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ABSTRACT

We need to look at our shoelaces as we first learn to tie them but having mas-
tered this skill, we can do it from touch alone. We call this phenomenon “sen-
sory scaffolding”: observation streams that are not needed by a master might yet
aid a novice learner. We consider such sensory scaffolding setups for training
artificial agents. For example, a robot arm may need to be deployed with just
a low-cost, robust, general-purpose camera; yet its performance may improve
by having privileged training-time-only access to informative albeit expensive
and unwieldy motion capture rigs or fragile tactile sensors. For these settings,
we propose Scaffolder, a reinforcement learning approach which effectively ex-
ploits privileged sensing in critics, world models, reward estimators, and other
such auxiliary components that are only used at training time, to improve the
target policy. For evaluating sensory scaffolding agents, we design a new “S3”
suite of ten diverse simulated robotic tasks that explore a wide range of prac-
tical sensor setups. Agents must use privileged camera sensing to train blind
hurdlers, privileged active visual perception to help robot arms overcome visual
occlusions, privileged touch sensors to train robot hands, and more. Scaffolder
easily outperforms relevant prior baselines and frequently performs comparably
even to policies that have test-time access to the privileged sensors. Website:
https://penn-pal-lab.github.io/scaffolder/

1 INTRODUCTION

It is well-known that Beethoven composed symphonies long after he had fully lost his hearing.
Such feats are commonly held to be evidence of mastery: for example, novice typists need to look
at the keyboard to locate keys but with practice, can graduate to typing without looking. Thus,
sensing requirements may be different during learning versus after learning. We refer to this as
“sensory scaffolding”, drawing inspiration from the concept of scaffolding teaching mechanisms in
psychology that provide temporary support for a student (Wood et al., 1976; Vygotsky et al., 2011),
like training wheels when learning to ride a bicycle.

For artificial learning agents such as robots, sensory scaffolding permits decoupling the observation
streams required at test time from those that are used to train the agent. The sensors available in a
deployed robot are often decided by practical considerations such as cost, robustness, size, compute
requirements, and ease of instrumentation, e.g., autonomous cars with only cheap and robust RGB
camera sensors. However, those considerations might carry less weight at training time, so a robot
learning practitioner may choose to scaffold policy learning with privileged information (Vapnik
& Vashist, 2009) from extra sensors available only at training. In the case of the cars above, the
manufacturer might equip a small fleet of training cars with expensive privileged sensors like lidar
to improve RGB-only driving policies for customers to install in their cars.

What learning mechanisms might permit artificial agents to improve by exploiting such privileged,
training-time sensors? Considering reinforcement learning (RL) algorithms, we observe that while
their primary output is usually a policy, they often employ an elaborate training apparatus with value
functions, representation learning objectives, reward estimators, world models, and data collection
policies. While the output policy must only access pre-determined target sensors, our key insight
is that this training apparatus offers natural routes for privileged observation streams to influence
policy learning.
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Figure 1: Learning a policy to operate from partial observations can be aided by access to privileged
sensors exclusively during training. Scaffolder improves world models, critics, exploration, and
representation learning objectives to synthesize improved target policies.

This insight directly motivates Scaffolder, a novel model-based reinforcement learning (MBRL) ap-
proach that “scaffolds” each training component of RL by providing it access to privileged sensory
information. Figure 1 shows a schematic. MBRL algorithms learn an environment simulator, or
world model, from experience, and then train policies on synthetic experiences collected within this
simulator, potentially mediated by value functions and reward estimators. In Scaffolder, rather than
training a low-fidelity world model on the impoverished target observations, we train a “scaffolded
world model” with privileged observations that more accurately models environment dynamics. This
enables more realistic training experience synthesis, and better credit assignment using scaffolded
value functions and reward estimators. Further, exploratory data collection, both in the real environ-
ment and within the world model, can now be better performed by employing a scaffolded explo-
ration policy. Finally, the scaffolded observations also enable learning improved representations of
the test-time target sensor observations.

Our key contributions are: (1) We study policy learning with privileged information in a novel
and practically well-motivated “sensory scaffolding” setting, where extra sensors are available to
an agent such as a robot at training time. (2) We propose Scaffolder, a MBRL method that exten-
sively utilizes privileged observations to scaffold each auxiliary component of RL. (3) We validate
Scaffolder extensively against prior state of the art on a new Sensory Scaffolding Suite (S3). S3
contains ten diverse environments and sensor setups, including privileged active visual perception
for occluded manipulation policies, privileged touch and pose sensors for dexterous manipulation
policies, and privileged audio and sheet music for training “blind and deaf” piano-playing robots.
See Figure 2. (4) Through detailed analyses and ablation studies, we study the relative impacts of
scaffolded learning mechanisms through which privileged sensing impacts policy learning. We find
all components are important and that each component’s contribution depends on task-specific prop-
erties. Finally, we show empirically that Scaffolder improves the agent’s estimates of the true RL
objective function, thus providing improved learning signals to drive policy improvement.

2 PROBLEM SETUP, NOTATION, & PRIOR WORK

The Sensory Scaffolding Problem Setting: Consider the setup in Figure 1: a robot policy must use
only target observations o−t = { proprioception, touch } to pick up a block, whose pose is unknown.
It is common to model such problems as partially observable Markov decision process (POMDP)
(Kaelbling et al., 1998) and train the policy π−(at | o−t ) to select appropriate robot actions at ∈
A. However, note in Figure 1 that the training process has access to additional privileged camera
observations opt : thus, the policy π−(at | o−t ) effectively trains in a different, “scaffolded” POMDP
with observations o+t =

[
o−t , o

p
t

]
. These scaffolded observations o+t may still only be partial in that

they don’t reveal the full environment state. Indeed they often are partial in our evaluation settings,
but they nevertheless contain strictly more information about the environment state st ∈ S than the
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Figure 2: Sensory Scaffolding Suite (S3). We visualize four out of our ten diverse tasks, each
exploring different restricted sensing scenarios such as proprioceptive-only inputs, noisy sensors,
images, and occluded or moving viewpoints. We evaluate the enhancement of policy training using
privileged sensors like multiple cameras, controllable cameras, object pose, and touch sensors. Refer
to Appendix E.4 for details on all environments.

target observations o−t . In the picking task, even though the policy will operate blind at test time, the
learning procedure can use noisy knowledge of the block pose, as revealed through the privileged
camera observations.

Prior Work: We now review several prior lines of work on reinforcement learning (RL) with
privileged information which may apply to this sensory scaffolding problem. See Appendix A for
extended discussion. Perhaps the most straightforward vehicle for privileged information in RL is
reward. Analogous to labels in supervised learning, RL rewards specify the task, are only present
at training time, and may therefore exploit privileged sensors. For example, Schenck & Fox (2017)
instrument privileged thermal cameras to gauge fluid levels to train an image-based pouring policy.
In another interesting example, Huang et al. (2022a) exploit privileged interactive sensing behaviors
for reward estimation, such as pulling at a door to evaluate whether a door locking task is prop-
erly completed. Further, nearly all sensorimotor RL in simulation uses privileged low-dimensional
simulator state o+t = st to inform task rewards and thus may be seen as implementing sensory scaf-
folding in a limited way. More pertinent to us are methods that exploit privileged observations in
other training-specific components of RL beyond just the reward. We discuss these below.

• Privileged Critics: Actor-critic methods commonly condition the critic on privileged information
(i.e. v(o+)), usually low-dimensional simulator state, while training the actor policy π−(a | o−)
on target observations like high dimensional images (Pinto et al., 2018; Andrychowicz et al.,
2018). These methods assume that target observations contain full information about the state,
and struggle when this assumption is violated (Baisero & Amato, 2021).

• Privileged Policies: These methods train a privileged teacher π+ to guide the student target
policy π−. A common failure mode here is the “imitation gap”(Weihs et al., 2021; Swamy et al.,
2022): the student cannot recover the teacher’s actions given impoverished inputs o−. This is
typically mitigated by incorporating an additional reinforcement loss into the student’s learning
objective (Rajeswaran et al., 2017; Weihs et al., 2021; Nguyen et al., 2022; Shenfeld et al., 2023).
Aside from direct imitation (Chen et al., 2020), privileged teachers can also benefit the student’s
exploration by sharing data (Schwab et al., 2019; Shenfeld et al., 2023; Kamienny et al., 2020;
Weigand et al., 2021) or defining auxiliary rewards for the student (Walsman et al., 2022).

• Privileged World Models: Most privileged sensing strategies employ model-free RL methods,
with few exploring enhancements to model-based RL using privileged sensors. Seo et al. (2023)
improves DreamerV2 (Hafner et al., 2022) by training the single-view policy representation on
multi-view data. Recently, Informed Dreamer (Lambrechts et al., 2023) improve DreamerV3’s
(Hafner et al., 2023) representation and world modelling via privileged information prediction.

• Privileged Representation Learning Objectives: Privileged observations are commonly used to
train representations for high-dimensional, image-based tasks, for example, by leveraging priv-
ileged sensors like additional views (Sermanet et al., 2018; Seo et al., 2023) or segmentations
(Salter et al., 2021). Several recent works have leveraged privileged simulator state for sim2real
applications (Lee et al., 2020; Kumar et al., 2021; Qi et al., 2023), training a policy conditioned on

3



Published as a conference paper at ICLR 2024

target observations and predicted simulator states. These methods have demonstrated impressive
results in quadruped locomotion and dexterous manipulation.

Summarizing, nearly all prior works focus on one route for privileged observations to influence tar-
get policy learning, and many suffer from assumptions about the privileged observation op or target
observation o− that do not hold in all settings. Scaffolder makes no such assumptions and exploits
the scaffolded observations o+ = [op, o−] through multiple routes integrated into one cohesive RL
algorithm. We also compare our method empirically against representative methods from each cat-
egory of prior work, demonstrating significant and consistent gains on a large suite of tasks.

3 Scaffolder: IMPROVING POLICY TRAINING WITH PRIVILEGED SENSORS

Figure 3: Scaffolder uses scaffolded observations to improve all components of training: world
modelling, credit assignment, exploration, and policy representation.

We now describe Scaffolder, a model-based reinforcement learning (MBRL) approach that uses
scaffolded observations to comprehensively improve training mechanisms. MBRL algorithms learn
an environment simulator, or world model (WM), from data and then train policies inside the simula-
tor, facilitated by learned reward estimators and value functions. In the sensory scaffolding setting,
we suggest a conceptually simple improvement: train the WM on scaffolded observations o+ in-
stead of impoverished target observations o−. The scaffolded WM is then used to improve target
policy training, credit assignment, and exploration. We also improve the target policy representation
learning objective with o+. See Figure 3 for a visualization.

Scaffolded World Model. We build on DreamerV3 (Hafner et al., 2023), a MBRL method well-
known for its generality (see Appendix C.1 for DreamerV3 details). DreamerV3’s WM is imple-
mented as a Recurrent State-Space Model (Hafner et al., 2020). The world model serves two pur-
poses: it acts as an environment simulator to train the policy and serves as the policy’s recurrent
state encoder for aggregating observation history. Scaffolder learns an additional “scaffolded” WM
trained on o+ to replace the target WM (trained on o−) for policy training. We still retain and train
the original target world model so we can encode states for target policy execution. We define both
world models below.

Target Scaffolded Target Scaffolded

Dynamics: p−ϕ (z
−
t | z−t−1, at−1) p+ϕ (z

+
t | z+t−1, at−1) Reward: p−ϕ (rt | z

−
t ) p+ϕ (rt | z

+
t )

Posterior: q−ϕ (z
−
t | z−t−1, at−1, o

−
t ) q+ϕ (z

+
t | z+t−1, at−1, o

+
t ) Decoder: p−ϕ (o

−
t | z−t ) p+ϕ (o

+
t | z+t )

Continue: p−ϕ (ct | z
−
t ) p+ϕ (ct | z

+
t ) Transdecoder: p+ϕ (o

−
t | z+t )

Each WM operates over a latent representation z which is trained to be predictive of future observa-
tions and rewards (see Appendix C for full equations). The dynamics predicts the current latent state
given only history, while the recurrent posterior network infers the current state given history and the
current observation. The decoder, reward, and continue heads reconstruct the observations, rewards,
and termination signals from the trajectory data. The “transdecoder” maps scaffolded latent states
to target observations; this component is motivated and described in detail under “Nested Latent
Imagination” below. Finally, note that in practice, Scaffolder, just like DreamerV3, first embeds all
observations into low-dimensional embeddings e−(o−) and e+(o+); to reduce notational clutter, we
simply refer to these as o− and o+.
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Scaffolded Critic and Reward. DreamerV3, without privileged sensing, optimizes the target
policy π−

θ (a | z−) by maximizing the policy’s estimated return, which is computed by evaluating
the learned reward and critic networks over synthetic trajectories generated by the world model.
Scaffolder improves the return estimate by using more accurate synthetic experience from the scaf-
folded WM, and better reward and value estimates from the scaffolded reward p+ϕ (r | z+) and critic
v+ψ (z

−, z+). Note that the critic requires both z−, z+ to remain unbiased, see Appendix C.2 for
details. To evaluate the policy, the scaffolded critic and reward networks require trajectories with
scaffolded latent states. We describe how to acquire such trajectories in imagination.

Figure 4: Nested Latent Imagination.

▶ Nested Latent Imagination (NLI): NLI is a pro-
cedure to roll out π−

θ inside the scaffolded world
model to generate synthetic training data. See
Figure 4 for a visualization. To generate imagi-
nary rollouts, vanilla DreamerV3 uses the previous
timestep’s predicted latent zt ∼ p(zt | zt−1, at−1)
as the input to the policy π(zt) for the current
timestep. However, in Scaffolder, the scaffolded dy-
namics produces scaffolded latents z+t , whereas the
target policy ingests target latents z−t . To resolve this
incompatibility, Scaffolder translates z+ into its cor-
responding z− in two steps. First, a “transdecoder” p+ϕ (ô

− | z+) decodes z+t into the corresponding
target observation ô−t . Then ô−t is integrated by the recurrent target posterior network q−ϕ into the
desired latent state z−t . This completes one synthetic environment step, When repeated H times, it
generates a trajectory τ =

[
z+1 , z

−
1 , a1, . . . z

+
H , z−H

]
.

▶ Computing the TD(λ) return: Now, we show how to improve target policy training with scaf-
folded observations and components. All RL methods aim to maximize the true discounted policy
return. Policy updates in Dreamer follow the gradient of the TD(λ) return, an estimate of the true
return that is mediated by the world model’s latent state, reward predictions and value function. We
modify DreamerV3’s policy objective to use scaffolded dynamics, scaffolded reward estimator, and
scaffolded critic instead of the impoverished target components. We highlight the terms that depend
on the scaffolded components in blue. The target policy objective is defined as

J (θ) =

T∑
t=1

Eπ−
θ ,p

+
ϕ

[
Rλt + ηH

[
π−
θ (at | z

−
t )

]]
(1)

where the first term maximizes the policy’s TD(λ) return, the second term is an entropy regularizer,
and the expectation is over the imagined trajectories generated using the above NLI procedure. The
TD(λ) return is the weighted average of n-step returns, defined as:

Rλt
.
= rt + γct

(
(1− λ)v+ψ (z

−
t+1, z

+
t+1) + λRλt+1

)
RλT

.
= v+ψ (z

−
T , z

+
T ) (2)

This modified objective now benefits from the scaffolded components in the following ways. First,
the imagined trajectories are generated with the scaffolded dynamics, which can better approximate
the true dynamics compared to the target dynamics. Next, the reward and value estimates can now
use z+, which contains potentially relevant information not available in z− to improve credit as-
signment. This all results in a more accurate TD(λ) return estimate of the true return, which in turn
better optimizes the policy. Thus, scaffolding the world model directly improves the RL training
signals provided to the target policy π−

θ at each update.

While only the WM and critic are directly involved in the policy update above, they are trained on
exploration data, and the policy itself operates on a representation z−. These can both be improved
by using privileged observations, as we discuss below.

Scaffolded Exploration Policy. We train a scaffolded task policy π+
θ (at | z

+
t ) inside the scaffolded

world model. While π+
θ cannot directly run at test time since privileged observations would be

missing, it can generate exploratory data to train π−
θ . The intuition is that the scaffolded π+

θ learner
becomes more performant more quickly, so it explores task-relevant states beyond the current reach
of π−

θ . We use a 1:1 ratio of π+
θ and π−

θ rollouts for exploration. We choose not to enforce any
imitation objective between π+ and π− to avoid the “imitation” gap (Section 2).
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Scaffolded Representation Learning Objective. Finally, following prior works (Pinto et al., 2018;
Lambrechts et al., 2023) that have found it useful to regress privileged information for representation
learning, we train an auxiliary decoder from z− to the scaffolded observation o+, to improve z−.
We expect this to be helpful when op is recoverable from o−, i.e. inferring object poses from images.

4 EXPERIMENTS

We aim to answer the following questions. (1) Does Scaffolder successfully exploit privileged sens-
ing to improve target policy performance? (2) How does Scaffolder compare to prior work on RL
with privileged information? (3) What are the most critical components through which privileged
observations influence target policy learning, and how do task properties affect this?

4.1 THE SENSORY SCAFFOLDING SUITE (S3) OF TASKS

We propose Sensory Scaffolding Suite (S3), a suite of 10 robotics-based tasks to evaluate Scaffolder,
baselines, and future approaches in the sensory scaffolding problem setting. See Figure 5. As mo-
tivated in Section 1, robotics is a well-suited domain for studying sensory scaffolding: practical
considerations such as cost, robustness, size, compute requirements, and ease of instrumentation of-
ten incentivize operating with limited sensing on deployed robots. In addition to standard definitions
for RL environments, S3 pre-defines privileged and target sensors. S3 tasks are more general and
difficult than prior sensory scaffolding tasks in a variety of ways. S3 tasks have continuous, observa-
tion and action spaces with complex dynamics. Furthermore, the privileged sensors are potentially
high-dimensional and noisy observations, rather than ground truth, low-dimensional simulator state.
S3 defines performance scores for each task: success rate for pen and cube rotation, number of
branches swung for Noisy Monkey, and returns computed from dense rewards for the other tasks.

Environment/Task Target Sensors Priv. Sensors Properties

Blind Pick Proprio, Touch 2 Fixed Cams, Wrist Cam Random object position
Blind Locomotion Proprio Cam Random hurdles
Blind Deaf Piano Proprio Future Notes, Piano State Deterministic
Blind Numb Pen Proprio, Init/Goal Pose Object Pose, Touch Random init / goal pose
Blind Numb Cube Proprio, Init/Goal Pose Object Pose, Touch Random init / goal pose

Noisy Monkey Noisy proprio, Noisy branch pos. True Proprio, Branch Pos. Random sensor noise
Wrist Pick-place Proprio, Touch, Wrist Cam 2 Fixed Cams Random object / bin position
Occluded Pick-place Proprio, Touch, Occluded Cam Wrist Cam Random object / bin position
Visual Pen Proprio, Init/Goal Pose, Cam Object Pose, Touch Random init / goal pose
Visual Cube Proprio, Init/Goal Pose, Cam Object Pose, Touch Random init / goal pose

Figure 5: The Sensory Scaffolding Suite (S3) of tasks. See Appendix E.4 for details.

We provide a high-level overview here; for more details, see Appendix E.4. Figure 5 provides key
information about each task. Tasks 1-5 in S3 focus on taking away privileged vision, audio, and
touch to train blind, deaf, and numb robot policies that operate mainly from proprioception at test
time. The robots span manipulators, legged robots, and dexterous hands, and the tasks include object
picking, hurdling, pen rotation, and piano playing.

Tasks 6-10 provide more target sensing to policies, particularly vision (either as raw RGB images, or
as object recognition system outputs). Privileged senses are even more informative, such as multi-
camera images, and “active” cameras that move with the robot’s wrist. Equipped with the target
sensors, monkey robots must swing between tree branches, dextrous hands must rotate objects, and
2-fingered robot arms must put objects away amidst occlusion on cluttered tables.

Baselines. In Section 2, we classified privileged RL methodologies based on the component they
enhance with privileged information, such as the critic, policy, world model, and representation
learning objective; we select representative baselines from each category to compare to Scaffolder.
Wherever possible, we implement baselines over DreamerV3 (Hafner et al., 2023), the base MBRL
agent for our method. We overview the baselines below, see Appendix E.3 for more details.
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• Unprivileged: DreamerV3. We train DreamerV3 only on target observations. DreamerV3 is
known for its consistency across benchmarks, thereby serving as a strong unprivileged baseline.

• Critic: AAC. For a privileged critic baseline, we use Asymmetric Actor Critic (AAC) (Pinto et al.,
2018). AAC is model-free; we find that it is much more sample-inefficient, so we train it for 100M
steps in each environment (20− 400× more than Scaffolder).

• Teacher Policy: DreamerV3+BC. Here, we follow a common strategy from prior works (Weihs
et al., 2021; Nguyen et al., 2022; Shenfeld et al., 2023) to train a privileged teacher policy and
incorporate a teacher-imitating BC loss alongside RL rewards when training the target policy. We
implement this in DreamerV3 and call it DreamerV3+BC. The weights for BC and RL objectives
are selected through hyperparameter search for each environment.

• World Model: Informed Dreamer. Lambrechts et al. (2023) extends DreamerV3 to exploit
privileged observations by incorporating a new objective term to decode privileged observations
o+t from target Dreamer state z−t .

• Representation: RMA+. Kumar et al. (2021) train policies with PPO using a privileged state
representation analogous to z+ and regress from target observations o− to z+. This is liable to
fail when z+ may contain information that is not in o−, but RMA has achieved impressive results
for many robotics applications. To facilitate fast RMA training, we found it necessary to provide
ground truth simulator state as privileged information; we call this RMA+. Like AAC, RMA+ is
model-free, so we run it for 100M steps to permit it to learn meaningful policies.

• Exploration Policy: Guided Obs. Finally, Guided Observability (Weigand et al., 2021) collects
better exploration data by dropping out the privileged information from policy inputs over time.

4.2 RESULTS

Figure 6: Scaffolder performs better than baselines across all tasks in learning speed and final per-
formance, showing its generality. For each method, we report median score and standard error, and
each method is run with 4-10 seeds aside from AAC (100M) and RMA+ (100M).

We evaluate the training performance and final task scores of each method. The normalized final
median scores in the top left of Figure 6 are computed using the performance of the unprivileged
DreamerV3 baseline as a lower bound (0.0) and the performance of a privileged DreamerV3 model
that is trained and evaluated on o+ as the upper bound (1.0). See Appendix E for more info.

7



Published as a conference paper at ICLR 2024

Figure 6 demonstrates that Scaffolder achieves the highest aggregate median performance across all
ten tasks. Scaffolder bridges 79% of the gap between o− and o+, just by having temporary access
to o+ at training time. In other words, much of the gap between the observations o− and o+ might
lie not in whether they support the same behaviors, but in whether they support learning them.

A closer look at the learning curves in Figure 6 reveals that Scaffolder learns more quickly in 8 out
of 10 tasks. Even with its limited environment sample budget (between 250K to 5M), it outperforms
or is competitive with AAC and RMA trained with 100M samples in 9 out of 10 tasks.

Scaffolder successfully exploits privileged sensors to learn performant policies despite severely lim-
ited target sensors - it plays an imperfect, but recognizable rendition of “Twinkle Twinkle Little
Star”, deftly rotates cubes to goal orientations without any object pose information, and actively
moves a robot wrist camera to look for objects outside the field of view. See website for video
examples of learned behaviors. Base DreamerV3 uniformly performs much worse.

The privileged baselines all exhibit a high degree of performance variance. They may excel in certain
tasks yet are oftentimes worse than the non-privileged DreamerV3 baseline. Recall from Section 2
that these approaches focus on one route for privileged sensors to influence policy learning, and
many make assumptions about the nature of privileged and target observations. This may be ill-
suited to performing well on the diverse Sensory Scaffolding Suite. DreamerV3 operating on just
the target sensors without any privileged info proves to be a surprisingly strong performer, even
outperforming some prior approaches that access privileged information like AAC.

For example, RMA excels in Noisy Monkey, where regressing the privileged true state op from noisy
state o− is relatively easy, yet completely fails in Blind Pick. Indeed, we find that in environments
like Blind Pick or Blind Locomotion with large information gaps between target and privileged ob-
servations, RMA, DreamerV3+BC, and Informed Dreamer tend to suffer. RMA fails because the
target observations o− are not predictive of the privileged observations op (e.g. proprioception is
not usually predictive of object states). Informed Dreamer similarly fails because it also enforces
the target world model to predict privileged observations from target observations. Finally, Dream-
erV3+BC fails in such cases due to the large differences in optimal behavior between a privileged
teacher and a blind student—the privileged teacher can directly pick up the object with vision, while
the student policy needs to learn information gathering behavior to pick up the block.

Figure 7: Scaffolder discovers spiral search and robust hurdling for blind policies.

The project website showcases several interesting behaviors learned by Scaffolder and baselines.
Scaffolder behaviors broadly fall into two categories depending on the task. Sometimes, it per-
forms information-gathering strategies - in Blind Picking, Scaffolder performs spiral search over the
workspace to find the block from touch alone. At other times, it acquires robust behaviors invariant
to unobservables - in Blind Locomotion, Scaffolder discovers robust run-and-jump maneuvers to
minimize collisions with unseen randomized hurdles. See Figure 7 for visualizations.

4.3 ABLATIONS AND ANALYSIS OF Scaffolder
As evidenced above, Scaffolder works well, but why? We first replace each privileged component
with a non-privileged counterpart to assess component-wise contributions. “No Scaff. WM” opts for
training the policy in the target world model over training in the privileged world model. “No Scaff.
Critic” uses an unprivileged critic v−ψ (s

−) in Rλt for policy learning. “No Scaff. Explore” collects
data with only the target policy. For “No Scaff. Repr.”, the representation is trained to reconstruct
target observations instead of privileged observations.

Figure 8 compares these ablations on 4 tasks. Overall, all ablations perform poorly relative to Scaf-
folder, indicating the importance of each component. Interestingly, different scaffolded components
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Figure 8: We ablate Scaffolder by replacing components with their non-privileged counterparts. All
components are important, and the combined method performs best.

prove crucial for different tasks: exploration for Blind Pick, critic for Blind Cube Rotation, world
model for Blind Locomotion, and representation for RGB Cube Rotation.

These task-specific trends may be due to the task diversity in S3. In Blind Pick, a blind policy
struggles to locate the block, but the vision-based exploration policy can easily locate the block and
populate the buffer with useful data. In Blind Cube Rotation, the privileged critic, with access to ob-
ject pose, can more easily estimate the object-centric reward. Blind Locomotion involves navigating
unexpected hurdles, therefore a scaffolded world model, with access to vision, can accurately pre-
dict future hurdles. Lastly in Visual Cube, the target policy must encode high-dimensional images,
and the scaffolded representation objective encourages encoding of essential object pose and touch
information. In all these cases, the combined Scaffolder method benefits from cohesively integrating
these many routes for privileged sensing to influence policy learning, and performs best.

Figure 9: Comparing
TD(λ) estimates.

Scaffolder Improves RL Training Signals. We notice in Figure 8 that
dropping the scaffolded WM and its corresponding scaffolded value sig-
nificantly impact learning. Recall that these components are critical to
estimate the policy return (Equation (1)), whose gradients directly deter-
mine policy updates. We now examine these policy return estimates.

Let the scaffolded TD(λ) return be Equation (1), and the impover-
ished “target” TD(λ) return be the original DreamerV3 policy objective,
which substitutes the blue terms in Equation (1) with target dynamics
p−ϕ (z

−
t+1 | z−t , at), target rewards p−ϕ (r

−
t | z−t ), and target critic v−ψ (z

−
t ).

We compute the mean absolute error (MAE) for each of these two estimates against the ground truth
Monte-Carlo return Rt. In Blind Pick, every 25K steps while training, we collect ∼1000 transitions
with the policy and compute Rt.

Figure 9 plots Improvement = (target return MAE − scaffolded return MAE). The improvements
are mostly positive, indicating that scaffolded TD(λ) is more accurate. This provides evidence for
why Scaffolder trains better policies than non-privileged counterparts — its policy objective better
approximates the true expected return, giving the policy optimizer a better training signal. We find
similar trends in other environments in Appendix F.

5 CONCLUSION

We have studied how additional observation streams at training time can aid skill learning, intro-
ducing a diverse S3 task suite to aid this study. Scaffolder successfully exploits privileged sensors
across these tasks to improve reinforcement learning signals and train better policies. While these
results are promising, there is much room for future work. See Appendix B for extended limitations
and future work. Empirically, our task suite focuses on simulated robotic tasks, but other domains
like real-world robotics and video games, each with their own forms of privileged sensing, warrant
study. For real robots, it may be practical to estimate rewards through their sensors (Schenck & Fox,
2017; Fu et al., 2018; Haldar et al., 2023) rather than assume black-box rewards from supervising
humans. Here, we expect that improved reward estimates through privileged sensors would offer
further advantages (see Appendix G). Our work also opens a window to intriguing deeper questions
about the relationship between sensing and learning that it only begins to address: what environment
information must a learning agent sense in order to perform a task, and how does this vary with tasks
and learning phases? We believe that our findings will prove useful for such future research.
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A EXTENDED RELATED WORK

For the sake of brevity, we gave a broad high level overview of related works on sensory scaffolding.
We now give a more extensive overview.

First, the sensory scaffolding problem is related to the areas of domain adaptation, domain transfer,
and sim-to-real transfer. Such works attempt to transfer an agent trained in a source MDP to a target
MDP, differing in observation space, action space, dynamics, rewards, or initial state distribution
(i.e. resets) (Taylor et al., 2007; Tobin et al., 2017; Chebotar et al., 2018; Hu et al., 2022; Zhang
et al., 2021; Peng et al., 2018; Chen et al., 2023). Sensory scaffolding can be thought of as a special
case of observation space transfer, where the source observation space is a superset ({o−, op}) of
the target observation space in a POMDP setting. In contrast, prior work (Sun et al., 2022; Tatiya
et al., 2023) focusing on observation transfer typically assume a mapping between the observation
spaces to facilitate transfer, i.e. the target image observation space can recover the source simulator
state (Pinto et al., 2018), and are formulated with MDPs in mind.

Next, the field of privileged imitation learning is related, but not identical, to sensory scaffolding (i.e.
privileged reinforcement learning). In the privileged IL setup, one assumes access to a pre-existing
expert policy with privileged access to information, and the objective for the partially observed
student policy is to imitate the expert policy (Swamy et al., 2022; Weihs et al., 2021). In sensory
scaffolding, we study how privileged sensory streams at training time improve RL policy search for
a target policy with diminished senses. We do not assume access to any existing target policy, and
the target policy’s objective is to maximize reward, not imitate a privileged policy.

B EXTENDED LIMITATIONS AND FUTURE WORK

Scaffolder trains an additional scaffolded world model and exploration policy on top of the original
world model / policy, which adds a sizable amount of compute and resource burden. Training a
single dynamics model and policy that is shared across both o+ and o− would reduce this burden,
and we believe using ideas from the multi-task learning literature to be a good first step.

Through our ablations and analysis, we have a good empirical understanding of how Scaffolder ben-
efits from privileged observations. On the theoretical side, there is work characterizing privileged
imitation learning (Swamy et al., 2022), critics (Baisero & Amato, 2021), world models (Lam-
brechts et al., 2023) and representation learning (Vapnik & Vashist, 2009), but a concrete theoretical
understanding of how privileged information affects the entire RL process and components, is is
lacking.

On the practical side, while Scaffolder uses privileged observations to improve multiple training-
time only RL mechanisms, future work can investigate better ways of leveraging privileged obser-
vations. For example, the use of o+ as a reconstruction target for representation learning can likely
be replaced with a better privileged representation learning objective.

Next, using additional sensors at training time brings in practical problems. More sensors usu-
ally results in increased computation and bandwidth requirements. Furthermore, many multimodal
datasets are incomplete, i.e. certain modalities may be missing in subsets of the data.

C METHOD DETAILS

Here, we provide a more in-depth exposition of Scaffolder and DreamerV3. To start, we set up
DreamerV3. In the main paper, we chose to depart from DreamerV3 notation and world model
naming convention for two reasons. First, they use s for learned world model state, while in our
POMDP settings, s refers to the true environment state. To avoid confusion with true environment
state, we chose to use z instead of s for world model state. Next, they split up world model state
s into two components, h, z to more accurately write out the exact computation graph. In the main
paper, we defined world model state as one component, z to be more conceptually ergonomic.

Now we default back to the Dreamer notation, and will define Scaffolder in terms of DreamerV3
notation to make comparison easier.
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C.1 DREAMERV3

In DreamerV3, the recurrent encoder maps observations xt to stochastic representations zt. Then,
the sequence model, a recurrent network with recurrent state ht, predicts the sequence of represen-
tations given past at−1. The world model state is the concatenation of ht and zt. The world model
state is then used to reconstruct observations, predict rewards rt, continuation flags ct.

RSSM


Sequence model: ht = fϕ(ht−1, zt−1, at−1)

Encoder: zt ∼ qϕ(zt|ht, xt)
Dynamics predictor: ẑt ∼ pϕ(ẑt|ht)
Reward predictor: r̂t ∼ pϕ(r̂t|ht, zt)
Continue predictor: ĉt ∼ pϕ(ĉt|ht, zt)
Decoder: x̂t ∼ pϕ(x̂t|ht, zt)

(3)

Given the sequence batch of inputs x1:T , actions a1:T , rewards r1:T , and continuation flags c1:T , the
world model is trained to minimize prediction loss, dynamics loss, and the representation loss.

L(ϕ) .
= Eqϕ

[∑T
t=1(βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ))

]
. (4)

We refer interested readers to Hafner et al. (2023) for the particular world model loss definitions. We
use the default hyperparameters from DreamerV3 for our method and baselines that use Dreamerv3.

Next, DreamerV3 trains Actor-Critic neural networks in imagination. The actor and critic operate
over world model states st = ht, zt, and are defined as:

Actor: at ∼ πθ(at|st)
Critic: vψ(st) ≈ Epϕ,πθ

[Rt]
(5)

The critic is trained to estimate values on imaginary trajectories generated by executing the actor
policy with the learned dynamics. The actor policy is trained to maximize the TD(λ) returns of the
imagined trajectories, defined below.

Rλt
.
= rt + γct

(
(1− λ)vψ(st+1) + λRλt+1

)
RλT

.
= vψ(sT ) (6)

Now, with the DreamerV3 components set up, we are ready to define Scaffolder comprehensively,
and using DreamerV3 notation.

C.2 Scaffolder

Scaffolder trains two world models, one on scaffolded observations x+ = [x−, xp] and one on target
observations x−. The scaffolded world model is defined as:

RSSM


Sequence model: h+

t = fϕ(h
+
t−1, z

+
t−1, at−1)

Encoder: z+t ∼ qϕ(z
+
t |h+

t , x
+
t )

Dynamics predictor: ẑ+t ∼ pϕ(ẑ
+
t |h+

t )

Reward predictor: r̂t ∼ pϕ(r̂t|h+
t , z

+
t )

Continue predictor: ĉt ∼ pϕ(ĉt|h+
t , z

+
t )

Decoder: x̂+
t ∼ pϕ(x̂

+
t |h+

t , z
+
t )

(7)

The target world model is defined as:

RSSM


Sequence model: h−

t = fϕ(h
−
t−1, z

−
t−1, at−1)

Encoder: z−t ∼ qϕ(z
−
t |h−

t , x
−
t )

Dynamics predictor: ẑ−t ∼ pϕ(ẑ
−
t |h−

t )

Reward predictor: r̂t ∼ pϕ(r̂t|h−
t , z

−
t )

Continue predictor: ĉt ∼ pϕ(ĉt|h−
t , z

−
t )

Decoder: x̂−
t ∼ pϕ(x̂

−
t |h−

t , z
−
t )

(8)
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The world models are trained as follows: We sample a trajectory containing observations x+
1:T ,

actions a1:T , rewards r1:T , and continuation flags c1:T . We then train the scaffolded world model as
normal and then convert x+

1:T to x−
1:T by simply leaving out privileged observations xp1:T from the

data before feeding it to the target world model.

Target Actor and Privileged Critic Next, we define the target actor and critic. The target actor
operates over target world model state s−t = {h−

t , z
−
t }. Crucially, the critic operates over both the

scaffolded world model state s+t = h+
t , z

+
t and the target world model state s−t . Note s−t is still

required because s−t contains info about the historical beliefs of the agent, which is not predictable
from only the Markovian learned world model state s+t . See (Baisero & Amato, 2021) for more
information.

The additional environmental information in s+t potentially makes value estimation easier for the
privileged critic. Furthermore, the critic is trained on trajectories generated by the scaffolded world
model, which should better approximate true dynamics. We highlighted in blue the places where
privileged components are used instead of their original counterparts.

Target Actor: at ∼ π−
θ (at|s

−
t )

Privileged Critic: vψ(s
−
t , s

+
t ) ≈ Ep+ϕ ,π−

θ
[Rt]

(9)

Now, the actor is trained with to maximize TD(λ) returns Rλt of generated trajectories. We improve
all components within this objective with scaffolded observations, and highlight them in blue.

First, the policy objective is written as:

L(θ) .
=

∑T
t=1 Eπ−

θ ,p
+
ϕ
[Rλt /max(1, S)]− ηH[π−

θ (at|s
−
t )] (10)

where we start by using the scaffolded world model to generate imaginary trajectories, using the
Nested Latent Imagination procedure described in Section 3.

We further incorporate scaffolded components into the TD(λ) return. Because we have access to
s+t from generating trajectories in the scaffolded world model, we can use the scaffolded reward,
continue, and critic to compute TD(λ) return.

Rλt
.
= rt + γct

(
(1− λ)vψ(s

−
t+1, s

+
t+1) + λRλt+1

)
RλT

.
= vψ(s

−
T , s

+
T ) (11)

Additional Exploration Policy We train an additional exploration policy πe(at | s+t ) that oper-
ates over scaffolded world model state during training time, to collect informative trajectories. The
intuition is that with better sensing, πe can solve the task more quickly and gather relevant data. To
do so, we simply define separate actor critic networks for the exploration policy, that depend on s+.
It is trained to maximize reward using standard imagination within the scaffolded world model.

Exploration Actor: at ∼ πeθ(at|s+t )
Exploration Critic: veψ(s

+
t ) ≈ Ep+ϕ ,πe

θ
[Rt]

(12)

We alternate between collecting episodes with the exploration policy and target policy in a 1:1 ratio.

Target Policy Representation We modify the target decoder to pϕ(x̂
+
t | h−

t , z
−
t ) so that it en-

forces the representation to be more informative of the privileged observations, which is potentially
useful for control.

C.3 NESTED LATENT IMAGINATION

Here, we motivate and explain the nested latent imagination procedure more in detail. First, let’s
start with a brief overview of DreamerV3’s latent imagination procedure.

Recall that DreamerV3 uses the world model components (dynamics, posterior) for two roles: 1) as
a environment simulator to generate synthetic experience for policy improvement, and 2) as a latent
state encoder that aggregates observation history for the policy.
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Figure 10: Left: DreamerV3’s Latent Imagination - note that it only uses impoverished, target
dynamics, rewards, and values to generate trajectories for policy improvement. Right: Scaffolder
uses scaffolded dynamics, rewards and values.

Concretely, the dynamics p−(z−t+1 | z−t , at) is the environment simulator, and the posterior p−(z−t |
z−t−1, at−1, e

−
t ) encodes present e−t and history z−t−1, at−1 into a compact latent state z−t .

Referring to the left side of Figure 10, DreamerV3’s latent imagination generates trajectories by
repeating the following three steps.

1. Policy Inference: At timestep t, the latent state z−t is fed into the target policy π−(· | z−t )
to generate an action at.

2. Dynamics Inference: The current latent state and action (z−t , at) are fed into the dynamics
p−(z−t+1 | z−t , at) to generate a future state z−t+1.

3. Credit Assignment: With the future state as input, rewards p−(rt+1 | z−t+1) and value
estimates v(z−t+1) are computed.

After running these 3 steps for H timesteps, a trajectory τ =
[
z−1 , a1, z

−
2 , . . . z−H

]
is created. The

policy is trained to maximize the TD(λ) return of all the trajectories, which is a function of the
dynamics, rewards, and values estimates.

Consider what happens to this procedure if the target observations are extremely impoverished, i.e.
have a high loss of information from the scaffolded observations. Then the target dynamics model
p−(z−t+1 | z−t , a−t ), rewards p−(rt+1 | z−t+1) and value estimates v(z−t+1) will be inaccurate.

Instead, we propose to train an additional scaffolded world model, that can take advantage of the
scaffolded observations to learn a more accurate environmental simulator for generating trajectories,
replacing the role of the target dynamics in DreamerV3. However, because we still need to run the
target policy, we retain and train the target world model components and use the target posterior to
encode latent states from target observations.

Following the right side of Figure 10:

1. Policy Inference: At timestep t, we have the target latent state z−t and the scaffolded latent
state z+t . The target latent is fed into the target policy π−(· | z−t ) to generate an action at.

2. Scaffolded Dynamics Inference: The current scaffolded latent state and action (z+t , at)
are fed into the scaffolded dynamics p+(z+t+1 | z+t , at) to generate a future state z+t+1.

3. Scaffolded Credit Assignment: With the scaffolded future state as input, rewards
p+(rt+1 | z+t+1) and value estimates v(z+t+1, z

−
t+1) are computed.

4. Target State Inference: At this point, we have the future scaffolded state z+t+1, but the
policy requires z−t+1 to start step 1 for the next iteration.
We can’t directly convert or learn a mapping z+ → z−, since they encode fundamentally
different information (see Baisero & Amato (2021)). Instead, we can learn a mapping
z+ → o−, since z+ → o+ via DreamerV3’s reconstruction objective, and o+ is a superset
of o−.
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By training the target embedding predictor p+(e− | z+) where e− is the low-level embed-
ding of the target observation, we can now infer the target latent state z−t with the target
posterior q(z−t+1 | z−t , at, e−t ). With z−t+1 from the target posterior, we now can start step 1
for the next iteration.

After running these 4 steps for H timesteps, a trajectory τ =
[
z−1 , z+1 , a1, z

−
2 , z+2 . . . z−H , z+H

]
is

created. The policy is trained to maximize the TD(λ) return of all the trajectories, which is a function
of the scaffolded dynamics, rewards, and values estimates. Later, we show that these scaffolded
TD(λ) estimates using scaffolded components are more accurate than the non-privileged TD(λ)
estimates, explaining why Scaffolder trains better policies than DreamerV3.

D RUNTIME AND RESOURCE COMPARISON

Our method builds off DreamerV3, so it is compute efficient, requiring only 1 GPU and 4 CPUs for
each run. Similarly, baselines building off of DreamerV3 like Informed Dreamer, DreamerV3+BC,
Guided Observability also are compute efficient. We train on Nvidia 2080ti, 3090, A10, A40,
A6000, and L40 GPUs. In contrast, model-free methods like RMA and AAC require large batches
for PPO / Actor-Critic training, requiring 128 CPU workers to have fast and stable training.

Next, we give the runtime in hours for each method, for all experiments in Figure 11. Note that
these are approximate, since we run methods over different types of GPUs and CPUs. In general,
Scaffolder takes ∼ 30%-40% longer to run than DreamerV3 due to training an additional world
model and exploration policy, but Scaffolder is much more sample efficient and reaches higher per-
formance with less environment steps, making up for slower wall time. Similarly, DreamerV3+BC
is also slower compared to DreamerV3 because it trains the teacher policy and teacher world model
alongside the student policy and world model. In general, RMA and AAC take at least 1 day to train
to reach 100M steps.

We plot the learning curves over hours rather than environment steps in Figure 12. The trends are
largely the same as the learning curves over environment steps in Figure 6. This is because Scaffolder
is much more sample-efficient than baselines, reaching higher performance earlier in walltime even
if it takes more time per-step to train the additional models.

Env. Scaffolder Informed Dreamer DreamerV3+BC Guided Obs. RMA+(100M) AAC(100M) DreamerV3
Blind Pick 18 14 18 14 36 36 14
Blind Locomotion 16 12 24 16 24 24 16
Blind Deaf Piano 18 14 18 14 36 36 14
Blind Pen 12 9 12 9 36 36 9
Blind Cube 12 9 12 9 36 36 9
Noisy Monkey 20 12 20 12 36 36 12
Wrist Pick-place 22 16 22 16 36 36 16
Occluded Pick-Place 9 5 9 5 36 36 5
RGB Pen 3 2 3 2 36 36 2
RGB Cube 3 2 3 2 36 36 2

Figure 11: Approximate runtime in hours for each method, over the tasks.

E EXPERIMENT DETAILS

E.1 EVALUATION PROTOCOL

In the main results in Figure 6, we report the score for each task. The score is a task-specific metric
of performance. We use return (sum of rewards) by default. The Pen / Cube rotation tasks use
success rate and Noisy Monkey uses number of handholds. While the policy trains, we periodically
evaluate the policy every 15000 training steps, and log the mean score over 15 evaluation episodes.
We launch 4-10 seeds for each method, and report median and standard error of the evaluation scores
in the learning curves over the seeds. We give each task a sample budget ranging from 250K to 5M.

To compute the final normalized median scores, we perform the following steps for each task. First,
obtain a lower and upper bound on performance by running Dreamerv3 using either o− or o+ as
inputs for the task’s training budget. Next, we take each method’s median score over seeds at the
end of training and normalize it by the lower and upper bound scores. We do this for each method.
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Figure 12: We plot performance over walltime for Scaffolder and baselines.

We then average the normalized scores for each method for all tasks, and report this as the final
median score.

E.2 Scaffolder HYPERPARAMETERS

Next, we describe the hyperparameter settings for Scaffolder. In short, we found hyperparameter
search to be short and easy, due to the robustness of the DreamerV3 algorithm. For new environ-
ments, we found that DreamerV3 only needs tuning for two hyperparameters, the model size and
update to data (UTD) ratio. We follow an easy guideline for tuning these - more complicated dy-
namics generally require larger models, and tasks with harder exploration require more data and
fewer updates (low UTD). As a result, we found hyperparameter settings that work for tasks with
similar properties, as seen in Table 1.

We did not tune these two DreamerV3 hyperparameters towards Scaffolder- rather, when we used
model sizes and UTD ratios from when we ran DreamerV3 with privileged inputs as a reference
method used for computing the upper bound scores. These same settings are then used for all
DreamerV3 methods (Scaffolder, Informed Dreamer, DreamerV3+BC, Guided Observability) to be
consistent.

Table 1: DreamerV3 hyperparameters
Model, UTD

Small, 512 (Simple Dynamics, Easy Exploration) Blind Pick, Blind Locomotion, Wrist Pick-Place, Occluded Pick-Place
Large, 512 (Complex dynamics, Easy Exploration) Blind Deaf Piano
Large, 16 (Complex Dynamics, Hard Exploration) Noisy Monkey, Blind Pen, Blind Cube, RGB Pen, RGB Cube
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E.3 BASELINES

DreamerV3 We run DreamerV3 “out of the box” with only access to target observations for all
tasks. See the prior hyperparameters discussion for details.

Informed Dreamer Informed Dreamer adds an additional loss term to DreamerV3 that pushes
the world model to decode privileged information from the target observations. Informed Dreamer
works best when the privileged information is predictable from the impoverished, target observation.
Due to the simplicity of the method, which just decodes additional observations, we can just use the
DreamerV3 codebase directly to run Informed Dreamer by changing the decoder outputs.

DreamerV3+BC DreamerV3+BC trains two policies simultaneously, a teacher policy on privi-
leged observations and a student policy on target observations. The teacher policy trains with the
same objective as DreamerV3, while the student policy has a combined reinforcement learning and
behavior cloning objective that pushes the student to both maximize return and mimic the teacher’s
actions. The BC objective assumes the optimal student and teacher have the same action distribu-
tions for it to be helpful.

This assumption does not always hold true and is violated in multiple of S3’s environments, in-
cluding Wrist Camera Pick-and-Place, Occluded Pick-and-Place, and Blind Pick. The student’s RL
objective can help with this imitation gap, but DreamerV3+BC is still outperformed by numerous
other methods that exploit privileged information at training time. We implement DreamerV3+BC
on top of DreamerV3.

To find the best balance between RL and BC objective for each task, we try BC weighting values
of 0.1, 0.01, 0.001 for all 10 tasks, and report DreamerV3+BC results with the best weight for each
task.

Guided Observability Guided Observability implements a schedule for removing privileged in-
formation during training. The policy is initially given both privileged and target observations,
but as training progresses, the privileged information is dropped out with increasing probability.
This dropout probability linearly increases with training iterations until only the target observations
remain. We used a 50% cutoff for access to privileged information for all tasks, but this hyperpa-
rameter can realistically be tuned for each environment.

Guided Observability is algorithm agnostic but was implemented on top of DreamerV3 for this base-
lines so as to remain as comparable as possible with Scaffolder and other Dreamer-based baselines.
Our implementation closely mimicked PO-GRL (Weigand et al., 2021), but had one small modi-
fication. In PO-GRL, dropped-out observations are directly placed in the replay buffer. For our
implementation, however, only scaffolded observations (o+) are placed in the replay buffer, whether
they were dropped out during the data collection process or not. Privileged information sampled
from the replay buffer for world model training is then probabilistically dropped out on the same
training schedule. This mitigates the risk of privileged information leaking into updates late in the
training process. We choose a simple linear annealing schedule that anneals towards 0 by 50% of
training for all tasks.

RMA RMA shares the same policy between teacher and student, and assumes that the privileged
teacher training uses low-dimensional privileged system information as input. Therefore, it is not
conceptually or practically easy to incorporate noisy, high dimensional observations into teacher
training. So instead, we just give RMA an advantage by giving it access to privileged low dimen-
sional states instead of privileged observations. We use the RMA codebase from (Qi et al., 2023) to
run our experiments.

Asymmetric Actor Critic (AAC) Asymmetric Actor Critic (Pinto et al., 2018) conditions the
critic on scaffolded observations, while only conditioning the actor on target observations. AAC
assumes that providing privileged information to the critic will allow it to better estimate the value
of states and thus, improve policy learning.
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AAC was implemented on top of cleanrl’s (Huang et al., 2022b) implementation of PPO. To account
for the relative sample inefficiency of PPO and model-free algorithms in general, a 100M sample
budget was given to AAC for each task.

E.4 SENSORY SCAFFOLDING SUITE

Blind Pick A two-fingered robot arm must pick up a randomly initialized block using only propri-
oception (gripper position) and touch sensing. During training, it can use multiple privileged RGB
camera inputs (two static cameras and one wrist camera).

• Observation Space:

– op: Privileged observations include three low-resolution RGB cameras: two static cameras
face the workspace from the front and side, while one egocentric camera is located in the
wrist.

– o−: The target observation space includes the gripper’s position, velocity, and open/close
state. Additionally, the robot has two binary touch sensors on each gripper finger.

• Action Space: Gripper velocity and gripping force.

• Reward: Task reward for successfully picking up the block and auxiliary rewards computed using
distances between the gripper, block, and picking goal positions.

Blind Locomotion In the Half Cheetah task, a proprioceptive policy must run and jump over
randomly sized and positioned hurdles. During training, privileged RGB images of the Half Cheetah
and its nearby hurdles are given, allowing the agent to see obstacles before bumping into them (see
Figure 2).

• Observation Space:

– op: RGB camera that tracks the Half Cheetah as it moves.
– o−: Joint angles and velocities.

• Action Space: Torques for each of the 6 moveable joints on the Half Cheetah.

• Reward Function: Reward proportional to the Half Cheetah’s forward-moving velocity with a
penalty for incurred control costs.

Blind and Deaf Piano A pair of 30-DoF Shadowhands in the Robopianist simulator (Zakka et al.,
2023) must learn to play “Twinkle Twinkle Little Star” using only proprioception. At training time,
the policy has access to future notes, piano key presses, and suggested fingerings, which emulates
having vision to see sheet music and hearing to determine which keys were pressed.

• Observation Space:

– op: Future notes for the next ten control steps, suggested fingerings for each set of notes,
current piano key presses, previous action, and previous reward.

– o−: Joint angles and forearm position for each Shadowhand.

• Action Space: Desired joint angles and forearm position for each Shadowhand.

• Reward Function: Task reward for playing correct notes with a penalty incurred for incorrect
notes. Additionally, auxiliary rewards are provided to encourage the fingers to stay close to the
keys and minimize energy.

Blind and Numb Pen A proprioceptive policy must control a 30-DoF Shadowhand to rotate a pen
from a randomized initial orientation to a randomized desired orientation. The target policy receives
joint angles, the initial orientation of the pen, and the desired goal orientation. During training, the
policy has access to the object pose and touch sensors.

• Observation Space:

– op: Pen pose and dense touch sensing.
– o−: Joint angles, initial pen pose, goal pen pose.
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• Action Space: Joint angles.
• Reward Function: Dense positive reward proportional to the similarity between the current and

target pen orientations. A negative penalty is incurred for dropping the pen.

Blind and Numb Cube Similar to Blind and Numb Pen rotation, a proprioceptive policy must
control a 30-DoF Shadowhand to rotate a cube from a randomized initial orientation to a randomized
desired orientation.

• Observation Space:
– op: Cube pose and touch sensing.
– o−: Joint angles, initial cube pose, goal cube pose

• Action Space: joint angles.
• Reward Function: Dense positive reward proportional to the similarity between the current and

target cube orientations. A negative penalty is incurred for dropping the cube.

Noisy Monkey Bars A 13-link gibbon must swing between a fixed set of handholds in a 2D
environment using the brachiation simulator (Reda et al., 2022). Handholds are placed far enough
apart such that the gibbon must use its momentum to swing and fly through the air to reach the
next handhold. To simulate imperfect sensors on a robotic platform, Gaussian noise is added to
the target observations, while privileged observations represent true simulator states. To improve
policy learning in this difficult control task, the relative position of the model’s center of mass from
a provided reference trajectory is used as an auxiliary reward.

• Observation Space:
– op: Privileged observations include true simulator states, including the gibbon model’s over-

all velocity and pitch, sin and cos of each joint angle, joint velocities, height of the current
arm from the model’s center of mass, and whether each hand is currently grabbing or re-
leased. Additionally, the relative position to the next handhold and the relative distance to
the reference trajectory are provided to the policy.

– o−: The target observation space is equivalent to the privileged observation space but with
added Gaussian noise. Gaussian noise is applied to the true environment states rather than
the observations to more accurately represent noisy sensors. For example, noise is added to
joint angles rather than the sin and cos of those angles that the policy receives.

• Action Space: Desired joint angle offsets for each joint on the gibbon model and a binary
grab/release action for each hand.

• Noise: Gaussian noise with 0 mean and 0.05 standard deviation is independently applied to each
simulator state component. Angles are measured in radians and distance is measured in meters.
For reference, the gibbon is 0.63m tall.

• Reward Function: The reward function includes three terms: a style term to encourage the model
to stay relatively upright and minimize jerky motions, a tracking term to encourage the model’s
center of mass to stay close to the provided reference trajectory, and a sparse task reward term for
each additional handhold reached.

Wrist Camera Pick-and-Place This task examines the impact of multiple privileged 3rd-person
cameras on learning a target active-perception policy with wrist camera input. Given the wrist cam-
era’s restricted field of view, the target policy must concurrently learn to move to locate the block and
bin while executing the task. This task mirrors real-world scenarios such as mobile manipulation,
where a controllable wrist camera with a limited field of view might be the sole visual sensor.

• Observation Space:
– op: Two static, low-resolution RGB cameras facing the workspace from the front and side.
– o−: Proprioceptive information including the gripper’s position, velocity, and open/close

state, touch sensing from two binary touch sensors located on each gripper finger, and vision
from a low-resolution RGB egocentric camera located in the wrist of the robot.

• Action Space: Gripper velocity and force.
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• Reward Function: Sparse task reward for placing the block in the bin and auxiliary rewards com-
puted using distances between the gripper, block, and bin positions.

Occluded Pick-and-Place Rather than employing active visual perception at test time, this task
examines the impact of active-perception as privileged sensing at training time. The target policy
must use an RGB camera from an occluded viewpoint alongside proprioception and touch sensing
to pick up a block behind a shelf and place it into a bin. Both object and bin locations are ran-
domly initialized. During training time, the robot gets access to a privileged wrist mounted camera,
enabling it to perform active visual perception to locate the block during training (see Figure 2).

• Observation Space:
– op: Two low-resolution RGB cameras: one static, unoccluded camera facing the workspace

from the side and one active-perception camera located in the wrist of the robot.
– o−: One occluded low-resolution RGB camera. Although this camera does not reveal any

information about the block, it does encode the position of the randomly placed bin.
• Action Space: Gripper velocity and force.
• Reward Function: Sparse task reward for placing the block in the bin and auxiliary rewards com-

puted using distances between the gripper, block, and bin positions.

Visual Pen Rotation We carry over the setup from the previous two blind and numb dexterous
manipulation tasks with privileged object pose and contact sensors. In this task, however, the target
policy gains access to a top-down RGB image (see Figure 5) to rotate a pen from a randomized
initial orientation to a randomized desired orientation. At training time, the policy has access to the
pen pose and touch sensing.

• Observation Space:
– op: Pen pose and dense touch sensing.
– o−: Joint angles, One top-down, low-resolution RGB camera. desired pen pose

• Action Space: Desired joint angles.
• Reward Function: Dense positive reward proportional to the similarity between the current and

target pen orientations. A negative penalty is incurred for dropping the pen.

Visual Cube Rotation Similarly to Visual Pen Rotation, a visual target policy conditioned on a
top-down RGB image and proprioception must rotate a block to a desired orientation.

• Observation Space:
– op: Cube pose and dense touch sensing.
– o−: Joint angles, topdown RGB camera, desired cube pose.

• Action Space: Desired joint angles.
• Reward Function: Dense positive reward proportional to the similarity between the current and

target cube orientations. A negative penalty is incurred for dropping the cube.
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F ADDITIONAL TD(λ) ERROR EXPERIMENTS.

Figure 13: Top: Blind Nav., Bottom:
Blind Locomotion

Let the scaffolded TD(λ) return be Equation (1), and
the impoverished “target” TD(λ) return be the original
DreamerV3 policy objective, which substitutes the blue
terms in Equation (1) with target dynamics p−ϕ (z

−
t+1 |

z−t , at), target rewards p−ϕ (r
−
t | z−t ), and target critic

v−ψ (z
−
t ). We compute the mean absolute error (MAE)

for each of these two estimates against the ground truth
Monte-Carlo return Rt.

We evaluate this in two additional environments, Blind
Navigation and Blind Locomotion. In Blind Navigation,
a randomly initialized agent must find a randomly ini-
tialized goal point in a 15x15 gridworld. The privileged
observation is the location of the goal in every epsiode,
while the target observation is the x,y location of the
agent. Every 25K steps while training, we collect ∼1000
transitions with the policy and compute Rt.

Figure 9 plots Advantage = (target return MAE − scaf-
folded return MAE). If the target error is higher than
the scaffolded estimate’s error, then Advantage is posi-
tive. The advantages are mostly positive, indicating that
scaffolded TD(λ) is more accurate. This provides evi-
dence for why Scaffolder trains better policies than non-
privileged counterparts — its policy objective better ap-
proximates the true expected return, giving the policy op-
timizer a better training signal.

G SCAFFOLDER WITH REWARDS ESTIMATED FROM PRIVILEGED SENSORS

Figure 14: Scaffolder still
outperforms baselines in the
estimated reward setting.

To simulate realistic real world RL scenarios, we estimate reward
signals from noisy sensors rather than using rewards computed from
simulator state. We modify the Blind Pick environment’s reward
function to use estimated object pose rather than ground truth object
pose, acquired via color-segmentation from the privileged cameras.
The estimated object pose now has noise due to partial occlusions
of the block by the robot gripper.

We train Scaffolder and other methods on the estimated reward, and
evaluate on the ground truth return. As seen in Figure 14, all meth-
ods suffer some performance degradation. Scaffolder gets around
200 return whereas in the original Blind Pick it gets 300. However,
the performance trends are consistent. Looking at policy rollouts,
we find that only Scaffolder can reliably pick up the block and all
other methods fail.
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H Scaffolder ON PRE-EXISTING ENVIRONMENTS

We ran Scaffolder and DreamerV3 (operating only on target input, consistent with our other results)
on two other environments from the COSIL Nguyen et al. (2022) paper, Bumps-2D and Car-Flag.

In Bumps-2D, a robot arm must find the bigger bump out of a pair of randomly initialized bumps in
a 2D grid, using only proprioception and touch sensing. In Car-Flag, a car using just proprioception
must find a randomly initialized green flag. If the car finds a blue flag, the green flag position is
revealed. In both environments, the state expert can directly go to the bigger bump / green flag,
while the student policy must perform information gathering actions to solve the task.

Figure 15: Performance of Scaffolder and DreamerV3 on two environments from COSIL.

As seen in Figure 15, the new results are consistent with those reported in our paper on the 10 S3
tasks: Scaffolder clearly outperforms DreamerV3, further establishing the versatility of our approach
for utilizing privileged sensory information.

In addition, these experiments also enable new comparisons with the prior work evaluated in COSIL.
Note that COSIL and its baselines operate in a slightly different setting from Scaffolder: they as-
sume access to a perfect, hand-coded scaffolded policy , whereas Scaffolder trains both target and
scaffolded policies from scratch, and in tandem, starting at environment step 0. This means that,
when comparing learning curves, we must remember that COSIL effectively “starts ahead” of Scaf-
folder. Even with this handicap, Scaffolder easily outperforms COSIL on Bumps-2D, and matches
it on Car-Flag. These results on COSIL’s own evaluation environments show further evidence of
Scaffolder ’s improvements over prior state of the art.
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