University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

C++ Refresher, Move & File Descriptors
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao
Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

+» How was spring break? Any questions now that we are back?

University of Pennsylvania L11: C++ Refresher & File Descriptors

Administrivia

+» “Check-in” posted
" Due Wednesday

«» HWO06 — Hash Table
= Posted®©

" Due Friday 3/21 at midnight, leaving open till Sunday night tho
= AG posted soon, but all tests are posted and public

+» Mid-semester Survey Posted!
= Due Sunday 3/23 & Anonymous

= Please give feedback, it is useful for me to make the course better!
And a lot has changed this semester!

CIT 5950, Spring 2025

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Lecture Outline

% C++ Programming Refresher
+» Move Semantics
+ File Descriptors & Buffering

University of Pennsylvania

L11: C++ Refresher & File Descriptors

C++ Programming Refresher

/
0‘0

CIT 5950, Spring 2025

Implement the function rect() which takes in a vector of vector of integers. The
function modifies the vector of vectors so that all rows are extended to be the
same length (by adding 0’s to the rows).

(void rect (vector<vector<int>>& m);)

For example, the following input

\.

4)
vector<vector<int>> m {

{3, 4, 5},

{2, 1},

{},

{o, 1, 2, 0, 0},
};

rect (m) ;

{31

{21

{OI

{OI
b

\.

4,

4

el
~

~

5,

4

~

0
0
2

’

0,

4

~

0
0
0

’

(// what it should look
// like after calling rect
vector<vector<int>> m {

O}I
O}I
O}I
O}I

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Lecture Outline

% C++ Programming Refresher
+» Move Semantics
+ File Descriptors & Buffering

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Memory Allocation in C++

+» We rarely call new or delete directly in C++ code, but it is called implicity all the
time if we are not careful
" Whenever a data structure needs more space
" Whenever we copy construct an object that needs allocation
" Etc.

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

« Which function is faster?

void print_vec(ofstream& to_print, const vector<string>& words) {
for (const string word : words) {
to _print << word << "\n";

}
}

void print_vec(ofstream& to_print, vector<string>& words) {
for (size t i = 0; i < words.size(); i++) {
string& word = words[i];
to _print << word;
to _print << "\n";
}
}

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

<+ How many memory allocations occur in each piece of code?
= Assume vector resizes will double capacity
= std::list is a linked list in C++

int main() {
vector nums {4, 8};
nums.push_back(5);
nums.push_back(9);

int main() {
list nums {4, 8};
nums.push _back(5);
nums.push_back(9);

nums.push_back(5);
nums.push _back(09);

nums.push _back(5);
nums.push _back(09);

11

University of Pennsylvania

L11: C++ Refresher & File Descriptors

CIT 5950, Spring 2025

Minimizing Allocations

+ As we saw previously, memory allocations require time, sometimes a lot of
time to compute.

+ |f performance is our goal, we should minimize the number of allocations we
make.

<« This can include

= Making references instead of copies

= Using functions |ike[vector: :reserve (size t new capacity)]
- Java arraylist lets you specify capacity in the constructor.
- std::string also has a reserve function

® Using move semantics

12

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Copy Semantics: close up look

(int main (int argc, char **argv) {)
+ Internally a string std::string a{"bleg"};
manages a heap
allocated C string !)

and looks something like:

Stack heap

len 4

13

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Copy Semantics: close up look

(int main (int argc, char **argv) {)
+» When we copy std: :string a{"bleg"};
construct string b stdls sotbeing Bia) s
}

we could get Somethmg like: This is another memory allocation, and we

need to copy over the characters of the string

Stack heap

a ptr b | 1| e|g|\O
len_ 4

b ptr b | 1| e | g]|\O
len_ i)

14

CIT 5950, Spring 2025

University of Pennsylvania

L11: C++ Refresher & File Descriptors

Move Semantics (C++11)

“Move semantics”
move values from
one object to
another without
copying (“stealing”)

= A complex topic that
uses things called
“rvalue references”
- Mostly beyond the

scope of this
class

int main(int argc, char **argv) {

std::string a{"bleg"}; ﬁ'""

// moves a to b b."kﬂc@"
std::string b{std::move(a) };

std: :cout << "a: " << a << std::endl;
std::cout << "b: " <K< b << std::endl;

return EXIT SUCCESS;

Note: we should NOT access ‘a’ after we move it. It is undefined
to do so, it just so happens it is set to the empty string

15

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Move Semantics: close up look

(int main (int argc, char **argv) {)
+ Internally a string std::string a{"bleg"};
manages a heap
allocated C string !)

and looks something like:

Stack heap

len 4

16

University of Pennsylvania L11: C++ Refresher & File Descriptors

CIT 5950, Spring 2025

Move Semantics: close up look

- :)
int main(int argc, char **argv)

+» When we use move
to construct string b

\.

std::string a{"bleg"};

std::string b{std: :move(a) };
}

{

we could get something like:

Stack
a ptr_ nullptr
len_ 0

b ptr_ /

len 4

heap

17

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Move Semantics: Use Cases

+» Useful for optimizing away temporary copies

+» Preferred in cases where copying may be expensive

" Consider we had a vector of strings... we could transfer ownership of memory to avoid
copying the vector and each string inside of it.

% Can be used to help enforce uniqueness

+ Rust is a systems programming language that is gaining popularity and by
default it will move variables instead of copy them.

18

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Move Semantics: Details

+ Implement a “Move Constructor” with something like:

Point::Point (Point&& other) {
//

+ Implement a “Move assignment” with something like:

Point& Point::operator=(Point&& rhs) {

//
}

19

University of Pennsylvania

Move Semantics: Details

+» “Move Constructor” example for a fake String class:

L11: C++ Refresher & File Descriptors

this—>len_
this->ptr

other.len
other.ptr

String::String (String&& other)

other.len ;
other.ptr ;

0;
nullptr;

{

CIT 5950, Spring 2025

20

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

std::move

+» Use std: :move to indicate that you want to move something and not copy it

(Point p {3, 2}; // constructor
Point a {p}:; // copy constructor

Point b {std::move(p)}; // move constructor

21

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Demo: Verbose Integer

+~ What happens when we resize?
+» Making move operations noexcept

+» What if this were strings and not ints?

22

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm
class LinkedList {
+ Given a linked list object: public:
LinkedList() {
" What do you think the copy constructor does? head = nullptr;
= What do you think the move constructor does? ;ail— =@”“11pt'“3
en = 0;
" (I don’t need code, high level idea is fine) } -

LinkedList(const LinkedList& other) {

struct node { }
node* next;
string value; LinkedList(LinkedList&& other) {
}s
}
private:

node* head ;
node* tail ;
size t len_;

1.

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Lecture Outline

% C++ Programming Refresher
+ Move Semantics
+ File Descriptors & Buffering

24

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

From C to POSIX

%+ Most UNIX-en support a common set of lower-level file access APIs: POSIX —
Portable Operating System Interface
" open(), read(),write(),close (), 1seek()
« Similar in spirit to their £* () counterparts from the C std lib
- Lower-level and unbuffered compared to their counterparts
- Also less convenient
® Cand C++ stdlib doesn’t provide everything POSIX does

« You will have to use these to read file system directories and for network 1/0, so we might as
well learn them now

25

CIT 5950, Spring 2025

University of Pennsylvania L11: C++ Refresher & File Descriptors

open () /close ()

+~ To open a file:
= Pass in the filename and access mode

= Get back a “file descriptor”
 Similar to FILE* from fopen (), butisjustan/int

Used to identify
a file w/ the OS

— Returns -1 toindicate error

- Must manually close file when done ®

(#include <fcntl.h> // for open()
#include <unistd.h> // for close /()

int fd = open("foo.txt", O RDONLY) ;
1t (fd == -1) {

perror ("open failed");

exit (EXIT FAILURE) ;

}

close (fd) ;

26

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Reading from a File siec reud

result in buf Number of bytes

~:~[§size_t read (int fd, void* buf, size t count);]

Sloyned
a) Function is written in C: follows C design

- Takes in a file descriptor

- Takes in an array and length (In bytes) of where to store the results of the read

- Returns number of bytes read

= EVERY TIME we read from a file,
this function is getting called somewhere
- Even in Java or Python
- There are wrappers around this, but
they are all implemented on top of
these system calls

- The OS doesn’t speak java or python, it “speaks” assembly and C

so all languages must have a way to invoke these C functions. .

CIT 5950, Spring 2025

University of Pennsylvania L11: C++ Refresher & File Descriptors

Reading from a File siec reud

result in buf Number of bytes

~:~[§size_t read (int fd, void* buf, size t count);]

siomed
" Function is written in C: follows C design

- Takes in a file descriptor

- Takes in an array and length of where to store the results of the read

= Returns the number of bytes read
- Might be fewer bytes than you requested (!!!)
- Returns 0O if you’re already at the end-of-file
« Returns -1 on error (and sets errno)

- Advances forward in the file by number
of bytes read

28

University of Pennsylvania L11: C++ Refresher & File Descriptors

Example Read Code

int fd = open(filename, O RDONLY) ;
array<char, 1024> buf {}; // buffer of appropriate size
ssize t result;

result = read(fd, buf.data(), 1024 * sizeof (char)):;
1f (result == -1) {

// an error happened, so exit the program

// print out some error message to cerr

exit (EXIT FAILURE);

}

// If we want to construct a string from the bytes read
// we need to say how many bytes to take from the array.
string data read(buf.data(), result);

// Whenever we are done with the file, we must close it
close (fd) ;

CIT 5950, Spring 2025

29

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

+» This code has some bugs, what are they? How do we fix this code?

char* read_stdin() {
array<char, 1024> buf {};

read(STDOUT_FILENO, buf.data(), 1024 * sizeof(char));

return buf.data();
}

int main() {
string input(read_stdin());

cout << "You typed:
}

<< input << endl;

Demo: read_stdin.cpp

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Everything is a File (Descriptor)

+ In Unix/Linux design, there is a uniform interface to interact with many aspects
of the computer
" Files
" Network Sockets
" Pipes
= Special Device files

« /dev/random
- Jusr/proc/<proc_id>/fds

31

University of Pennsylvania L11: C++ Refresher & File Descriptors CIT 5950, Spring 2025

Everything is Bytes

/
>

» In our computers, everything is stored as bits and bytes. We can read/write
things other than characters. We just need to tell how many bytes to read

Read an integer: [EISREEENIIGUIDYF
int x;

/
0‘0

read(fd, &x, sizeof(x));

/
*

» Write a struct:

struct Point {
float x, y;

s

Point p{3.0F, 2.0F};
write(fd, &p, sizeof(p));

*

Read a string? Why doesn’t this work [EEEUERS

read(fd, &x, sizeof(x));

32

University of Pennsylvania

L11: C++ Refresher & File Descriptors

That’s it for now

+» More next time!
= Buffering refresher

= Some misc C++ stuff we haven’t covered
- Initializer list
« Assignment operator
« Casts

= Maybeee virtual memory (briefly)

CIT 5950, Spring 2025

33

	Default Section
	Slide 1: C++ Refresher, Move & File Descriptors Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: C++ Programming Refresher
	Slide 8: Lecture Outline
	Slide 9: Memory Allocation in C++
	Slide 10
	Slide 11
	Slide 12: Minimizing Allocations
	Slide 13: Copy Semantics: close up look
	Slide 14: Copy Semantics: close up look
	Slide 15: Move Semantics (C++11)
	Slide 16: Move Semantics: close up look
	Slide 17: Move Semantics: close up look
	Slide 18: Move Semantics: Use Cases
	Slide 19: Move Semantics: Details
	Slide 20: Move Semantics: Details
	Slide 21: std::move
	Slide 22: Demo: Verbose Integer
	Slide 23
	Slide 24: Lecture Outline
	Slide 25: From C to POSIX
	Slide 26: open()/close()
	Slide 27: Reading from a File
	Slide 28: Reading from a File
	Slide 29: Example Read Code
	Slide 30
	Slide 31: Everything is a File (Descriptor)
	Slide 32: Everything is Bytes
	Slide 33: That’s it for now

