CIT 5950 Recitation 0

C, Pointers, and Docker

Agenda

ok wbdpE

Logistics

Icebreaker

Pointer Review

C String Review

Output parameters Review
Codiodemo + HW1 Intro

Logistics

Pre Semester Survey
HWO (simple_string and check-time)

Both posted tonight :)

Pointer Review

Pointers

Pointers are just another
primitive data type.

An integer can hold an index
into an array.

If memory is a giant array of
bytes, then a pointer just holds
anindex into that array.

type *name;

int32_t *ptr;

ptr

ptr

Ox7ff....

Pointer Syntax

“Address of”

“Value at”

int32_t x;
int32_t *ptr;

ptr =
X = 5;
*ptr = 10;

&x;

ptr

10

Exercise 1

Draw a memory diagram like the one above for the following code
and determine what the output will be.

X (foo) X

void foo(int32 t *x, 1int32 t *y, 1int32 t *z) { 5

X = y;

*X — *Z;

vz = 37: y (foo) y
} 22
int main(int argc, char *argv[]) { 7

int32 t x = 5, y = 22, z = 42; z (foo)

foo(&x, &y, &z); az

printf ("%d, %d, %d\n", x, vy, z);

return EXIT SUCCESS;

So, the code will output 5, 42,

C-Strings

C-Strings
[size];

- Astringin Cis declared as an array of characters that is terminated by a
null character \O..

- When allocating space for a string, remember to add an extra character
for the null terminator.

10

Example

char [6] = "Hello";
index 5] 1 5
value ‘H’ ‘e’ \0@

- Ifusing String literals, C will set it up for you

11

Example

= "Hello";
str | Ox7f..
index <0 1 2 3 4 5
value ‘H' ‘e’ ‘1’ ‘1’ ‘o’ \0

- You can also use a pointer. C will allocate the characters in read only
memory, and the pointer will point to the first character in the string.

Exercise1b

13

The following code has a bug. What’s the problem, and how would you fix it?

void bar (char *str) {

—_n 1w .
} str ok bye!™; main stack frame
int main(int argc, char *argv([]) {
char *str = "hello world!"; bar stack frame

bar (str) ;
printf ("%s\n", str); // should print "ok byel!"
return EXIT SUCCESS;

Modifying the argument str in bar will not effect str in main
because arguments in C are always passed by value.

In order to modify str in main, we need to pass a pointer to a
pointer (char **)into bar and then dereference it:

\"hello world!\0"]
void r fixed(ch **st tr .
bar_fixed(char r_ptr) { static data

*8LT DprLE-=""gk byel%; ["ok bye!\0"]

14

Output Parameters

Output Parameters

Definition: a pointer parameter used to store output in a location specified by the caller.

Useful for returning multiple items :)

16

Output Parameter example

Consider the following function:

void getFive (int ret) {
ret = 5;

}

Will the user get the value '5'?

No! You need to use a pointer so that the caller can
see the change

void getFive (int* ret) {
*ret = 5;

17

Exercise 2

18

char *strcpy(char *dest, char *src) {
char *ret value = dest;
while (*src !="\0") {
*dest = *src;
src++;
dest++;
j
*dest ="\0"; // don’t forget the null terminator!
return ret value;

How is the caller able to see the changes in dest if C is pass-by-value?

The caller can see the copied over string in dest since we are dereferencing dest. Note that modifications to dest
that do not dereference will not be seen by the caller(such as dest++). Also note that if you used array syntax,
then dest [1] is equivalentto * (dest+1).

Why do we need an output parameter? Why can’t we just return an array we create in strcpy?

If we allocate an array inside strcpy, it will be allocated on the stack. Thus, we have no control over this memory
after strcpy returns, which means we can'’t safely use the array whose address we’ve returned.

19

Docker Demo

20

Exercise 3

21

vold product and sum(int *input, 1int length,

int temp sum = 0;
int temp product = 1;

for (int 1 = 0;

i < length; i++) {

temp sum += input[i];
temp product *= input[i];

}

*sum = temp sum;

*product = temp product;

int *product,

int *sum)

{

22

Exercise 4

23

size t filter(int *input, size t length,

size t new_len = 0;

for (size t i = 0; i < length; i++) {

if (input[i] !'= filter) ({
new len += 1;
}
}
int* res = new int[new len];
size t j = 0;
for (size t i = 0; i < length;
if (input[i] !'= filter) ({
res[j] = input[i];
j +=1;
}

}
*out = res;
return new_len;

i++) {

int filter, int** out) {

24

