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+~ What is your favourite programming language?
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«» HWO7 — File Readers
= Posted®©

® Due Friday 3/28 at midnight, leaving open till Sunday night tho
= AG posted soon

% Check-in to be posted soon
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Lecture Outline

+~ Threads
+» Data Sharing & Mutex
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Recall: past poll

+» What does this print?

L14: Threads & Mutex

#define MUM_PROCESSES 58
#define LOOP_NUM 186

int sum_total = @;

void loop_inc L
for (int 1 = ®; i < LOOP_NUM; i++) {
sum_total++;

int main{int argc, char** argv) {

o dli's¥J}] 1

pid_t pids[NUM_PROCESSES];

¢ NUM_PROCESSES; i++)

loop_incr();
(EXIT_SUCCESS

for (int i = @; i < NUM PROCESSES; i++) {

waitpid(pids[i], NULL, @);
L
1

printf("%d\n", sum_total);

return EXIT_SUCCESS;

CIT 5950, Spring 2025
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Introducing Threads

+» Separate the concept of a process from the “thread of execution”
" Threads are contained within a process
= Usually called a thread, this is a sequential execution stream within a process

thread

+ In most modern OS’s:

" Threads are the unit of scheduling.



University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

= A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it
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Stack

!

parent

I

Shared Libraries

Threads vs. Processes

fork ()

L14: Threads & Mutex

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata
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Threads vs. Processes

L14: Threads & Mutex

pthread create()

CIT 5950, Spring 2025
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Threads

L14: Threads & Mutex
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+» Threads are like lightweight processes
" They execute concurrently like processes
- Multiple threads can run simultaneously on multiple CPUs/cores
= Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can communicate with each other
through variables and memory

— But, they can interfere with each other — need synchronization for shared resources
-« Each thread has its own stack

+ Analogy: restaurant kitchen
= Kitchen is process

® Chefs are threads

10



University of Pennsylvania

L14: Threads & Mutex CIT 5950, Spring 2025

Single-Threaded Address Spaces

SP

pakent

pakent

Stack

parent

|

Shared Libraries

|

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Before creating a thread

" One thread of execution running
in the address space
- One PC, stack, SP

" That main thread invokes a
function to create a new thread
- Typically pthread create ()

11
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Multi-threaded Address Spaces

_ + After creating a thread

Stack

parent

" Two threads of execution running

SP

pakent

'

in the address space

Stack ;4

« Original thread (parent) and new

Py =

!
|

thread (child)

Shared Libraries

- New stack created for child thread

|

« Child thread has its own values of
the PC and SP

Heap (malloc/free)

= Both threads share the other

Read/Write Segments
.data, .bss

segments (code, heap, globals)

Pl =

pakent

Read-Only Segments
.text, .rodata

- They can cooperatively modify
shared data

12
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POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads

" Declaredinpthread.h

« Not part of the C/C++ language

" To enable support for multithreading, must include —-pthread
flag when compiling and linking with gcc command
« g+t+ —g -Wall —-std=c++23 —-pthread —-o main main.c

" Implemented in C
- Must deal with C programming practices and style

13
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Creating and Terminating Threads

Output parameter.
aives us a “thread descriptor”

e [int pthread create ( / |
pthread t* thread, Fumction pointert

const pthread attr t* attr, Takes & returus vold*
volid* (*start routine) (void*) / to allow “geverics” in €

vold* arg) ;e Argument for the thread functioy

\.

= Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

= Returns 0 on success and an error number on error (can check
' Oy Start_routi
against error constants) & start_routive

covﬁgmmcs
" The new thread runs start routine (arg)

»

»

pthread_create parent

14
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What To Do After Forking Threads?

& [int pthread join(pthread t thread, void** retval);

" Waits for the thread specified by thread to terminate
" The thread equivalent of waitpid ()

" The exit status of the terminated thread is placed in * *r+et+va1%
Parent thread waits for child sTart_roatine

. | U N
thread +o exit, gets the child’s U / continues

return value, and child +hread is > >" -
v create parent joiv
cleaned np

CIT 5950, Spring 2025
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0 Poll Everywhere pollev.com/tqgm

#define MNUM_THREADS 5@

+» What does this print? |l

int sum_total = ©;
void* thread main{void* arg) {
for (int i = @; 1 < LOOP_NUM; i++) {
sum_total++;
¥

return MULL;
¥

int main{int argc, char®** argv) {
pthread t thds[NUM_THREADS];

for (int 1 = @; i < MUM_THREADS; i++) {

if (pthread create(&thds[i], MULL, &thread main, NULL) != @) {

e

fprintf({stderr, "pthread create failed\n");
h
h

for (int 1 = @; i < MUM_THREADS; i++) {
if (pthread join{thds[i], NULL) != @) [
fprintf(stderr, "pthread_join failed\n");
¥
¥

printf{"%d\n", sum_total);

return EXIT_SUCCESS;
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Thread Example

+» See cthreads.cpp

" How do you properly handle memory management?
« Who allocates and deallocates memory?
« How long do you want memory to stick around?

17
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What To Do After Forking Threads?

& [int pthread join(pthread t thread, void** retval);

" Waits for the thread specified by thread to terminate
" The thread equivalent of waitpid ()

" The exit status of the terminated thread is placed in * *r+et+va1%
Parent thread waits for child Srart_roatine

. | N
thread +o exit, gets +he child’s of / continues

returv value, and child thread is > >" =
v create parent joiv

cleaned np

J
0’0

(int pthread detach(pthread t thread); J

= Mark thread specified by thread as detached — it will clean up its resources as soon as it

terminates ‘
Detach 4+ i \ Start _routine
etach a thread. N > X
\
Thread is cleaned np whew i+ is D\h/' continnes

18
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Process Isolation

% Process Isolation is a set of mechanisms implemented to protect processes
from each other and protect the kernel from user processes.
" Processes have separate address spaces
" Processes have privilege levels to restrict access to resources
" |f one process crashes, others will keep running

+ Inter-Process Communication (IPC) is limited, but possible
" Pipes via pipe()
= Sockets via socketpair()
= Shared Memory via shm_open()

19
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Parallelism

% You can gain performance by running things in parallel

® Each thread can use another core

% | have a 3800 x 3800 integer matrix, and | want to count the number of odd
integers in the matrix

20
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Parallelism

%+ | have a 3800 x 3800 integer matrix, and | want to count the number of odd
integers in the matrix

+ | can speed this up by giving each thread a part of the matrix to check!
= Works with threads since they share memory

matrix thread shared —DWNWSVN‘/I@ Y’@"'(AY‘V]S
§ rooe After 4 threads, vo
5 S Qain in speed
S A why? Machive ruv on

MNumber of threads

only has 4 cores

w riatrix thread shared

21
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Parallelism vs Concurrency

+» Two commonly used terms (often mistakenly used interchangeably).

» Concurrency: When there are one or more “tasks” that have overlapping
lifetimes (between starting, running and terminating).
" That these tasks are both running within the same period.

» Parallelism: when one or more “tasks” run at the same instant in time.

thread
A | —— —_—
» Consider the lifetime of these L
threads. Which are concurrent with A? ’ T
Which are parallel with A? X .

time 22
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How fast is fork()?

% ~ 0.5 milliseconds per fork*

%+ ~0.05 milliseconds per thread creation*
= 10x faster than fork()

*Past measurements are not indicative of future performance — depends on hardware, OS, software versions, ...
"  Processes are known to be even slower on Windows

23
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Context Switching

+ Processes are considered “more expensive” than threads. There is more
overhead to enforce isolation

+» Advantages:

L)

" No shared memory between processes
" Processes are isolated. If one crashes, other processes keep going

+ Disadvantages:
" More overhead than threads during creation and context switching

= Cannot easily share memory between processes — typically communicate through the file
system

24
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+» What are all possible outputs of this program?

rvoid* thrd fn (void* arg) { )
int* ptr = reinterpret cast<int*>(arg); Are these output
cout << *ptr << endl; possible?
}
int main() { 1
pthread t thdl{};
pthread t thd2{}; 2
int x =1; . TTTTTTTEmmTEETmTT T
pthread create (&thdl, nullptr, thrd fn, &x); 2
X = 2; 2
pthread create (&thd2, nullptr, thrd fn, &x); | = ccmmemmmmee
1
pthread join(thdl, nullptr); 1
pthread join(thd2, nullptr);
} 2
1
. J

25
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Visualization

int main() { (thrd fn() { ) [ thrd £n() ¢{ )
int x = 1; cout << *ptr ...; cout << *ptr ...;
pthread create(...); return nullptr; return nullptr;
x = 2; } }
pthread create(...); N 7N g

pthread join(...);
pthread join(...);

26
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Visualization: Memory

« The variable x is shared across all threads.

malin ()

int x |1

int main() {

» 1nt x = 1;

pthread create (thdl);
X = 23

pthread create (thd2);

pthread join (thdl);
pthread join (thd2);

27
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University of Pennsylvania

Visualization: Memory

« The variable x is shared across all threads.

main () thdl
int x [1] iﬂtm\

int main () {

int x = 1;
___a»pthread_create(thdl);
X = 2;

pthread create (thd2);

pthread join (thdl);
pthread join (thd2);
}

28
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University of Pennsylvania

Visualization: Memory

« The variable x is shared across all threads.

main () thdl
int x |2 int* ptr [—
int main() {
int x = 1;
pthread create (thdl);
—_ x = 2;

pthread create (thd2);

pthread join (thdl);
pthread join (thd2);
}

29
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Visualization: Memory

L14: Threads & Mutex

« The variable x is shared across all threads.

malin () thdl
e - intm
int main() { thd?
int x = 1;
pthread create(thdl); int* Fﬂ:r
X = 23

—1}+ pthread create (thd2);

pthread join (thdl);
pthread join (thd2);

CIT 5950, Spring 2025
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Sequential Consistency

% Within a single thread, we assume* that there is sequential consistency.
That the order of operations within a single thread are the same as the

program order. main ()

int x = 1
create thdl

X = 2

create thd?2

Within main(), x is set to 1 before thread 1 is created
then thread 1 is created

then x is set to 2

then thread 2 is created

31
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Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1

32
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Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1 /

create thdl /

33
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Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1 /

create thdl /

X = 2

34
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Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1

create thdl /
X = 2

create thd2

35




University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x =1 print x print x

create thdl /
X = 2

create thd2

36
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This is also why total.c malloc’d individual

Visualization: Ordering integers for each thread.

Though it could have also just made an array on the stack

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x =1 print x print x

create thdl /
X = 2

create thd2

We know that x is initialized to 1 before thd1 is created
We know that x is set to 2 and thd1 is created before thd2 is created

Anything else that we know? No. Beyond those statements, we do not know the ordering
of main and the threads running. 37
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Lecture Outline

+» Threads
<~ Data Sharing & Mutex

38
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Shared Resources

% Some resources are shared between threads and processes

+~ Thread Level:
" Memory

" Things shared by processes

« Process level
. Files try to shared things

- terminal input/output
- The network

CIT 5950, Spring 2025
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Data Races

+» Two memory accesses form a data race if different threads access the same
location, and at least one is a write, and they occur one after another

= Means that the result of a program can vary depending on chance (which thread ran first?
When did a thread get interrupted?)

40
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Data Race Example

+ |f your fridge has no milk,
then go out and buy some more
" What could go wrong?

if ('milk) {

buy milk
\ } J
+ |f you live alone:
(J |
L'
s A0
z o
+ If you live with a roommate:
A ! !

z‘@

]
=

41
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0 Poll Everywhere pollev.com/tgm

+ ldea: leave a note! 1f (!note) {
if ('milk) {

leave note
buy milk
remove note

® Does this fix the problem?

A.
}
B. No, could end up with no milk

C. No, could still buy multiple milk
D. We're lost...

42
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0 Poll Everywhere pollev.com/tgm

+ ldea: leave a note! 1f (!note) {
if ('milk) {

® Does this fix the problem?
leave note

We can be interrupted

between checking note and buy milk
leaving note ® remove note
}
A. ) J
B. No, could end up with no milk Jou  roommate
. . . |
(€.) No, could still buy multiple milk Chedk vote |
I Check note
D. We're lost... . Check wilk |
TM?F@ are oﬂ@@f Leave note |
possible scenarios I Check milk
JVW{:: "[@5‘/‘[1‘” : Leave note
multiple milks B ik
Buy milk I
A
time 43
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Threads and Data Races

» Data races might interfere in painful, non-obvious ways, depending on the
specifics of the data structure

+ Example: two threads try to read from and write to the same shared memory
location

" Could get “correct” answer

® Could accidentally read old value
" One thread’s work could get “lost”

+ Example: two threads try to push an item onto the head of the linked list at the
same time

" Could get “correct” answer

" Could get different ordering of items

= Could break the data structure! 2 "
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Remember this?

+» What does this print?

#define MNUM_THREADS 5@
#define LOOP_NUM 188

int sum_total = ©;

void* thread main{wvoid*® arg) {
for (int 1 = @; ¢ LODOP_NUM; i++) {
sum_total++;
1

r
return MULL;

1
i

int main{int argc, char®** argv) {
pthread t thds[NUM_THREADS];

for (int 1 = @; i < MUM_THREADS; i++) {

if (pthread create(&thds[i], MULL, &thread main, MULL) !
fprintf({stderr, "pthread create failed\n");

for (int 1 = @; i < NUM _THREADS; i++) {
if (pthread_join{thds[i], MNULL} ! j IR
fprintf({stderr, "pthread join failed\n");

printf{"%d\n", sum total);

return EXIT_SUCCESS;
1
J

CIT 5950, Spring 2025
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Increment Data Race

+» What seems like a single operation

(++Sum total )

is actually multiple operations in one. The increment
looks something like this in assembly:

\.

(LOAD

ADD

STORE RO into sum total

sum total into RO
RO RO #1

CIT 5950, Spring 2025

+» What happens if we context switch to a different thread while executing these

three instructions?

» Reminder: Each thread has its own registers to work with. Each thread would

have its own RO

46
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Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total | sum total =0

Thread O RO =0
[LOAD sum total into RO\ Thread 1

47
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Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total | sum total =0

Thread O RO =0
[LOAD sum total into RO\ Threadl RO = 0

' LOAD sum total into RO )

48
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Increm

ent Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total | sum total =0

Thread O RO =0

Threadl RO =1
' LOAD sum total into RO )
ADD RO RO #1

(LOAD sum total 1nto RO )
- /

CIT 5950, Spring 2025
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Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total ] sum total =1

Thread O RO =0
/LOAD sum total 1nto RO\ Threadl RO =1

' LOAD sum total 1into RO
ADD RO RO #1
STORE RO into sum total

A J

50
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Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total ] sum total =1

Thread O RO =1
/LOAD sum total 1nto RO\ Threadl RO =1

' LOAD sum total 1into RO
ADD RO RO #1
STORE RO into sum total

A J

ADD RO RO #1

51
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Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total ] sum total =1

Thread O RO =1
/LOAD sum total 1nto RO\ Threadl RO =1

' LOAD sum total 1into RO
ADD RO RO #1
STORE RO into sum total

A J

ADD RO RO #1
\STORE RO into sum_total )

« With this example, we could get 1 as an output instead of 2, even though we
executed ++sum_total twice

52
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Synchronization

+ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

" Need some mechanism to coordinate the threads
- “Let me go first, then you can go”
= Many different coordination mechanisms have been invented

+ Goals of synchronization:

" Liveness — ability to execute in a timely manner
(informally, “something good eventually happens”)

= Safety —avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

53
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Lock Synchronization

+» Use a “Lock” to grant access to a critical section so that only one thread can

operate there at a time

= Executed in an uninterruptible (i.e. atomic) manner

+ Pseudocode:

+» Lock Acquire f

= Wait until the lock is free,
then take it

L)

« Lock Release

= Release the lock

\

// non-critical code

block
lock.acquire () ;_/ iflocked

// critical section
lock.release () ;

// non-critical code

= |f other threads are waiting, wake exactly one up to pass lock to

CIT 5950, Spring 2025
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Lock API

» Locks are constructs that are provided by the operating system to help ensure
synchronization

= Often called a mutex or a semaphore

» Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

» Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

55
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pthreads and Locks

% Another term for a lock is a mutex (“mutual exclusion”)
" pthread.h defines datatype pthread mutex t

& | int pthread mutex init(pthread mutex t* mutex,
const pthread mutexattr t* attr);

" |nitializes a mutex with specified attributes

o (int pthread mutex lock (pthread mutex t* mutex); J

= Acquire the lock — blocks if already locked (-blocks when lock is acquired

o (int pthread mutex unlock (pthread mutex t* mutex); J

®= Releases the lock

> (int pthread mutex destroy(pthread mutex t* mutex);)

" “Uninitializes” a mutex — clean up when done

56
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pthread Mutex Examples

+» See total.cpp

® Data race between threads

+ See total locking.cpp

= Adding a mutex fixes our data race

+ How does total locking compare to sequential code andto total?

= Likely slower than both—only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

®= One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

- See total locking better.cpp

57
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Milk Example — What is the Critical Section?

+ What if we use a lock on the
refrigerator?

" Probably overkill — what if
roommate wanted to get eggs?

+» For performance reasons, only
put what is necessary in the
critical section
"= Only lock the milk

= But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

rfridge.lock()

1f ('milk) {
buy milk

}

fridge.unlock ()

!

'milk lock.lock ()

1f ('milk) |
buy milk
}
milk lock.unlock ()

CIT 5950, Spring 2025
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pthread _mutex_t g_lock, k_lock;
intg=0,k=0;

« There are at least 4 bad |
void funl() {

practices/mistakes done with pthread_mutex_lock(&g_lock);
. . g+=3;
IOCkS 18] the fO”OW|ng COde. pthread_mutex_unlock(&g_lock);
: k++;
Find them. |
" Assumeg lockandk lock void fun2(int a, int b) {
have been initialized and will be Pt:‘fead—m”te"—'“"(&g—'“k)i
g+=2a;
cleaned up. pthread_mutex_unlock(&g_lock);
. . pthread_mutex_lock(&k_lock);
= Assume that these functions will ot oy
be called by multi-threaded pthread_mutex_unlock(&k_lock);
}
code.
void fun3() {
int c;

pthread_mutex_lock(&g lock);

cin >>c; // have the user enter an int
k+=c;
pthread_mutex_unlock(&g_lock);

U y
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That’s all!

+ Next time:
" Deadlocks
" Spinning

® Condition variables!

L14: Threads & Mutex

CIT 5950, Spring 2025
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