University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Threads & Mutex

Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao
Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

+~ What is your favourite programming language?

University of Pennsylvania

L14: Threads & Mutex

Administrivia

«» HWO7 — File Readers
= Posted®©

® Due Friday 3/28 at midnight, leaving open till Sunday night tho
= AG posted soon

% Check-in to be posted soon

CIT 5950, Spring 2025

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Lecture Outline

+~ Threads
+» Data Sharing & Mutex

University of Pennsylvania

Recall: past poll

+» What does this print?

L14: Threads & Mutex

#define MUM_PROCESSES 58
#define LOOP_NUM 186

int sum_total = @;

void loop_inc L
for (int 1 = ®; i < LOOP_NUM; i++) {
sum_total++;

int main{int argc, char** argv) {

o dli's¥J}] 1

pid_t pids[NUM_PROCESSES];

¢ NUM_PROCESSES; i++)

loop_incr();
(EXIT_SUCCESS

for (int i = @; i < NUM PROCESSES; i++) {

waitpid(pids[i], NULL, @);
L
1

printf("%d\n", sum_total);

return EXIT_SUCCESS;

CIT 5950, Spring 2025

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Introducing Threads

+» Separate the concept of a process from the “thread of execution”
" Threads are contained within a process
= Usually called a thread, this is a sequential execution stream within a process

thread

+ In most modern OS’s:

" Threads are the unit of scheduling.

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

= A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

University of Pennsylvania

Stack

!

parent

I

Shared Libraries

Threads vs. Processes

fork ()

L14: Threads & Mutex

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

CIT 5950, Spring 2025

% University of Pennsylvania

Threads vs. Processes

L14: Threads & Mutex

pthread create()

CIT 5950, Spring 2025

University of Pennsylvania

Threads

L14: Threads & Mutex

CIT 5950, Spring 2025

+» Threads are like lightweight processes
" They execute concurrently like processes
- Multiple threads can run simultaneously on multiple CPUs/cores
= Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can communicate with each other
through variables and memory

— But, they can interfere with each other — need synchronization for shared resources
-« Each thread has its own stack

+ Analogy: restaurant kitchen
= Kitchen is process

® Chefs are threads

10

University of Pennsylvania

L14: Threads & Mutex CIT 5950, Spring 2025

Single-Threaded Address Spaces

SP

pakent

pakent

Stack

parent

|

Shared Libraries

|

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Before creating a thread

" One thread of execution running
in the address space
- One PC, stack, SP

" That main thread invokes a
function to create a new thread
- Typically pthread create ()

11

University of Pennsylvania

L14: Threads & Mutex CIT 5950, Spring 2025

Multi-threaded Address Spaces

_ + After creating a thread

Stack

parent

" Two threads of execution running

SP

pakent

'

in the address space

Stack ;4

« Original thread (parent) and new

Py =

!
|

thread (child)

Shared Libraries

- New stack created for child thread

|

« Child thread has its own values of
the PC and SP

Heap (malloc/free)

= Both threads share the other

Read/Write Segments
.data, .bss

segments (code, heap, globals)

Pl =

pakent

Read-Only Segments
.text, .rodata

- They can cooperatively modify
shared data

12

L14: Threads & Mutex CIT 5950, Spring 2025

University of Pennsylvania

POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads

" Declaredinpthread.h

« Not part of the C/C++ language

" To enable support for multithreading, must include —-pthread
flag when compiling and linking with gcc command
« g+t+ —g -Wall —-std=c++23 —-pthread —-o main main.c

" Implemented in C
- Must deal with C programming practices and style

13

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Creating and Terminating Threads

Output parameter.
aives us a “thread descriptor”

e [int pthread create (/ |
pthread t* thread, Fumction pointert

const pthread attr t* attr, Takes & returus vold*
volid* (*start routine) (void*) / to allow “geverics” in €

vold* arg) ;e Argument for the thread functioy

\.

= Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

= Returns 0 on success and an error number on error (can check
' Oy Start_routi
against error constants) & start_routive

covﬁgmmcs
" The new thread runs start routine (arg)

»

»

pthread_create parent

14

University of Pennsylvania L14: Threads & Mutex

What To Do After Forking Threads?

& [int pthread join(pthread t thread, void** retval);

" Waits for the thread specified by thread to terminate
" The thread equivalent of waitpid ()

" The exit status of the terminated thread is placed in * *r+et+va1%
Parent thread waits for child sTart_roatine

. | U N
thread +o exit, gets the child’s U / continues

return value, and child +hread is > >" -
v create parent joiv
cleaned np

CIT 5950, Spring 2025

15

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

#define MNUM_THREADS 5@

+» What does this print? |l

int sum_total = ©;
void* thread main{void* arg) {
for (int i = @; 1 < LOOP_NUM; i++) {
sum_total++;
¥

return MULL;
¥

int main{int argc, char®** argv) {
pthread t thds[NUM_THREADS];

for (int 1 = @; i < MUM_THREADS; i++) {

if (pthread create(&thds[i], MULL, &thread main, NULL) != @) {

e

fprintf({stderr, "pthread create failed\n");
h
h

for (int 1 = @; i < MUM_THREADS; i++) {
if (pthread join{thds[i], NULL) != @) [
fprintf(stderr, "pthread_join failed\n");
¥
¥

printf{"%d\n", sum_total);

return EXIT_SUCCESS;

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Thread Example

+» See cthreads.cpp

" How do you properly handle memory management?
« Who allocates and deallocates memory?
« How long do you want memory to stick around?

17

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

What To Do After Forking Threads?

& [int pthread join(pthread t thread, void** retval);

" Waits for the thread specified by thread to terminate
" The thread equivalent of waitpid ()

" The exit status of the terminated thread is placed in * *r+et+va1%
Parent thread waits for child Srart_roatine

. | N
thread +o exit, gets +he child’s of / continues

returv value, and child thread is > >" =
v create parent joiv

cleaned np

J
0’0

(int pthread detach(pthread t thread); J

= Mark thread specified by thread as detached — it will clean up its resources as soon as it

terminates ‘
Detach 4+ i \ Start _routine
etach a thread. N > X
\
Thread is cleaned np whew i+ is D\h/' continnes

18

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Process Isolation

% Process Isolation is a set of mechanisms implemented to protect processes
from each other and protect the kernel from user processes.
" Processes have separate address spaces
" Processes have privilege levels to restrict access to resources
" |f one process crashes, others will keep running

+ Inter-Process Communication (IPC) is limited, but possible
" Pipes via pipe()
= Sockets via socketpair()
= Shared Memory via shm_open()

19

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Parallelism

% You can gain performance by running things in parallel

® Each thread can use another core

% | have a 3800 x 3800 integer matrix, and | want to count the number of odd
integers in the matrix

20

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Parallelism

%+ | have a 3800 x 3800 integer matrix, and | want to count the number of odd
integers in the matrix

+ | can speed this up by giving each thread a part of the matrix to check!
= Works with threads since they share memory

matrix thread shared —DWNWSVN‘/I@ Y’@"'(AY‘V]S
§ rooe After 4 threads, vo
5 S Qain in speed
S A why? Machive ruv on

MNumber of threads

only has 4 cores

w riatrix thread shared

21

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Parallelism vs Concurrency

+» Two commonly used terms (often mistakenly used interchangeably).

» Concurrency: When there are one or more “tasks” that have overlapping
lifetimes (between starting, running and terminating).
" That these tasks are both running within the same period.

» Parallelism: when one or more “tasks” run at the same instant in time.

thread
A | —— —_—
» Consider the lifetime of these L
threads. Which are concurrent with A? ’ T
Which are parallel with A? X .

time 22

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

How fast is fork()?

% ~ 0.5 milliseconds per fork*

%+ ~0.05 milliseconds per thread creation*
= 10x faster than fork()

*Past measurements are not indicative of future performance — depends on hardware, OS, software versions, ...
" Processes are known to be even slower on Windows

23

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Context Switching

+ Processes are considered “more expensive” than threads. There is more
overhead to enforce isolation

+» Advantages:

L)

" No shared memory between processes
" Processes are isolated. If one crashes, other processes keep going

+ Disadvantages:
" More overhead than threads during creation and context switching

= Cannot easily share memory between processes — typically communicate through the file
system

24

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tqgm

+» What are all possible outputs of this program?

rvoid* thrd fn (void* arg) {)
int* ptr = reinterpret cast<int*>(arg); Are these output
cout << *ptr << endl; possible?
}
int main() { 1
pthread t thdl{};
pthread t thd2{}; 2
int x =1; . TTTTTTTEmmTEETmTT T
pthread create (&thdl, nullptr, thrd fn, &x); 2
X = 2; 2
pthread create (&thd2, nullptr, thrd fn, &x); | = ccmmemmmmee
1
pthread join(thdl, nullptr); 1
pthread join(thd2, nullptr);
} 2
1
. J

25

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Visualization

int main() { (thrd fn() {) [thrd £n() ¢{)
int x = 1; cout << *ptr ...; cout << *ptr ...;
pthread create(...); return nullptr; return nullptr;
x = 2; } }
pthread create(...); N 7N g

pthread join(...);
pthread join(...);

26

CIT 5950, Spring 2025

University of Pennsylvania L14: Threads & Mutex

Visualization: Memory

« The variable x is shared across all threads.

malin ()

int x |1

int main() {

» 1nt x = 1;

pthread create (thdl);
X = 23

pthread create (thd2);

pthread join (thdl);
pthread join (thd2);

27

L14: Threads & Mutex CIT 5950, Spring 2025

University of Pennsylvania

Visualization: Memory

« The variable x is shared across all threads.

main () thdl
int x [1] iﬂtm\

int main () {

int x = 1;
___a»pthread_create(thdl);
X = 2;

pthread create (thd2);

pthread join (thdl);
pthread join (thd2);
}

28

L14: Threads & Mutex CIT 5950, Spring 2025

University of Pennsylvania

Visualization: Memory

« The variable x is shared across all threads.

main () thdl
int x |2 int* ptr [—
int main() {
int x = 1;
pthread create (thdl);
—_ x = 2;

pthread create (thd2);

pthread join (thdl);
pthread join (thd2);
}

29

University of Pennsylvania

Visualization: Memory

L14: Threads & Mutex

« The variable x is shared across all threads.

malin () thdl
e - intm
int main() { thd?
int x = 1;
pthread create(thdl); int* Fﬂ:r
X = 23

—1}+ pthread create (thd2);

pthread join (thdl);
pthread join (thd2);

CIT 5950, Spring 2025

30

CIT 5950, Spring 2025

University of Pennsylvania L14: Threads & Mutex

Sequential Consistency

% Within a single thread, we assume* that there is sequential consistency.
That the order of operations within a single thread are the same as the

program order. main ()

int x = 1
create thdl

X = 2

create thd?2

Within main(), x is set to 1 before thread 1 is created
then thread 1 is created

then x is set to 2

then thread 2 is created

31

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1

32

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1 /

create thdl /

33

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1 /

create thdl /

X = 2

34

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1

create thdl /
X = 2

create thd2

35

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x =1 print x print x

create thdl /
X = 2

create thd2

36

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

This is also why total.c malloc’d individual

Visualization: Ordering integers for each thread.

Though it could have also just made an array on the stack

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x =1 print x print x

create thdl /
X = 2

create thd2

We know that x is initialized to 1 before thd1 is created
We know that x is set to 2 and thd1 is created before thd2 is created

Anything else that we know? No. Beyond those statements, we do not know the ordering
of main and the threads running. 37

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Lecture Outline

+» Threads
<~ Data Sharing & Mutex

38

University of Pennsylvania L14: Threads & Mutex

Shared Resources

% Some resources are shared between threads and processes

+~ Thread Level:
" Memory

" Things shared by processes

« Process level
. Files try to shared things

- terminal input/output
- The network

CIT 5950, Spring 2025

39

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Data Races

+» Two memory accesses form a data race if different threads access the same
location, and at least one is a write, and they occur one after another

= Means that the result of a program can vary depending on chance (which thread ran first?
When did a thread get interrupted?)

40

University of Pennsylvania

L14: Threads & Mutex

CIT 5950, Spring 2025

Data Race Example

+ |f your fridge has no milk,
then go out and buy some more
" What could go wrong?

if ('milk) {

buy milk
\ } J
+ |f you live alone:
(J |
L'
s A0
z o
+ If you live with a roommate:
A ! !

z‘@

]
=

41

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tgm

+ ldea: leave a note! 1f (!note) {
if ('milk) {

leave note
buy milk
remove note

® Does this fix the problem?

A.
}
B. No, could end up with no milk

C. No, could still buy multiple milk
D. We're lost...

42

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tgm

+ ldea: leave a note! 1f (!note) {
if ('milk) {

® Does this fix the problem?
leave note

We can be interrupted

between checking note and buy milk
leaving note ® remove note
}
A.) J
B. No, could end up with no milk Jou roommate
. . . |
(€.) No, could still buy multiple milk Chedk vote |
I Check note
D. We're lost... . Check wilk |
TM?F@ are oﬂ@@f Leave note |
possible scenarios I Check milk
JVW{:: "[@5‘/‘[1‘” : Leave note
multiple milks B ik
Buy milk I
A
time 43

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Threads and Data Races

» Data races might interfere in painful, non-obvious ways, depending on the
specifics of the data structure

+ Example: two threads try to read from and write to the same shared memory
location

" Could get “correct” answer

® Could accidentally read old value
" One thread’s work could get “lost”

+ Example: two threads try to push an item onto the head of the linked list at the
same time

" Could get “correct” answer

" Could get different ordering of items

= Could break the data structure! 2 "

University of Pennsylvania

L14: Threads & Mutex

Remember this?

+» What does this print?

#define MNUM_THREADS 5@
#define LOOP_NUM 188

int sum_total = ©;

void* thread main{wvoid*® arg) {
for (int 1 = @; ¢ LODOP_NUM; i++) {
sum_total++;
1

r
return MULL;

1
i

int main{int argc, char®** argv) {
pthread t thds[NUM_THREADS];

for (int 1 = @; i < MUM_THREADS; i++) {

if (pthread create(&thds[i], MULL, &thread main, MULL) !
fprintf({stderr, "pthread create failed\n");

for (int 1 = @; i < NUM _THREADS; i++) {
if (pthread_join{thds[i], MNULL} ! j IR
fprintf({stderr, "pthread join failed\n");

printf{"%d\n", sum total);

return EXIT_SUCCESS;
1
J

CIT 5950, Spring 2025

45

University of Pennsylvania

L14: Threads & Mutex

Increment Data Race

+» What seems like a single operation

(++Sum total)

is actually multiple operations in one. The increment
looks something like this in assembly:

\.

(LOAD

ADD

STORE RO into sum total

sum total into RO
RO RO #1

CIT 5950, Spring 2025

+» What happens if we context switch to a different thread while executing these

three instructions?

» Reminder: Each thread has its own registers to work with. Each thread would

have its own RO

46

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total | sum total =0

Thread O RO =0
[LOAD sum total into RO\ Thread 1

47

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total | sum total =0

Thread O RO =0
[LOAD sum total into RO\ Threadl RO = 0

' LOAD sum total into RO)

48

University of Pennsylvania

L14: Threads & Mutex

Increm

ent Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total | sum total =0

Thread O RO =0

Threadl RO =1
' LOAD sum total into RO)
ADD RO RO #1

(LOAD sum total 1nto RO)
- /

CIT 5950, Spring 2025

49

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total] sum total =1

Thread O RO =0
/LOAD sum total 1nto RO\ Threadl RO =1

' LOAD sum total 1into RO
ADD RO RO #1
STORE RO into sum total

A J

50

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total] sum total =1

Thread O RO =1
/LOAD sum total 1nto RO\ Threadl RO =1

' LOAD sum total 1into RO
ADD RO RO #1
STORE RO into sum total

A J

ADD RO RO #1

51

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total] sum total =1

Thread O RO =1
/LOAD sum total 1nto RO\ Threadl RO =1

' LOAD sum total 1into RO
ADD RO RO #1
STORE RO into sum total

A J

ADD RO RO #1
\STORE RO into sum_total)

« With this example, we could get 1 as an output instead of 2, even though we
executed ++sum_total twice

52

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Synchronization

+ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

" Need some mechanism to coordinate the threads
- “Let me go first, then you can go”
= Many different coordination mechanisms have been invented

+ Goals of synchronization:

" Liveness — ability to execute in a timely manner
(informally, “something good eventually happens”)

= Safety —avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

53

University of Pennsylvania L14: Threads & Mutex

Lock Synchronization

+» Use a “Lock” to grant access to a critical section so that only one thread can

operate there at a time

= Executed in an uninterruptible (i.e. atomic) manner

+ Pseudocode:

+» Lock Acquire f

= Wait until the lock is free,
then take it

L)

« Lock Release

= Release the lock

\

// non-critical code

block
lock.acquire () ;_/ iflocked

// critical section
lock.release () ;

// non-critical code

= |f other threads are waiting, wake exactly one up to pass lock to

CIT 5950, Spring 2025

54

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

Lock API

» Locks are constructs that are provided by the operating system to help ensure
synchronization

= Often called a mutex or a semaphore

» Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

» Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

55

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

pthreads and Locks

% Another term for a lock is a mutex (“mutual exclusion”)
" pthread.h defines datatype pthread mutex t

& | int pthread mutex init(pthread mutex t* mutex,
const pthread mutexattr t* attr);

" |nitializes a mutex with specified attributes

o (int pthread mutex lock (pthread mutex t* mutex); J

= Acquire the lock — blocks if already locked (-blocks when lock is acquired

o (int pthread mutex unlock (pthread mutex t* mutex); J

®= Releases the lock

> (int pthread mutex destroy(pthread mutex t* mutex);)

" “Uninitializes” a mutex — clean up when done

56

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

pthread Mutex Examples

+» See total.cpp

® Data race between threads

+ See total locking.cpp

= Adding a mutex fixes our data race

+ How does total locking compare to sequential code andto total?

= Likely slower than both—only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

®= One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

- See total locking better.cpp

57

University of Pennsylvania

L14: Threads & Mutex

Milk Example — What is the Critical Section?

+ What if we use a lock on the
refrigerator?

" Probably overkill — what if
roommate wanted to get eggs?

+» For performance reasons, only
put what is necessary in the
critical section
"= Only lock the milk

= But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

rfridge.lock()

1f ('milk) {
buy milk

}

fridge.unlock ()

!

'milk lock.lock ()

1f ('milk) |
buy milk
}
milk lock.unlock ()

CIT 5950, Spring 2025

58

University of Pennsylvania L14: Threads & Mutex CIT 5950, Spring 2025

0 Poll Everywhere pollev.com/tgm

pthread _mutex_t g_lock, k_lock;
intg=0,k=0;

« There are at least 4 bad |
void funl() {

practices/mistakes done with pthread_mutex_lock(&g_lock);
. . g+=3;
IOCkS 18] the fO”OW|ng COde. pthread_mutex_unlock(&g_lock);
: k++;
Find them. |
" Assumeg lockandk lock void fun2(int a, int b) {
have been initialized and will be Pt:‘fead—m”te"—'“"(&g—'“k)i
g+=2a;
cleaned up. pthread_mutex_unlock(&g_lock);
. . pthread_mutex_lock(&k_lock);
= Assume that these functions will ot oy
be called by multi-threaded pthread_mutex_unlock(&k_lock);
}
code.
void fun3() {
int c;

pthread_mutex_lock(&g lock);

cin >>c; // have the user enter an int
k+=c;
pthread_mutex_unlock(&g_lock);

U y

59

University of Pennsylvania

That’s all!

+ Next time:
" Deadlocks
" Spinning

® Condition variables!

L14: Threads & Mutex

CIT 5950, Spring 2025

61

	Default Section
	Slide 1: Threads & Mutex Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Recall: past poll
	Slide 6: Introducing Threads
	Slide 7: Threads vs. Processes
	Slide 8: Threads vs. Processes
	Slide 9: Threads vs. Processes
	Slide 10: Threads
	Slide 11: Single-Threaded Address Spaces
	Slide 12: Multi-threaded Address Spaces
	Slide 13: POSIX Threads (pthreads)
	Slide 14: Creating and Terminating Threads
	Slide 15: What To Do After Forking Threads?
	Slide 16: Poll: how are you?
	Slide 17: Thread Example
	Slide 18: What To Do After Forking Threads?
	Slide 19: Process Isolation
	Slide 20: Parallelism
	Slide 21: Parallelism
	Slide 22: Parallelism vs Concurrency
	Slide 23: How fast is fork()?
	Slide 24: Context Switching
	Slide 25: Polling Question
	Slide 26: Visualization
	Slide 27: Visualization: Memory
	Slide 28: Visualization: Memory
	Slide 29: Visualization: Memory
	Slide 30: Visualization: Memory
	Slide 31: Sequential Consistency
	Slide 32: Visualization: Ordering
	Slide 33: Visualization: Ordering
	Slide 34: Visualization: Ordering
	Slide 35: Visualization: Ordering
	Slide 36: Visualization: Ordering
	Slide 37: Visualization: Ordering
	Slide 38: Lecture Outline
	Slide 39: Shared Resources
	Slide 40: Data Races
	Slide 41: Data Race Example
	Slide 42: Data Race Example
	Slide 43: Data Race Example
	Slide 44: Threads and Data Races
	Slide 45: Remember this?
	Slide 46: Increment Data Race
	Slide 47: Increment Data Race
	Slide 48: Increment Data Race
	Slide 49: Increment Data Race
	Slide 50: Increment Data Race
	Slide 51: Increment Data Race
	Slide 52: Increment Data Race
	Slide 53: Synchronization
	Slide 54: Lock Synchronization
	Slide 55: Lock API
	Slide 56: pthreads and Locks
	Slide 57: pthread Mutex Examples
	Slide 58: Milk Example – What is the Critical Section?
	Slide 59: Concurrency
	Slide 61: That’s all!

