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ATTENTION AND INATTENTION FOR MINIMALIST ROBOT LEARNERS

It is an increasingly popular view that much of robotics can be “solved” by brute force scaling of data, compute,
and models. While scaling is certainly important to explore1, by itself, it ignores the centrality of resource con-
straints in robotics such as on time, energy, compute, and training data. Good design principles entail that robots
should be no more complex than necessary. My research group pursues a parallel scientific effort to understand
and exploit fundamental performance-resource trade-offs. Our first line of attack has been to imbue various
modules of a robot learner with the ability to selectively identify and attend to task-relevant information.

• Representations with Object-Centric Spatial Attention: We have developed new vision-language represen-
tations2;3 that permit easily inferring and providing feedback to a robot on its progress (“value function”)
towards an image or language goal, such as "place a bowl on the dish rack”. These are trained using offline
reinforcement learning4 on human videos, permitting transfer to robotic manipulation in real environments
such as kitchens. In parallel, we have developed a family of pre-trained object-centric unsupervised repre-
sentations that capture a scene at many granularities, permitting a downstream actor to dynamically assem-
ble task-relevant minimal representations that enable the learner to better attend to task-relevant information
amidst clutter and distribution shifts5–9: e.g., we can seamlessly daisy-chain individual skills trained sepa-
rately to execute a complex task such as “cook an eggplant” that involves a step-by-step recipe.

• Decision Making & Learning with Temporal Attention: Downstream of the representation, decision making
can benefit from resource-aware selective attention to key instants during task learning and execution. At-
tending to key future events10;11 and spatial regions12 during prediction and planning mitigates compound-
ing errors, improves image goal reaching task performance, and transfers better to new robots. For real-time
dynamic tasks like moving object grasping in cluttered settings, we have successfully trained meta-controllers
that dynamically determine "how much planning" (horizon and compute time) to do before plan execution13.
Applied to past experiences, temporal attention improves dynamics model and policy learning4;14–16: e.g.,
learned dynamics models in reinforcement learning work better when their training is focused on the types of
experiences most likely to be experienced by the robot in its immediate future15.

• Attentive Sensing and Exploration: Sensing also comes with trade-offs: sensors mediate all the environment
information available to the robot, but entail resource costs. We have trained robots to strategically sense task-
relevant information through active sensing and exploration17–22: e.g., a robot looking to identify the category
of an object can strategically rotate the object in its hand17. We have shown how robots might self-evaluate
their task progress through such interaction23, to improve themselves through reinforcement learning (Best
Paper Award, CORL 2022); e.g. a robot can better learn how to tighten a screw by first learning how to check
whether it is tight. Once the policy is trained, the checking policy and its extra costs are no longer required. This
kind of efficiency improved efficiency through mastery can also be realized in other ways: we have shown that
robots can learn to operate from fewer sensory inputs24, by cleverly exploiting access to “privileged” sensors
at training time. We are now studying the foundations of sensory requirements of robot learners: for example,
we have shown that fundamental limits for model-based control under partial observability also predict the
difficulty and sample complexity of learned robotic policies25.

Recently, in response to advances in large vision and language foundation models, we have shown that such
models can automate the process of learning resource-efficient robotic policies in simulation and transferring
them to real robots: this involves designing environments26, domain randomization27, and reward functions28

from simple text specifications. Our methods enable challenging and dynamic behaviors, such as a quadruped
walking on a yoga ball27. We are now pursuing its logical end point: having observed a video of a task environ-
ment, can we automatically create a simulator and train policies for various tasks?

While I have emphasized efficiency above, we also seek to address other blind spots of the “scaling” approach to
robotics. Our object-centric and language-grounded representations above are shared with humans, which can
enable safe and trustworthy robot learning14;29;30. Furthermore, we are working to progressively ease the task of
teaching robots new skills, from demonstrations14;31 to image goals2;12, language goals2 and task descriptions27.
We will continue over the next several years to pursue foundational understanding while also expanding the
limits of robotic capabilities.
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