> lc = new ArrayList<C>(); 

    // … 

    for (A item : la) {

       item.compute();

    }

    for (B item : lb) {

       item.compute();

    }

    for (C item : lc) {

       item.compute();

    }

  }

}



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Lecture Outline

❖ Locality

❖ Caches

❖ Memory Allocation & fragmentation

❖ Being aware of memory allocation in C++

❖ std::move

40



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for Dynamic allocation

❖ This pool of memory is kept track of with a small data structure indicating 
which portions have been allocated, and which portions are currently 
available.

❖ new

▪ searches for a large enough unused block of memory 

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ delete:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

41



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Free Lists

❖ One way that malloc can be implemented is by maintaining an implicit list of 
the space available and space allocated.

❖ Before each chunk of allocated/free memory, we’ll also have this metadata:

42

// this is simplified

// not what malloc really does

struct alloc_info {

  alloc_info* prev;

  alloc_info* next;

  bool allocated;

  size_t size;

};

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ free_list ->

Dynamic Memory Example

43

int main() {

  char* ptr = new char[4];

  int* ptr2 = new int[6];

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header

{

 NULL,

 NULL,

 false,

 1024

}

This diagram is 

not to scale

The metadata is at 

the beginning of the 

chunk of memory

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ free_list 

Dynamic Memory Example

44

int main() {

  char* ptr = new char[4];

  int* ptr2 = new int[6];

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 NULL,

 false,

 1020

}

malloc 

return 

value

Free chunks can 

be split to 

allocate blocks of 

specific size

new returns a 

pointer to just 

after the 

metadata

free_list

points to first 

free chunk
KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ free_list 

Dynamic Memory Example

45

int main() {

  char* ptr = new char[4];

  int* ptr2 = new int[6];

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

malloc 

return 

value

{

 0x…,

 NULL,

 false,

 996

}

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ free_list 

Dynamic Memory Example

46

int main() {

  char* ptr = new char[4];

  int* ptr2 = new int[6];

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ free_list 

Dynamic Memory Example

47

int main() {

  char* ptr = new char[4];

  int* ptr2 = new int[6];

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 false,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ free_list 

Dynamic Memory Example

48

int main() {

  char* ptr = new char[4];

  int* ptr2 = new int[6];

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header

{

 NULL,

 0x…,

 false,

 1024

}

Once a block has been 

freed, we can try to 

“coalesce” it with 

their neighbors

The first free 

couldn’t be coalesced, 

only neighbor was 

allocated

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Heap

❖ new and delete are not system calls, they are implemented as part of the 
C++ std library
▪ new and delete will sometimes internally invoke system calls to expand the heap if 

needed

▪ Instead, these functions just manipulate memory already given to the process, marking 
some as free and some as allocated

❖ System calls used by new and delete:

▪ brk() and sbrk() 

• Used to grow/shrink the data segment of memory

▪ mmap(), munmap()

• creates / or destroys a mapping in virtual address space

49

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Fragmentation

❖ Fragmentation: when storage is used inefficiently, which can hurt performance 
and ability to allocate things. 

Specifically, when there is something that prevents "unused" memory from 
otherwise being used

❖ External Fragmentation: when free memory is spread out over small portions 
that cannot be coalesced into a bigger block that can be used for allocation

50

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ free_list 

External Fragmentation Example

51

int main() {

  char* ptr = new char[4];

  int* ptr2 = new int[6];

  ...           // do stuff with ptr

  delete ptr;

  ptr = new char[2];

  ...

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ free_list 

External Fragmentation Example

52

int main() {

  char* ptr = new char[4];

  int* ptr2 = new int[6];

  ...           // do stuff with ptr

  delete ptr;

  ptr = new char[2];

  ...

}

header header header header

{

 NULL,

 0x…,

 true,

 2

}

{

 0x…,

 0x…,

 false,

 2

}

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ free_list 

External Fragmentation Example

53

int main() {

  char* ptr = new char[4];

  int* ptr2 = new int[6];

  ...           // do stuff with ptr

  delete ptr;

  ptr = new char[2];

  ...

}

header header header header header

{

 0x…,

 0x…,

 false,

 2

}

{

 0x…,

 0x…,

 false,

 2

}

After some more series of allocations
and frees (not shown), we get this:

Let’s say new char[4] gets called
(trying to allocate 4 bytes) 
what happens?

There are 4 bytes of free space, but they 
aren’t next to each other and can’t be
coalesced into something that can be 
used. Heap would need to grow to 
make space (if possible)

KEY TAKEAWAY:
Using the heap is not an O(1) operation
It is complex and slow



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Lecture Outline

❖ Locality

❖ Caches

❖ Memory Allocation & fragmentation

❖ Being aware of memory allocation in C++

❖ std::move

63



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Memory Allocation in C++

❖ We rarely call new or delete directly in C++ code, but it is called implicity all the 
time if we are not careful

▪ Whenever a data structure needs more space

▪ Whenever we copy construct an object that needs allocation 

▪ Etc.

64



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ Which function is faster?

65

pollev.com/tqm

void print_vec(ofstream& to_print, const vector<string>& words) {
 for (const string word : words) {
  to_print << word << "\n";
 }
}

void print_vec(ofstream& to_print, vector<string>& words) {
 for (size_t i = 0; i < words.size(); i++) {
  string& word = words[i];
  to_print << word;
  to_print << "\n";
 }
}



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

❖ How many memory allocations occur in each piece of code?

▪ Assume vector resizes will double capacity

▪ std::list is a linked list in C++

66

pollev.com/tqm

int main() {
 vector nums {4, 8}; // size and capacity == 2
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}

int main() {
 list nums {4, 8};
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Minimizing Allocations

❖ As we saw previously, memory allocations require time, sometimes a lot of 
time to compute.

❖ If performance is our goal, we should minimize the number of allocations we 
make.

❖ This can include

▪ Making references instead of copies

▪ Using functions like vec.reserve()

• Java arraylist lets you specify capacity in the constructor.

• std::string also has a reserve function

▪ Using move semantics

67

vector::reserve(size_t new capacity)



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

Lecture Outline

❖ Locality

❖ Caches

❖ Memory Allocation & fragmentation

❖ Being aware of memory allocation in C++

❖ std::move

68

Did not get to move in lecture



CIT 5950, Spring 2025L09: Caches, Mem Alloc, moveUniversity of Pennsylvania

That’s it for now!

❖ See you next lecture ☺

79


	Default Section
	Slide 1: Caches, Memory Allocation, std::move Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Memory Hierarchy
	Slide 6: Principle of Locality
	Slide 7: Numbers Everyone Should Know
	Slide 8
	Slide 9: How to flush/modify an iostream buffer
	Slide 10: Lecture Outline
	Slide 11: Poll: how are you?
	Slide 12: Answer:
	Slide 13: Data Access Time
	Slide 14: Memory Hierarchy
	Slide 15: Memory Hierarchy so far
	Slide 16: Processor Memory Gap
	Slide 17: Cache
	Slide 18: Memory (as we know it now)
	Slide 19: Virtual Address Translation
	Slide 20: Cache Analogy
	Slide 21: Cache vs Memory Relative Speed
	Slide 22: Cache Performance
	Slide 23: Cache Lines
	Slide 24: Principle of Locality
	Slide 25: Cache Replacement Policy
	Slide 26: LRU (Least Recently Used)
	Slide 27: Back to the Poll Questions
	Slide 28: Data Structure Memory Layout
	Slide 29: Data Structure Memory Layout
	Slide 30: Poll Question: Explanation
	Slide 31: What about other languages?
	Slide 32: ArrayList in Java Memory Model
	Slide 33: Does Caching apply to Java?
	Slide 34: Poll: how are you?
	Slide 35: Poll: how are you?
	Slide 36: Experiment Results
	Slide 37: Instruction Cache
	Slide 38: Instruction Cache
	Slide 39: Instruction Cache
	Slide 40: Lecture Outline
	Slide 41: The Heap
	Slide 42: Free Lists
	Slide 43: Dynamic Memory Example
	Slide 44: Dynamic Memory Example
	Slide 45: Dynamic Memory Example
	Slide 46: Dynamic Memory Example
	Slide 47: Dynamic Memory Example
	Slide 48: Dynamic Memory Example
	Slide 49: Heap
	Slide 50: Fragmentation
	Slide 51: External Fragmentation Example
	Slide 52: External Fragmentation Example
	Slide 53: External Fragmentation Example
	Slide 63: Lecture Outline
	Slide 64: Memory Allocation in C++
	Slide 65
	Slide 66
	Slide 67: Minimizing Allocations
	Slide 68: Lecture Outline
	Slide 79: That’s it for now!


