
CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Threads & Mutex
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Poll: how are you?

❖ Any questions on registration I can help with?

2

pollev.com/tqm

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Administrivia

❖ HW08 – Threads

▪ Posted☺

▪ Due Friday 4/04 at midnight, leaving open till Sunday night tho

▪ AG posted soon

3

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Lecture Outline

❖ Lock Refresh

❖ Liveness & Deadlocks

❖ Race Condition vs Data Race

❖ Spinning & Condition Variable

4

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

5

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Lecture Outline

❖ Lock Refresh

❖ Liveness & Deadlocks

❖ Race Condition vs Data Race

❖ Spinning & Condition Variable

10

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Liveness

❖ Liveness: A set of properties that ensure that threads execute in a timely
manner, despite any contention on shared resources.

❖ When is called, the calling thread blocks (stops
executing) until it can acquire the lock.

▪ What happens if the thread can never acquire the lock?

11

pthread_mutex_lock();

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads cannot acquire that
lock

❖ See release_locks.cpp

▪ Example where locks are not released once critical section is completed.

12

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.cpp

❖ Note: there are many algorithms for detecting/preventing deadlocks

13

Neither thread can make progress 

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Deadlock Definition

❖ A computer has multiple threads, finite resources, and the threads want to
acquire those resources

▪ Some of these resources require exclusive access

❖ A threads typically accumulate resources over time

▪ If it fails to acquire a resource, it will (by default) wait until it is available before doing
anything

❖ Deadlock: Cyclical dependency on resource acquisition so that none of them
can proceed

▪ Even if all unblocked threads release, deadlock will continue

14

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Circular Wait Example

❖ A cycle can exist of more than just two threads:

15

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it has already
acquired?

❖ See recursive_deadlock.cpp

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until the lock is released

16

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked if the thread already
has locked it. These locks are called recursive locks (sometimes called re-
entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of times it was
acquired

❖ Has its uses, but generally discouraged.

17

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

18

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

Liveness: Milk Example – What is the Critical Section?

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Concurrency

❖ There are at least 4 bad
practices/mistakes done with
locks in the following code.
Find them.
▪ Assume g_lock and k_lock

have been initialized and will be
cleaned up.

▪ Assume that these functions will
be called by multi-threaded
code.

19

pollev.com/tqm

pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c; // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Lecture Outline

❖ Lock Refresh

❖ Liveness & Deadlocks

❖ Race Condition vs Data Race

❖ Spinning & Condition Variable

21

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Is there a data race here?

❖ Does this code have a data
race?

▪ Can this program enter an
“invalid” (unexpected or error)
state from having concurrent
memory accesses?

❖ Follow up: Does this code
feel good?

22

pollev.com/tqm

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a shared resource, with at
least one write, that can cause the shared resource to enter an invalid or
“unexpected” state.

❖ Race-Condition: Where the program has different behaviour depending on the
ordering of concurrent threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a race condition

23

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Thread Communication

❖ Sometimes threads may need to communicate with each other to know when
they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some operation

▪ The consumer thread can only produce things once the producer has produced them

❖ Need to make sure this communication has no data race or race condition

24

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Threads & Mutex

❖ We want to edit the code from the
previous example so that consumer
thread doesn’t exit until print_ok
is true.

❖ How do we do this?

25

pollev.com/tqm

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Lecture Outline

❖ Lock Refresh

❖ Liveness & Deadlocks

❖ Race Condition vs Data Race

❖ Spinning & Condition Variable

26

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Aside: sleep()

❖ unistd.h defines the function:

▪ Makes the calling thread sleep for the specified number of seconds, resuming execution
afterwards

❖ Useful for manipulating scheduling for testing and demonstration purposes

▪ Also for asynchronous/non-blocking I/O, but not covered in this course.

❖ May be necessary for HW9 so that auto-graders work 

27

unsigned int sleep(unsigned int seconds);

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Thread Communication: Naïve Solution

❖ Consider the example where a thread must wait to be notified before it can
print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the consumer thread can print

❖ See spinning.cpp

▪ The thread in the loop uses A LOT of cpu just checking until the value is safe

▪ Use top to see CPU util

❖ Alternative: Condition variables

28

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily release while waiting

▪ Once notified, the thread will re-acquire a lock and resume execution

29

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

30

int pthread_cond_init(pthread_cond_t* cond,

 const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition variable. Once unblocked (by
one of the functions below), function will return and calling thread will have the mutex
locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

31

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

 pthread_mutex_t* mutex);

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

pthread_cond_t Internal Pseudo-Code

❖ Here is some pseudo code to help understand condition variables

32

int pthread_cond_wait(pthread_cond_t* cond, pthead_mutex_t* mutex) {
 pthread_mutex_unlock(&lock);
 sleep_on_cond(cond); // sleeps till cond wakes them up
 pthread_mutex_lock(&lock);
 return 0;

}

int pthread_cond_signal(pthread_cond_t* cond) {
 wakeup_a_thread(cond); // wake's up a thread sleeping on the cond
 return 0;

}

int pthread_cond_broadcast(pthread_cond_t* cond) {
 for (thread_sleeping : cond->asleep) { // wake's up all threads
 wakeup(thread_sleeping);
 }
 return 0;

}

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Demo: cond.cpp

❖ See cond.cpp

▪ Changes our spinning code to use a condition variable properly

▪ No issues with cpu utilization!

33

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

34

Critical SectionEntrance Exit

sleeping
room

Waiting
room

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

35

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock

A thread enters the critical section by acquiring a lock

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

36

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

A thread can exit the critical section by acquiring a lock

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

37

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in
state, it can “go to sleep” until someone wakes it up later.
It will release the lock implicitly when it goes to sleep

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

38

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

When a thread modifies state and then leaves the critical section, it can also call
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

39

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock

CIT 5950, Spring 2025L15: Mutex, Deadlock & CondUniversity of Pennsylvania

That’s all!

❖ Next time:

▪ Condition variables again (if people are confused which they probably will be)!

▪ Thread Pools & Efficient Utilization of CPU

▪ Basic Parallel Algorithms & Situations

40

	Default Section
	Slide 1: Threads & Mutex Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Lock Synchronization
	Slide 6: Threads & Mutex
	Slide 8: Threads & Mutex
	Slide 10: Lecture Outline
	Slide 11: Liveness
	Slide 12: Liveness Failure: Releasing locks
	Slide 13: Liveness Failure: Deadlocks
	Slide 14: Deadlock Definition
	Slide 15: Circular Wait Example
	Slide 16: Liveness Failure: Mutex Recursion
	Slide 17: Aside: Recursive Locks
	Slide 18
	Slide 19: Concurrency
	Slide 21: Lecture Outline
	Slide 22: Is there a data race here?
	Slide 23: Race Condition vs Data Race
	Slide 24: Thread Communication
	Slide 25: Threads & Mutex
	Slide 26: Lecture Outline
	Slide 27: Aside: sleep()
	Slide 28: Thread Communication: Naïve Solution
	Slide 29: Condition Variables
	Slide 30: pthreads and condition variables
	Slide 31: pthreads and condition variables
	Slide 32: pthread_cond_t Internal Pseudo-Code
	Slide 33: Demo: cond.cpp
	Slide 34: Condition Variable & Mutex Visualization
	Slide 35: Condition Variable & Mutex Visualization
	Slide 36: Condition Variable & Mutex Visualization
	Slide 37: Condition Variable & Mutex Visualization
	Slide 38: Condition Variable & Mutex Visualization
	Slide 39: Condition Variable & Mutex Visualization
	Slide 40: That’s all!

