
CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Socket Programming (Cont)
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

❖ What questions do you have about sockets?

2

pollev.com/tqm

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Administrivia

❖ Final Project Details Coming soon-ish

▪ Done in pairs

▪ Pair signup is due @midnight tomorrow. Random pairs released on Wednesday

▪ Details to be posted today

▪ SOME of it is auto graded. There is a lot of functionality that is not autograded that you
will need to implement

▪ Demo in a little bit ☺

❖ No more HW assignments other than the project and catching up on old
assignments!

❖ TA Application is out! I highly recommend it ☺

3

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Lecture Outline

❖ Final Project Demo

❖ Client-Side Socket Programming (Wrap-up)

❖ Server-Side Socket Programming

4

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Project demo

❖ ./searchserver 5950 ./test_tree

▪ Run giving a port and a directory containing files to search over

▪ “results found” doesn’t show up until you actually do a search

• Results in order

▪ Multi word queries

▪ Can click link to open the file

• Why /static/ in the links?

▪ Inspect page to look at HTML (We will give you some sample HTML and HTTP so you know
what it looks like)

❖ Can take a long time to run, so you can run on smaller subdirectories of the
test_tree:

▪ ./searchserver 5950 ./test_tree/tiny

▪ ./searchserver 5950 ./test_tree/books
5

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

❖ What questions do you have about the project?

6

pollev.com/tqm

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Lecture Outline

❖ Final Project Demo

❖ Client-Side Socket Programming (Wrap-up)

❖ Server-Side Socket Programming

7

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Socket API: Client TCP Connection

❖ We’ll start by looking at the API from the point of view of a client connecting to
a server over TCP

❖ There are five steps:

1) Figure out the IP address and port to which to connect

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

8

Same as

file I/O

New

stuff

** Today **

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 1: Figure Out IP Address and Port

❖ Several parts:

▪ Network addresses

▪ Data structures for address info

▪ DNS (Domain Name System) – finding IP addresses

9

C data structures

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Domain Name System

❖ People tend to use DNS names, not IP addresses

▪ The Sockets API lets you convert between the two

▪ It’s a complicated process, though:

• A given DNS name can have many IP addresses

• Many different IP addresses can map to the same DNS name

– An IP address will reverse map into at most one DNS name

• A DNS lookup may require interacting with many DNS servers

❖ You can use the Linux program “dig” to explore DNS

▪ dig @server name type (+short)

• server: specific name server to query

• type: A (IPv4), AAAA (IPv6), ANY (includes all types)

10

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

DNS Hierarchy

11

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root
Name Servers

Top-level
Domain Servers

• • • news www• • •

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Resolving DNS Names

❖ The POSIX way is to use getaddrinfo()

▪ A complicated system call found in #include <netdb.h>

▪ Basic idea:

• Tell getaddrinfo() which host and port you want resolved

– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected

• getaddrinfo() gives you a list of results packed into an “addrinfo” structure/linked list

– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo later using freeaddrinfo()

12

int getaddrinfo(const char* hostname,

 const char* service,

 const struct addrinfo* hints,

 struct addrinfo** res);
Output param

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

getaddrinfo

❖ getaddrinfo() arguments:

▪ hostname – domain name or IP address string

▪ service – port # (e.g. "80") or service name (e.g. "www")
 or NULL/nullptr

▪

13

struct addrinfo {

 int ai_flags; // additional flags

 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

 size_t ai_addrlen; // length of socket addr in bytes

 struct sockaddr* ai_addr; // pointer to socket addr

 char* ai_canonname; // canonical name

 struct addrinfo* ai_next; // can form a linked list

};

Hints Parameter

Can use 0 or nullptr to

indicate you don’t want to

filter results on that

characteristic

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

DNS Lookup Procedure

1) Create a struct addrinfo hints

2) Zero out hints for “defaults”

3) Set specific fields of hints as desired

4) Call getaddrinfo() using &hints

5) Resulting linked list res will have all fields appropriately set

❖ See dnsresolve.cpp
14

struct addrinfo {

 int ai_flags; // additional flags

 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

 size_t ai_addrlen; // length of socket addr in bytes

 struct sockaddr* ai_addr; // pointer to socket addr

 char* ai_canonname; // canonical name

 struct addrinfo* ai_next; // can form a linked list

};

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Socket API: Client TCP Connection

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

15

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

16

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <iostream>

int main(int argc, char** argv) {

 int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

 if (socket_fd == -1) {

 std::cerr << strerror(errno) << std::endl;

 return EXIT_FAILURE;

 }

 close(socket_fd);

 return EXIT_SUCCESS;

}

socket.cpp

// check for error

// clean up

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 3: Connect to the Server

❖ The connect() system call establishes a connection to
a remote host

▪

• sockfd: Socket file description from Step 2

• addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

• This involves ~2 round trips across the network

17

int connect(int sockfd, const struct sockaddr* addr,

 socklen_t addrlen);

result from socket()

result from getaddrinfo()

Waits on an event before returning

Performs a “Handshake”

With the server

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Connect Example

❖ See connect.cpp

18

// Get an appropriate sockaddr structure.

struct sockaddr_storage addr;

size_t addrlen;

LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.

int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);

if (socket_fd == -1) {

 cerr << "socket() failed: " << strerror(errno) << endl;

 return EXIT_FAILURE;

}

// Connect the socket to the remote host.

int res = connect(socket_fd,

 reinterpret_cast<sockaddr*>(&addr),

 addrlen);

if (res == -1) {

 cerr << "connect() failed: " << strerror(errno) << endl;

}

// Helper function that calls

// getaddrinfo()

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Sockets are sort of like files

❖ From this point it just turns into

▪ Read/write

▪ Close

❖ Looks like a file right?

❖ But this isn’t a file, it’s a network connection. It just looks like one

▪ File

▪ Terminal Input/Output

▪ Pipe

▪ Network Connection (More similar to reading/writing terminal or pipe than a file)

19

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Sockets are sort of like files

❖ When dealing with stream sockets (TCP) Sockets, the TCP part is done for us.
We can deal with the stream ABSTRACTION

▪ Stream: That the bytes show up in order reliably

❖ How do you think a network connection may behave differently from a file?

▪ If it helps you can compare a file to reading/writing into a book
and reading/writing a socket to texting/messaging a friend.

20

pollev.com/tqm

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 4: read()

❖ If there is data that has already been received by the network stack, then read
will return immediately with it
▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read() will block until
something arrives

▪ How might this cause deadlock?

▪ Can read() return 0? (EOF)

21

pollev.com/tqm

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 4: write()

❖ write() queues your data in a send buffer in the OS and then returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet received the data!

❖ If there is no more space left in the send buffer, by default write() will block

23

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

❖ When we call write(), what data do we need to pass to it when writing over
the network?

A. Any data our application needs to send

B. All of the above + TCP info
 (sequence number, port, …)

C. All of the above + IP info
 (source & dest IP addresses…)

D. All of the above + Ethernet info
 (source & dest MAC addresses)

E. We’re lost…
24

pollev.com/tqm

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Read/Write Example

❖ See sendreceive.cpp

26

while (1) {

 int wres = write(socket_fd, readbuf, res);

 if (wres == 0) {

 cerr << "socket closed prematurely" << endl;

 close(socket_fd);

 return EXIT_FAILURE;

 }

 if (wres == -1) {

 if (errno == EINTR)

 continue;

 cerr << "socket write failure: " << strerror(errno) << endl;

 close(socket_fd);

 return EXIT_FAILURE;

 }

 break;

}

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 5: close()

❖

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors associated with it on both
ends of the connection

27

int close(int fd);

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Demo: sendreceive.cpp

❖ Demo, use netcat –l <port> to listen on a port and use
./sendreceive localhost <port> to connect

❖ Code Walkthrough

▪ What hints are we looking for when we LookupName?
What do you think they mean?

▪ What abstraction layer of the OSI model does this program exist in?

▪ What if we wanted to make this code read and respond more than once?
What if we wanted it to keep going until the connection is closed by the server?

28

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Lecture Outline

❖ Final Project Demo

❖ Client-Side Socket Programming (Wrap-up)

❖ Server-Side Socket Programming

29

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Socket API: Server TCP Connection

❖ Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen*

2) Create a socket

3) bind() the socket to the address(es) and port

4) Tell the socket to listen() for incoming clients

5) accept() a client connection

6) .read() and write() to that connection

7) close() the client socket

30

Analogy: opening a (boba) shop!

Finding a good location

Sometimes the location is already

known, so this may not be a step.Building the store

Advertising the store

Open shop!

Next customer in line, Please!

Transaction occurs

Customer leaves shop

or refuse service

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Servers

❖ Servers can have multiple IP addresses (“multihoming”)

▪ Usually have at least one externally-visible IP address, as well as a local-only address
(127.0.0.1)

❖ The goals of a server socket are different than a client socket

▪ Want to bind the socket to a particular port of one or more IP addresses of the server

▪ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the correct server file descriptor

31

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 1: Figure out IP address(es) & Port

❖ Step 1: getaddrinfo() invocation may or may not be needed (but we’ll
use it)

▪ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation

• Even if the machine has a static IP address, don’t wire it into the code – either look it up
dynamically or use a configuration file

▪ Can request listen on all local IP addresses by passing NULL as hostname and setting
AI_PASSIVE in hints.ai_flags

• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

32

Common and hard to find bug

is forgetting to set this

Not needed for project tho!

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 2: Create a Socket

❖ Step 2: socket() call is same as before

▪ Can directly use constants or fields from result of getaddrinfo()

▪ Recall that this just returns a file descriptor – IP address and port are not associated with
socket yet

33

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 3: Bind the socket

❖

▪ Looks nearly identical to connect()!

▪ Returns 0 on success, -1 on error

❖ Some specifics for addr:

▪ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?

• POSIX systems can handle IPv4 clients via IPv6 ☺

▪ Port: port in network byte order (htons() is handy)

▪ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

34

int bind(int sockfd, const struct sockaddr* addr,

 socklen_t addrlen);

We’ll just pass in results from

getaddrinfo() & socket()

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 4: Listen for Incoming Clients

❖

▪ Tells the OS that the socket is a listening socket that clients can connect to

▪ backlog: maximum length of connection queue

• Gets truncated, if necessary, to defined constant SOMAXCONN

• The OS will refuse new connections once queue is full until server accept()s them (removing
them from the queue)

▪ Returns 0 on success, -1 on error

▪ Clients can start connecting to the socket as soon as listen() returns

• Server can’t use a connection until you accept() it

35

int listen(int sockfd, int backlog);

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Example #1

❖ See server_bind_listen.cpp

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections for 20 seconds

• Can connect to it using netcat (nc)

❖ Questions:

▪ Why do we have a for loop over line 52?

• What are we looping over?

• Why can’t we just use the first thing?

• Why do we call socket and bind in the loop and not after?

36

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Step 5: Accept a Client Connection

❖

▪ Returns an active, ready-to-use socket file descriptor connected to a client (or -1 on error)

• sockfd must have been created, bound, and listening

• Pulls a queued connection or waits for an incoming one

▪ addr and addrlen are output parameters

• *addrlen should initially be set to sizeof(*addr), gets overwritten with the size of the
client address

• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address

– Use getnameinfo() to do a reverse DNS lookup on the client

37

int accept(int sockfd, struct sockaddr* addr,

 socklen_t* addrlen);

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Example #2

❖ See server_accept_rw_close.cpp

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

▪ Previous example is pretty much just the Listen() function in this code

▪ Accepts connections as they come

▪ Echoes any data the client sends to it on stdout and also sends it back to the client

❖ Question:

▪ Why is accept in a while(true) loop?

▪ Why doesn’t listen need to be in the loop with accept?

▪ Does this handle multiple client? If so, how?

38

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Something to Note

❖ Our server code is not concurrent

▪ Single thread of execution

▪ The thread blocks while waiting for the next connection

▪ The thread blocks waiting for the next message from the connection

❖ A crowd of clients is, by nature, concurrent

▪ While our server is handling the next client, all other clients are stuck waiting for it

39

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Multithreaded Server

40

client

server

accept()

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Multithreaded Server

41

client

server

pthread_create()

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Multithreaded Server

42

client

server

accept()

client

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Multithreaded Server

43

client

client

server

pthread_create()

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

Multithreaded Server

44

client

client

client

client

client

client
server

shared
data

structures

CIT 5950, Spring 2025L19: Server-side SocketsUniversity of Pennsylvania

That’s all!

❖ Next Lecture:

▪ Http ☺

45

	Default Section
	Slide 1: Socket Programming (Cont) Computer Systems Programming, Spring 2025
	Slide 2
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Project demo
	Slide 6
	Slide 7: Lecture Outline
	Slide 8: Socket API: Client TCP Connection
	Slide 9: Step 1: Figure Out IP Address and Port
	Slide 10: Domain Name System
	Slide 11: DNS Hierarchy
	Slide 12: Resolving DNS Names
	Slide 13: getaddrinfo
	Slide 14: DNS Lookup Procedure
	Slide 15: Socket API: Client TCP Connection
	Slide 16: Step 2: Creating a Socket
	Slide 17: Step 3: Connect to the Server
	Slide 18: Connect Example
	Slide 19: Sockets are sort of like files
	Slide 20: Sockets are sort of like files
	Slide 21: Step 4: read()
	Slide 23: Step 4: write()
	Slide 24
	Slide 26: Read/Write Example
	Slide 27: Step 5: close()
	Slide 28: Demo: sendreceive.cpp
	Slide 29: Lecture Outline
	Slide 30: Socket API: Server TCP Connection
	Slide 31: Servers
	Slide 32: Step 1: Figure out IP address(es) & Port
	Slide 33: Step 2: Create a Socket
	Slide 34: Step 3: Bind the socket
	Slide 35: Step 4: Listen for Incoming Clients
	Slide 36: Example #1
	Slide 37: Step 5: Accept a Client Connection
	Slide 38: Example #2
	Slide 39: Something to Note
	Slide 40: Multithreaded Server
	Slide 41: Multithreaded Server
	Slide 42: Multithreaded Server
	Slide 43: Multithreaded Server
	Slide 44: Multithreaded Server
	Slide 45: That’s all!

