Long-HOT: A Modular Hierarchical Approach for Long-Horizon Object Transport

Abstract

We aim to address key challenges in long-horizon embodied exploration and navigation by proposing a long-horizon object transport task called Long-HOT and a novel modular framework for temporally extended navigation. Agents in Long-HOT need to efficiently find and pick up target objects that are scattered in the environment, carry them to a goal location with load constraints, and optionally have access to a container. We propose a modular topological graph-based transport policy (HTP) that explores efficiently with the help of weighted frontiers. Our approach uses a combination of motion planning to reach point goals within explored locations and object navigation policies for moving towards semantic targets at unknown locations. Experiments on both our proposed Habitat transport task and on MultiOn benchmarks show that our method outperforms baselines and prior works. Further, we analyze the agent’s behavior for the usage of the container and demonstrate meaningful generalization to much harder transport scenes with training only on simpler versions of the task. We will release all the code and data.

Publication
ICRA