
CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

C++ Misc, Buffering & Virtual Memory
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Poll: how are you?

❖ Do you usually eat breakfast?

2

pollev.com/tqm

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Administrivia

❖ HW06 – Hash Table

▪ Posted☺

▪ Due Friday 3/21 at midnight, leaving open till Sunday night tho

▪ AG posted

❖ Mid-semester Survey Posted!

▪ Due Sunday 3/23 & Anonymous

▪ Please give feedback, it is useful for me to make the course better!
And a lot has changed this semester!

3

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Lecture Outline

❖ C++ Misc

❖ Locality & Buffering again

❖ Virtual Memory

4

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Lecture Outline

❖ C++ Misc

▪ Refresh cont.

▪ Assignment operator

▪ Initializer List

▪ Casting

❖ Locality & Buffering again

❖ Virtual Memory

5

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

▪ Final output of this code?

6

pollev.com/tqm

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

❖ How many times does a string constructor get invoked here?

7

pollev.com/tqm

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

❖ How many times does the string destructor get invoked here?

8

pollev.com/tqm

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Lecture Outline

❖ C++ Misc

▪ Refresh cont.

▪ Assignment operator

▪ Initializer List

▪ Casting

❖ Locality & Buffering again

❖ Virtual Memory

9

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Assignment != Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

10

Point w; // default ctor

Point x(1, 2); // two-ints-argument ctor

Point y(x); // copy ctor

Point z = w; // copy ctor

y = x; // assignment operator

Method operator=()

equivalent code:

y.operator=(x);

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:

11

Point& Point::operator=(const Point& rhs) {

 if (this != &rhs) { // (1) always check against this

 x_ = rhs.x_;

 y_ = rhs.y_;

 }

 return *this; // (2) always return *this from op=

}

Point a; // default constructor

a = b = c; // works because = return *this

a = (b = c); // equiv. to above (= is right-associative)

(a = b) = c; // "works" because = returns a non-const

 // reference to *this

Explicit equivalent:

a.operator=(b.operator=(c));

More important when data

members are Dynamic memory

Should be a reference

to *this to allow chaining

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Synthesized Assignment Operator

❖ If you don’t define the assignment operator, C++ will
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables)
of your class

▪ Sometimes the right thing; sometimes the wrong thing

12

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

 SimplePoint x;

 SimplePoint y(x);

 y = x; // invokes synthesized assignment operator

 return EXIT_SUCCESS;

}

Usually wrong whenever a class has dynamically allocated data

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Lecture Outline

❖ C++ Misc

▪ Refresh cont.

▪ Assignment operator

▪ Initializer List

▪ Casting

❖ Locality & Buffering again

❖ Virtual Memory

13

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Initialization Lists

❖ C++ lets you optionally declare an initialization list as part
of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:

14

// constructor with an initialization list

Point::Point(int x, int y) : x_(x), y_(y) {

}

Point::Point(int x, int y) {

 x_ = x;

 y_ = y;

}

data member name

Expression

Body can

be empty

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Initialization vs. Construction

▪ Data members in initializer list are initialized in the order they are defined in the class, not
by the initialization list ordering (!)

• Data members that don’t appear in the initialization list are default initialized/constructed before
body is executed

▪ Initialization preferred to assignment to avoid extra steps

• Real code should never mix the two styles

15

class Point3D {

 public:

 // constructor with 3 int arguments

 Point3D(int x, int y, int z) : y_(y), x_(x) {

 z_ = z;

 }

 private:

 int x_, y_, z_; // data members

}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

1) set x_
2) set y_

3) set z_

(garbage)
4) set z_

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

❖ Not using an initializer list in a constructor is like separately declaring a
variable and initializing it

Example WITHOUT Initializer list

16

class Point {

 public:

 // constructor with 3 int arguments

 Point3D(int x, int y, int z) {

 x_ = x;

 y_ = y;

 z_ = z;

 }

 private:

 int x_, y_, z_; // data members

}; // class Point

Point::Point(int x, int y) {

 int x_;

 int y_;

 int z_;

 x_ = x;

 y_ = y;

 z_ = z;

}

Sort of translates
to…

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

❖ Not using an initializer list in a constructor is like separately declaring a
variable and initializing it

Example WITH Initializer list

17

class Point {

 public:

 // constructor with 3 int arguments

 Point3D(int x, int y, int z) : x_(x), y_(y), z_(z) {

 }

 private:

 int x_, y_, z_; // data members

}; // class Point

Point::Point(int x, int y) {

 int x_ = x;

 int y_ = y;

 int z_ = z;

}

Sort of translates
to…

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

❖ If we don’t use an initializer list for more complex types…
Then this results in unnecessary default construction of fields.

▪ Here, the string name_ has two dynamic allocations

Example WITHOUT Initializer list

18

class Song {

 public:

 // constructor with 3 int arguments

 Song(string name, int rating) {

 name_ = name;

 rating_ = rating;

 }

 private:

 string name_;

 int rating_; // data members

}; // class Song

Song::Song(string name, int rating) {

 string name_;

 int rating_;

 name_ = name;

 rating_ = rating;

}

Sort of translates
to…

Default constructed

assigned

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

❖ What does this code do?
Does it work as intended?

19

pollev.com/tqm

int main() {
int x = 5;
int& y = x;
int& z;

y += 2;
z = x;

z += 1;

cout << x << endl;
}

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

❖ If we don’t use an initializer list for reference data members, it just doesn’t
work

Example WITHOUT Initializer list

20

class Song {

 public:

 // constructor with 3 int arguments

 Song(string name, int rating) {

 name_ = name;

 rating_ = rating;

 }

 private:

 string name_;

 int& rating_; // data members

}; // class Song

Song::Song(string name, int rating) {

 string name_;

 int& rating_;

 name_ = name;

 rating_ = rating;

}

Sort of translates
to…

References
need to be initialized!

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

❖ Use an initializer list ☺

Example WITH Initializer list

21

class Song {

 public:

 // constructor with 3 int arguments

 Song(string name, int rating) :

 name_(name), rating_(rating) {}

 private:

 string name_;

 int& rating_; // data members

}; // class Song

Song::Song(string name, int rating) {

 string name_ = name;

 int& rating_ = rating;

}

Sort of translates
to…

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Lecture Outline

❖ C++ Misc

▪ Refresh cont.

▪ Assignment operator

▪ Initializer List

▪ Casting

❖ Locality & Buffering again

❖ Virtual Memory

22

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Doesn’t change the data, but treats it differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but sometimes the intent is not clear

23

lhs = (new_type) rhs;

(void*) my_ptr

(double) my_int

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Casting in C++

❖ C++ provides an alternative casting style that is more informative:
▪ static_cast<to_type>(expression)

▪ dynamic_cast<to_type>(expression)

▪ const_cast<to_type>(expression)

▪ reinterpret_cast<to_type>(expression)

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

24

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

static_cast

❖ static_cast can convert:

▪ casting void* to T*

▪ Non-pointer conversion

• e.g. float to int

❖ If you are doing a cast not related
to object inheritance, it will
most likely be this one.

25

Any well-defined conversion

void foo() {

 int b = 3;

 float c;

 c = static_cast<float>(b);

}

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

26

class A {

 public:

 int x;

};

class B {

 public:

 float y;

};

class C : public B {

 public:

 char z;

};

void foo() {

 B b; C c;

 // compiler error

 A* aptr = static_cast<A*>(&b);

 // OK

 B* bptr = static_cast<B*>(&c);

 // compiles, but dangerous

 C* cptr = static_cast<C*>(&b);

}

Any well-defined conversion

A

B

C

Unrelated types

Would have worked without cast

What happens when you do cptr->z?

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

dynamic_cast
❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type

❖ dynamic_cast is checked at both
compile time and run time
▪ Casts between

unrelated classes fail
at compile time

▪ Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

❖ Can be used like
instanceof

from java
27

void bar() {

 Base b; Der1 d;

 // OK (run-time check passes)

 Base* bptr = dynamic_cast<Base*>(&d);

 assert(bptr != nullptr);

 // OK (run-time check passes)

 Der1* dptr = dynamic_cast<Der1*>(bptr);

 assert(dptr != nullptr);

 // Run-time check fails, returns nullptr

 bptr = &b;

 dptr = dynamic_cast<Der1*>(bptr);

 assert(dptr != nullptr);

}

dynamiccast.cc
class Base {

 public:

 virtual void foo() { }

 float x;

};

class Der1 : public Base {

 public:

 char x;

};

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

28

void foo(int* x) {

 *x++;

}

void bar(const int* x) {

 foo(x); // compiler error

 foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {

 int x = 7;

 bar(&x);

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

▪ Use any other C++ cast if you can.

▪ You may find it useful in HW3 (which is posted today)

29

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Lecture Outline

❖ C++ Misc

❖ Locality & Buffering again

❖ Virtual Memory

30

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Everything is Bytes

❖ In our computers, everything is stored as bits and bytes. We can read/write
things other than characters. We just need to tell how many bytes to read

❖ Read an integer:

❖ Write a struct:

❖ Read a string? Why doesn’t this work
31

int fd = open(...);
int x;
read(fd, &x, sizeof(x));

struct Point {
 float x, y;
};

Point p{3.0F, 2.0F};
write(fd, &p, sizeof(p));

string x;
read(fd, &x, sizeof(x));

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Lecture Outline

❖ C++ Misc

❖ Locality & Buffering again

❖ Virtual Memory

32

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Memory Hierarchy

33

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

C++ isotream vs POSIX

❖ C++ iostream: user level portable library for input/output streams. Should
work on any environment that has the C++ standard library

• E.g. cout, operator<<, endl, cin, operator>>, getline, etc.

❖ POSIX C API: Portable Operating System Interface. Functions that are
supported by many operating systems to support many OS-level concepts
(Input/Output, networking, processes, pipes, threads…)

34

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered writing

❖ By default, C++ iostream usually uses buffering on top of POSIX:

▪ When one writes with cout, the data being written is copied into a buffer allocated by
C++ iostream inside your process’ address space

▪ As some point, once enough data has been written, the buffer will be “flushed” to the
operating system.

• When the buffer fills (often 1024 or 4096 bytes)

▪ This prevents invoking the write system call and going to the filesystem too often

35

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Writing Example

36

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Writing Example

37

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

C++ buffer

Store ‘h’ into

buffer, so that

we do not go to

filesystem yet

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Writing Example

38

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

C++ buffer

h

Store ‘i’ into

buffer, so that

we do not go to

filesystem yet

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Writing Example

39

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

C++ buffer

h i

When we call destruct the stream,

we deallocate and flush the buffer

to disk

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Writing Example

40

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Unbuffered Writing Example

41

int main(int argc, char** argv) {

 string msg {"hi"};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &(msg.at(0)), sizeof(char));

 write(fd, &(msg.at(1)), sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Unbuffered Writing Example

42

int main(int argc, char** argv) {

 string msg {"hi"};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &(msg.at(0)), sizeof(char));

 write(fd, &(msg.at(1)), sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Unbuffered Writing Example

43

int main(int argc, char** argv) {

 string msg {"hi"};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &(msg.at(0)), sizeof(char));

 write(fd, &(msg.at(1)), sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h

buf

h i

Arrow signifies what
will be executed next

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Unbuffered Writing Example

44

int main(int argc, char** argv) {

 string msg {"hi"};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &(msg.at(0)), sizeof(char));

 write(fd, &(msg.at(1)), sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Unbuffered Writing Example

45

int main(int argc, char** argv) {

 string msg {"hi"};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &(msg.at(0)), sizeof(char));

 write(fd, &(msg.at(1)), sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

Two OS/File system

accesses instead of one

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Reading

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one reads with fread(), a lot of data is copied into a buffer allocated by stdio
inside your process’ address space

▪ Next time you read data, it is retrieved from the buffer

• This avoids having to invoke a system call again

▪ As some point, the buffer will be “refreshed”:

• When you process everything in the buffer (often 1024 or 4096 bytes)

▪ Similar thing happens when you write to a file

46

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Reading Example

47

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

arr

Arrow signifies what
will be executed next

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Reading Example

48

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

}

C++ buffer

hi.txt (disk/OS)

……

h i

arr

Arrow signifies what
will be executed next

h i

Read as much as

you can from the

file

Copy out what

was requested

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Reading Example

49

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

}

C++ buffer

hi.txt (disk/OS)

h i ……

h i

arr

h

Arrow signifies what
will be executed next

Get next char

from buffer

No need to go to file!

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Reading Example

50

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

}

C++ buffer

hi.txt (disk/OS)

h i ……

h i

arr

h i

Arrow signifies what
will be executed next

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffered Reading Example

51

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

arr

h i

Arrow signifies what
will be executed next

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Buffering Details

❖ Buffering doesn’t just mean we read the whole file in one go

▪ We just read a large amount at a time to minimize trips to disk

▪ We only read the full data in a file if the file happens to be smaller than the buffer

❖ The key point is trying minimizing trips to the OS/File System

52

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Lecture Outline

❖ C++ Misc

❖ Locality & Buffering again

❖ Virtual Memory

▪ High Level

▪ Page Replacement

53

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Memory as an array of bytes

❖ Everything in memory is made of bits and bytes

▪ Bits: a single 1 or 0

▪ Byte: 8 bits

❖ Memory is a giant array of bytes where
everything* is stored

▪ Each byte has its own address (“index”)

❖ Some types take up one byte, others more

54

int main() {
 char c = 'A';
 char other = '0';
 int x = 5950;
 int* ptr = &x;
}

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 …

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 0x0000000000000008 …

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Poll: how are you?

❖ What does this print for x and the ptr?

55

pollev.com/tqm

int main() {
 int x = 5;
 int* ptr = &x;
 pid_t pid = fork();

 if (pid == 0) {
 *ptr += 1;
 cout << x << endl;
 cout << ptr << endl;
 exit(EXIT_SUCCESS);
 }

 waitpid(pid, NULL, 0);
 *ptr += 1;
 cout << x << endl;
 cout << ptr << endl;
}

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Review: Processes

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

56

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Memory (as we know it now)

❖ The CPU directly uses an address to access a location in
memory

59

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Problem 1: How does everything fit?

On a 64-bit machine, there are 264
bytes, which is:
18,446,744,073,709,551,616 Bytes
(1.844 x 1019)

60

Laptops usually have around 8GB which is
8,589,934,592 Bytes (8.589 x 109)

(Not to scale; physical memory is smaller than the
period at the end of the sentence compared to the
virtual address space.)

This is just one address space,

consider multiple processes…

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Problem 2: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Problem 2: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

❖ What is stopping process B
from accessing A’s memory?

Process A
using

Process A
using

Process B
using

Process B
using

Process B
using

Process A

Process B

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Problem 3: How do we segment things

❖ A process’ address space contains
many different “segments”

❖ How do we keep track of which
segment is which and the permissions
each segment may have?

▪ (e.g., that Read-Only data can’t be written)

63

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Idea:

❖ We don’t need all processes to have their data in physical memory, just the
ones that are currently running

❖ For the process’ that are currently running: we don’t need all of their data to
be in physical memory, just the parts that are currently being used

❖ Data that isn’t currently stored in physical memory, can be stored elsewhere
(disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

64

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Pages

❖ Memory can be split up into units called “pages”

65

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
are stored on disk

Unused pages may
not have any mapping

disk

 Ram may contain pages from
other active processes

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

This doesn’t work anymore

❖ The CPU directly uses an address to access a location in
memory

66

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Indirection

❖ "Any problem in computer science can be solved by adding another level of
indirection."

▪ David wheeler, inventor of the subroutine (e.g. functions)

❖ The ability to indirectly reference something using a name, reference or
container instead of the value itself. A flexible mapping between a name and a
thing allows chagcing the thing without notifying holders of the name.

▪ May add some work to use indirection

▪ Example: Phone numbers can be transferred to new phones

❖ Idea: instead of directly referring to physical memory, add a level of indirection

67

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Definitions

❖ Addressable Memory: the total amount of memory that can be theoretically
be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is physically available on
the computer

❖ Virtual Memory: An abstraction technique for making memory look larger than
it is and hides many details from the programs.

68

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual
addresses are translated into them by the MMU

69

CPU

0:

1:

2:

3:

4:

5:

...

Virtual address
(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Page Tables

❖ Virtual addresses can be converted into physical addresses via a page table.

❖ There is one page table per processes, managed by the MMU

70

More details about

translation on Wednesday

Virtual page # Valid Physical Page Number

0 0 null

1 1 0

2 1 1

3 0 disk

Valid determines if the

page is in physical memory

If a page is on disk,

MMU will fetch it

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

This doesn’t work anymore

❖ The CPU directly uses an address to access a location in
memory

71

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Indirection

❖ "Any problem in computer science can be solved by adding another level of
indirection."

▪ David wheeler, inventor of the subroutine (e.g. functions)

❖ The ability to indirectly reference something using a name, reference or
container instead of the value itself. A flexible mapping between a name and a
thing allows chagcing the thing without notifying holders of the name.

▪ May add some work to use indirection

▪ Example: Phone numbers can be transferred to new phones

❖ Idea: instead of directly referring to physical memory, add a level of indirection

72

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Idea:

❖ We don’t need all processes to have their data in physical memory, just the
ones that are currently running

❖ For the process’ that are currently running: we don’t need all their data to be
in physical memory, just the parts that are currently being used

❖ Data that isn’t currently stored in physical memory, can be stored elsewhere
(disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

73

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Pages

❖ Memory can be split up into units called “pages”

74

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

 Ram may contain pages from
other active processes

Pages are of fixed size ~4KB

4KB -> (4 * 1024 = 4096 bytes.)

Pages in physical memory

are called “Page frames”

A page may not have an

accompanying page frame

until the page is used

(what the process thinks it has)

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Definitions

❖ Addressable Memory: the total amount of memory that can be theoretically
be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is physically available on
the computer

❖ Virtual Memory: An abstraction technique for making memory look larger than
it is and hides many details from the programs.

75

Sometimes called “virtual memory”

or the “virtual address space”

IT MAY OR MAY NOT

EXIST ONHARDWARE

(like if that memory is

never used)

Physical memory holds a subset of the addressable memory being used

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual
addresses are translated into them by the MMU

76

CPU

0:

1:

2:

3:

4:

5:

...

Virtual address
(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

THIS SLIDE IS KEY TO THE WHOLE IDEA

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Page Tables

❖ Virtual addresses can be converted into physical addresses via a page table.

❖ There is one page table per processes, managed by the MMU

77

More details about

translation later

Virtual page # Valid Physical Page Number

0 0 null //page hasn’t been used yet

1 1 0

2 1 1

3 0 disk

Valid determines if the

page is in physical memory

If a page is on disk,

MMU will fetch it

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Page Fault Exception

❖ An Exception is a transfer of control to the OS kernel in
response to some synchronous event (directly caused by
what was just executed)

❖ In this case, writing to a memory location that is not in
physical memory currently

User code Kernel code

Exception: page fault
Handle page fault:
How it is handled
depends on if this
page has been
handled before

Returns to running thread

Access a
virtual page
not in RAM

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical memory.

❖ If physical memory is full and we need to load in a page, then we choose a
page in physical memory to store on disk in the swap file

❖ If we need to load in a page from disk, how do we decide which page in
physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to disk. It takes a while to
go to disk.

79

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Paging

❖ What happens if this process tries to access an address in page 3?

80

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Paging

❖ What happens if this process tries to access an address in page 3?

81

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

The MMU access the

corresponding frame

(frame 2)

pollev.com/tqm

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Paging

❖ What happens if we need to load in page 1 and physical memory is full?

82

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Paging

❖ What happens if we need to load in page 1 and physical memory is full?

83

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

We get a page fault,

the OS evicts a page

from a frame, loads in

new page into that

frame

pollev.com/tqm

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Lecture Outline

❖ C++ Misc

❖ Locality & Buffering again

❖ Virtual Memory

▪ High Level

▪ Page Replacement

84

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical memory.

❖ If we need to load in a page from disk, how do we decide which page in
physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to disk. It takes a while to
go to disk.

85

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Paging Replacement Algorithms

❖ Simple Algorithms:

▪ Random choice

• “dumbest” method, easy to implement

▪ FIFO

• Replace the page that has been in physical memory the longest

❖ Both could evict a page that is used frequently and would require going to disk
to retrieve it again.

86

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

(Theoretically) Optimal Algorithm

❖ If we knew the precise sequence of requests for pages in advance, we could
optimize for smallest overall number of faults

▪ Always replace the page to be used at the farthest point in future

▪ Optimal (but unrealizable since it requires us to know the future)

❖ Off-line simulations can estimate the performance of a page replacement
algorithm and can be used to measure how well the chosen scheme is doing

❖ Optimal algorithm can be approximated by using the past to predict the future

87

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Least Recently Used (LRU)

❖ Assume pages used recently will be used again soon

▪ Throw out page that has been unused for longest time

❖ Past is usually a good indicator for the future

❖ LRU has significant overhead:

▪ A timestamp for each memory access that is updated in the page table

▪ Sorted list of pages by timestamp

88

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

How to Implement LRU?

❖ Counter-based solution:

▪ Maintain a counter that gets incremented with each memory access

▪ When we need to evict a page, pick the page with lowest counter

❖ List based solution

▪ Maintain a linked list of pages in memory

▪ On every memory access, move the accessed page to end

▪ Pick the front page to evict

❖ HashMap and LinkedList

▪ Maintain a hash map and a linked list

▪ The list acts the same as the list-based solution

▪ The HashMap has keys that are the page number, values that are pointers to the nodes in
the linked list to support O(1) lookup

89

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

LRU Data Structure

❖ We can use a linked list to implement LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

90

Discuss

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

LRU Data Structure

❖ We can use a linked list to implement LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

91

Discuss

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used

O(n)

O(1)

O(1)

Is there a structure we know of that has O(1) lookup time?

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

Chaining Hash Cache

❖ We can use a combination of two data structures:
▪ linked_list<page_info>

▪ hash_map<page_num, node*>

92

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used
list

key value

0

0xFDEA

4312

75

13

O(1) lookup
O(1) remove
O(1) move to front

Implementing and coming up with
this was an interview question for me.
Full time position @ Microsoft

CIT 5950, Spring 2025L12: C++ Misc, Locality, VMUniversity of Pennsylvania

That’s it for now

❖ More next time!

▪ Threads!!!!!!!!!!!!!

▪ My favourite topic ☺

▪ And one of the most useful

93

	Default Section
	Slide 1: C++ Misc, Buffering & Virtual Memory Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Lecture Outline
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Lecture Outline
	Slide 10: Assignment != Construction
	Slide 11: Overloading the “=” Operator
	Slide 12: Synthesized Assignment Operator
	Slide 13: Lecture Outline
	Slide 14: Initialization Lists
	Slide 15: Initialization vs. Construction
	Slide 16: Example WITHOUT Initializer list
	Slide 17: Example WITH Initializer list
	Slide 18: Example WITHOUT Initializer list
	Slide 19
	Slide 20: Example WITHOUT Initializer list
	Slide 21: Example WITH Initializer list
	Slide 22: Lecture Outline
	Slide 23: Explicit Casting in C
	Slide 24: Casting in C++
	Slide 25: static_cast
	Slide 26: static_cast
	Slide 27: dynamic_cast
	Slide 28: const_cast
	Slide 29: reinterpret_cast
	Slide 30: Lecture Outline
	Slide 31: Everything is Bytes
	Slide 32: Lecture Outline
	Slide 33: Memory Hierarchy
	Slide 34: C++ isotream vs POSIX
	Slide 35: Buffered writing
	Slide 36: Buffered Writing Example
	Slide 37: Buffered Writing Example
	Slide 38: Buffered Writing Example
	Slide 39: Buffered Writing Example
	Slide 40: Buffered Writing Example
	Slide 41: Unbuffered Writing Example
	Slide 42: Unbuffered Writing Example
	Slide 43: Unbuffered Writing Example
	Slide 44: Unbuffered Writing Example
	Slide 45: Unbuffered Writing Example
	Slide 46: Buffered Reading
	Slide 47: Buffered Reading Example
	Slide 48: Buffered Reading Example
	Slide 49: Buffered Reading Example
	Slide 50: Buffered Reading Example
	Slide 51: Buffered Reading Example
	Slide 52: Buffering Details
	Slide 53: Lecture Outline
	Slide 54: Memory as an array of bytes
	Slide 55: Poll: how are you?
	Slide 56: Review: Processes
	Slide 57: Multiprocessing: The Illusion
	Slide 58: Multiprocessing: The (Traditional) Reality
	Slide 59: Memory (as we know it now)
	Slide 60: Problem 1: How does everything fit?
	Slide 61: Problem 2: Sharing Memory
	Slide 62: Problem 2: Sharing Memory
	Slide 63: Problem 3: How do we segment things
	Slide 64: Idea:
	Slide 65: Pages
	Slide 66: This doesn’t work anymore
	Slide 67: Indirection
	Slide 68: Definitions
	Slide 69: Virtual Address Translation
	Slide 70: Page Tables
	Slide 71: This doesn’t work anymore
	Slide 72: Indirection
	Slide 73: Idea:
	Slide 74: Pages
	Slide 75: Definitions
	Slide 76: Virtual Address Translation
	Slide 77: Page Tables
	Slide 78: Page Fault Exception
	Slide 79: Problem: Paging Replacement
	Slide 80: Paging
	Slide 81: Paging
	Slide 82: Paging
	Slide 83: Paging
	Slide 84: Lecture Outline
	Slide 85: Problem: Paging Replacement
	Slide 86: Paging Replacement Algorithms
	Slide 87: (Theoretically) Optimal Algorithm
	Slide 88: Least Recently Used (LRU)
	Slide 89: How to Implement LRU?
	Slide 90: LRU Data Structure
	Slide 91: LRU Data Structure
	Slide 92: Chaining Hash Cache
	Slide 93: That’s it for now

