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Introduction

1.1 System Models

This book analyzes mathematical models for systems and explores tech-
niques for optimizing systems described by these models. We use the term
system in its broad sense; by a system we mean a collection of things
which are related in such a way that it makes sense to think of them as a
whole. Examples of systems are an electric motor, an automobile, a
transportation system, and a city. Each of these systems is part of a larger
system. Small systems are usually well understood; large, complex systems
are not.
 Rational decision making concerning the design and operation of a
system is always based upon a model of that system. A model of a system
is a simpler system that behaves sufficiently like the system of interest to
be of use in predicting the behavior of the system. The choice of
appropriate model depends upon the complexity of the system, the avail-
able resources, and the questions that need to be answered by the model.
Many decisions are based upon nothing more than the conceptual model
which the decision maker develops by observing the operation of other
systems. In this book we concern ourselves with a more quantitative class
of models, mathematical models.

Most systems can be thought of (or modeled) as an operation on the
system inputs (or independent variables) which produces the system out-
puts (or dependent variables); we state this input-output relationship
symbolically by means of the following mathematical equation:

Tx=y (1.1)

In this equation x represents the set of inputs to the system and y the set of
outputs of the system.* The symbol T represents the operation which the
system performs on the inputs; thus T is a mathematical model of the
system.

*See Section 2.3 for a more complete discussion of inputs and outputs.
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In order for a model of a system to be conceptually simple, it must be
abstract. The more details we include explicitly in the model, the more
complicated it becomes. The more details we make implicit, the more
abstract it becomes. Thus if we seek conceptual simplicity, we cannot
avoid abstraction. The model T of (1.1) epitomizes this simplicity and
abstraction.

The generality of the model given in (1.1) allows it to be applied to many
different systems. In the simplest of situations T might represent a simple
economic transaction: let p be the unit price of a particular commodity;
then (1.1) means y =px, where x is the quantity purchased and y is the
total cost of the purchase. At the other extreme, T might represent a large
city. Figure 1.1 shows the system output y that might result from a given
input x; obviously, many pertinent variables are not explicit in Figure 1.1.

Figure 1.1. A conceptual model of a large city.

Equation (1.1) is the focus of this book. The first five chapters are
devoted to a detailed analysis of (1.1) for models T which are linear.* By
decomposing linear models into smaller, simpler pieces we develop an
intuitive feel for their properties and determine the practical computational
difficulties which can arise in using linear models. Chapter 6 treats the
least-square optimization of systems that can be represented by linear
models. The analysis and optimization of systems that are described by
nonlinear models are considered in Chapters 7-8.

We emphasize linear models because most known analytical results
pertain only to linear models. Furthermore, most of the successful tech-
niques for analyzing and optimizing nonlinear systems consist in the repet-
itive application of linear techniques (Chapter 7-8). We dwell extensively
on the two most frequently used linear models-linear algebraic equations
and linear differential equations. These models are the most frequently
used because they are well understood and relatively easy to deal with. In
addition, they are satisfactory models for a large number of practical
systems.

Throughout the text we explore the computational implications of the
analytical techniques which we develop, but we do not develop computer

*See Section 2.4 for the definition of a linear system.
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algorithms. We do not discuss stochastic systems; we treat systems with
stochastic inputs only by means of examples.

System Questions

Questions concerning a system usually fall into one of the following
categories:

1. System operation: in terms of (1.l), given the model T and the input
x, find the output y.

2 . System inversion: given the model T and output y, find the input x.
3. System synthesis or identification: given several different choices of

input x and the corresponding output y for each input, determine a
suitable system model T. (If the system is to be identified, the inputs and
outputs are measurements from a real system. If the system is to be
synthesized, T would be chosen to provide some desired input-output
relationship.)

4. System optimization: pick the input x, the output y, or the system T
so that some criterion is optimized.

Note that we have expressed these questions in terms of the system
model rather than in terms of the system itself. Although experimentation
with actual systems may be appropriate in certain circumstances, these
questions are usually explored by means of a model. We discuss the
modeling process briefly in Section 1.4. We also examine in Chapter 6
some techniques for making an optimum choice of model parameters once
a model structure has been established. However, we do not dwell exten-
sively on techniques for obtaining good models. Rather, we work with the
models themselves, assuming that they are good models for the systems
they represent. Questions 1 and 2 are treated in Chapters 1, 2, 4, and 5 for
linear algebraic equation models and in Chapters 2-5 for linear differential
equation models. Question 4 is treated in Chapters 6-8. We do not
consider question 3.*

The concepts explored in this book apply directly to any field which uses
equations to represent systems or portions of systems. Although we focus
on linear algebraic equations and linear differential equations, we also
demonstrate the applicability of the concepts to partial differential equa-
tions and difference equations; we include equations which are probabi-
listic, “time-varying,” and nonlinear. Our examples pertain to models and
optimization in such fields as automatic control, electric power, circuits,
statistical communications, coding, heat flow, economics, operations re-
search, etc.

*See Sage [1.10] for a discussion of identification.
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1.2 Approach

All students of science and engineering have noticed occasional similarities
between the physical laws of different fields. For instance, gravitational
attraction, electrostatic attraction, and magnetic attraction all obey an
inverse-square law. Electrical resistance to the flow of current has its
analogue in the resistance of materials to the conduction of heat. Not only
does the physical world tend to repeat itself; it also tends toward simplicity
and economy. Most natural phenomena can be explained by simple
differential relationships: the net force on a rigid object is proportional to
its acceleration; the rate of flow of heat is proportional to the gradient of
the temperature distribution.

If we put a number of simple relationships together to describe the
motion of a nonrigid object (fuel in a rocket) or the heat flow in an
irregular nonhomogeneous object (a nuclear reactor), then nature appears
complicated. The human mind is not good at thinking of several things at
once. The development of large-scale digital computers has provided the
capability for solving complex sets of equations; it has made system study
a reality. However, the engineer, the designer of a system, still must
conceive of the variables and interactions in the system to such an extent
that he can describe for a computer what it is he wants to know. He needs
simple conceptual models for systems.

We can simplify models for complex systems by stretching our imagina-
tion in a search for analogies. For instance, the multiplication of an
electrical current by a resistance to determine a voltage has an analogue in
the differentiation of a current and then multiplication by an inductance;
both actions are operations on a current to yield a voltage. This analogy
suggests that we think of differentiation as analogous to multiplication by
a number. By reducing the number of “different concepts” necessary to
understand the parts of a system, such analogies help the system designer
to achieve greater economy of thought; he can conceive of the system in
simpler terms, hopefully gaining insight in the process. William K. Linvill
[1.7] has coined the term “portable concept” to describe a concept that is
transferable from one setting to another. This book is concerned with
portable mathematical concepts. The purpose of exploring such concepts is
to enhance the ability of the reader to model systems, understand them,
synthesize them, and optimize them. Our basic premise is that this ability is
enhanced by an intuitive understanding of the models and optimization
techniques that have proved useful in many settings in the past. By an
intuitive understanding, we mean the type of “intuitive feel” that an
engineer obtains by applying and reapplying a concept to many different
situations.

It would seem, then, that we must fully absorb most of mathematics.
However, much of the mathematical literature is directed toward the
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modeling and optimization of pathological cases, those cases for which
“standard” models or techniques are insufficient. Because techniques for
handling these cases are new, it is appropriate that they be the focus of the
current literature. Yet this emphasis on exceptional cases can distort our
perspective. In maximizing a function, we should not become so concerned
about nondifferentiability of functions that we forget to try setting the
derivative equal to zero. Rather than try to explore all cases, we focus on
well-behaved systems. By making analogies, we organize the most common
models and optimization techniques into a framework which contains only
a relatively few fundamental concepts. The exceptional cases can be more
clearly understood in comparison to this basic framework.

The importance of learning the structure of a subject is stressed by
Bruner [1.1]: “Grasping the structure of a subject is understanding it in a
way that permits many other things to be related to it meaningfully… the
transfer of principles is dependent upon mastery of the structure of the
subject matter… . Perhaps the most basic thing that can be said about
human memory, after a century of intensive research, is that unless detail
is placed into a structured pattern, it is rapidly forgotten.” In order to
simplify and unify the concepts used in model analysis and optimization,
we organize fundamental mathematical principles into a mnemonic struc-
ture—a structure which draws extensively on geometrical analogies as an
aid to the memory. We also develop a mathematical language suitable for
communicating these structural concepts.

The first half of this book is concerned with models and their analysis.
Mathematically speaking, this is the subject of algebra-the use of symbols
to express quantitative concepts and their relations. In the latter half of the
book we turn to geometry-the measurement and comparison of quantita-
tive concepts—in order to further analyze models and to optimize their
parameters and inputs. Because the bulk of known analytical results are
concerned with linear models, these models necessarily dominate our
discussions. Our emphasis is on geometrical insight rather than mathemati-
cal theorems. We reach deep into the mathematical literature for concepts.
We try to be rigorously correct. Yet we develop concepts by means of
analogies and simple examples rather than proofs, in order to nurture the
intuition of the reader. We concern ourselves with the practical aspects of
computation. To engineers the material seems like mathematics; to
mathematicians it seems like engineering.

1.3 Portable Concepts

To illustrate the portability of the mathematical model (1.1) we compare
the two most common mathematical models: (a) a set of linear algebraic
equations; and (b) a linear differential equation. The following algebraic
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equations might represent the
currents in a resistive circuit:

relationship between the voltages and the

Such a set of equations is often expressed in the matrix form:

(1.2)

(1.3)

In the form (1.3), we can interpret the set of equations as an operation
(matrix multiplication) on the pair of variables [i and & to obtain the pair
of quantities vi and r/2’ The relationship (1.2) between the pairs of
variables can also be expressed in terms of the “inverse equations”:

(1.4)

Equations (1.4) can be verified by substitution into (1.2). The coefficients
in (1.4) indicate what must be done to the “right-hand side” variables in
order to determine the solution to (1.2). Equations (1.4) can be expressed
in the “inverse matrix” form:

In Section 1.5 we explore in detail the process of solving or inverting
equations such as (1.2). In Chapter 2 we begin the discussion of algebraic
equation models in a manner which is consistent with the notation of (1.1).
Chapters 4 and 5 are, to a great extent, devoted to analyzing these models.

The angular velocity o(t) of a particular loaded dc motor, initially at
rest, can be expressed in terms of its armature voltage u(t) as

(l-6)

We can think of the differential equation and boundary condition as an
abstract operation on o to obtain u. Equation (1.6) also can be expressed
in the inverse form:

(1.7)

That the integral equation (1.7) is, in fact, the solution to (1.6) is easily
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verified for a particular armature voltage, say, u(t)  = e2*, by evaluating o(t),
then substituting it into (1.6). We can think of (1.7) as an abstract
“integral” operation on u to determine o; this is the “inverse” of the
“differential” operation in (1.6). These two abstract operations and
techniques for determining the inverse operation are the subject of Chapter
3. The analysis of these abstract operations carries into Chapters 4 and 5.

The algebraic equations (1.2) and the differential equation with its
boundary condition (1.6) have much in common. We must not let details
cloud the issue; in each case, an “input” is affecting an “output” according
to certain (linear) principles. We can think of the pair of variables [i and t2
and the function o as each constituting a single “vector” variable. The
analogy between these entities is carried further in the comparison of
Figure 1.2, wherein the pair of variables <i, t2 is treated as a “discrete”
function. This analogy is discussed further in Section 2.1. It seems evident
that concepts are more clearly portable if they are abstracted-stripped of
their details.

A Portable Optimization Concept

We again employ the analogy between a “discrete vector” variable and a
“continuous vector” variable to discuss the portability of an optimization

Figure 1.2. Vector variables plotted as functions: (a) discrete variables of (1.2); (b) con-
tinuous variable of (1.6).
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Figure 1.3. A vector of minimum length.

concept. Figure 1.3 shows the locus of all vectors x in a three-dimensional
space which lie in the intersection of two planes. We seek that vector x
which is of minimum length. The solution vector x9 is perpendicular to the
line which constitutes the locus of the candidate vectors x.

Using the standard notation of analytic geometry, we think of the vector
x as x = (t,,&,&). The plane that is perpendicular to the vector x1 can be
expressed mathematically in terms of the dot product of vectors as x l x1 =
51= Cl. Similarly, the second plane consists in vectors x which satisfy
x ’ x2 = c2. Since x, must be perpendicular to the intersection of the planes,
it must be some combination of the vectors x1 and x2 that determine the
planes; that is, x, = d,x, + d2x2 for some constants d, and d,. Substituting
x, into the equations that determine the planes, we obtain a pair of
algebraic equations in d, and d,:

( 1 . 8 )

Since the vectors x1 and x2 are perpendicular and of unit length, then

and
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The geometric minimization problem described above is simple. By
using geometric notions, we have found the vector x which satisfies two
linear equations and for which the quantity [:+S,‘+s;’  (the length of x
squared) is minimum. The same geometric principles can be used to solve
other, more complicated, problems wherein linear equations must be
satisfied and a quadratic quantity minimized. For instance, the angular
position +(t) of the shaft of the dc motor of (1.6) satisfies

( 1 . 9 )

Suppose we seek that armature voltage function u(t) that will drive the
motor shaft from one position to another in a fixed time, while consuming
a minimum amount of energy; that is, let 9(O)= &O)  = 0, e(1) = 1, &( 1) = 0,
and pick u to minimize JAu2(t)dt. In our search for a technique for solving
this problem we should not cloud the issue by thinking about techniques
for solving differential equations. Equation (1.9) is linear; the quantity to
be minimized is quadratic. Chapter 6 is devoted to solving such problems
by using analogues of the planes and perpendicular vectors of Figure 1.3.

1.4 System Modeling

The rationale for modeling a system is a desire to determine how to design
and/or operate a system without experimenting with actual systems. If a
system is large, experimenting is usually very time consuming, extremely
expensive, and often socially unacceptable. A designer uses models to
predict the performance characteristics of a system or to aid in modifying
the design of the system so that it meets a desired set of specifications. He
will probably be interested in the degree of stability of the system, its
accuracy, and its speed of response to commands. The designer also uses
models to predict the nature of the interaction of the system with other
systems. For example, he may wish to predict the effect of the system or of
a particular system operating policy on the environment or on a related
energy distribution system. Or he may wish to predict the performance of
the system in the presence of extraneous inputs (noise) or sudden changes
in load. The reliability of the system and the sensitivity of the system
performance to changes in the environment are also important.

Types of Models

A single system has many models. One or more models of the system
pertain to its electrical behavior, others to its thermal behavior, still others
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to its mechanical behavior. An investigation of the social or economic
characteristics of the system requires additional models.

Physical models are appropriate in many situations. One example of such
a model is a scale model of a building or bridge. The conceptual
representation of a rocket by a solid cylinder is another example. In most
system studies, a mathematical model for the system (or part of the system)
facilitates analysis. An appropriate mathematical model usually can be
derived more easily from a simplified physical model than from the
original system. The resulting mathematical model usually consists of a set
of algebraic and/or differential equations. Often these equations can be
solved (for given system inputs) on a digital, analogue, or hybrid
computer.† In some instances, the distributed nature of the system requires
a mathematical model consisting of partial differential equations, and
computer solutions are difficult to obtain even if the equations are linear.

The behavior of some systems fluctuates randomly with time. For such
systems (or portions of systems) it is common to build a discrete-event
simulation model ,t Rather than predicting the precise behavior of the
system, such a model simulates the behavior numerically in a manner that
is statistically correct. For instance, we might be interested in the flow of
customers through a set of checkout counters. A simple physical model of
such a customer service system consists of a single checkout counter, where
customers arrive, wait for service, are served, then leave; arrival times and
service times are random with known statistics. By means of a digital
computer, we would generate a random sequence of arrivals (with correct
statistical properties). We would also determine a service time for each
customer by an appropriate random number generation process. Then we
would observe the simulated flow of customers over time. The simulation
would predict not only the average flow through the system, but also the
frequency of occurrence of various queue lengths and waiting times. Thus
the dynamic performance of certain types of systems can be predicted by
digital simulation.

As a practical matter, a model should contain no more detail than is
necessary to accomplish the purposes of the model. One is seldom sure of
the accuracy of a model. Yet if a model is accurate enough to improve
one’s decision-making capability, it serves a useful purpose. Generally
speaking, the more complex the model is, the more expensive will be the
process of developing and using the model. In the extreme, the most
accurate model is a copy of the system itself.

*Special computer programs have been developed to facilitate the solving of certain classes of
equations.  One example is MATLAB®; it is effective in solving linear algebraic and linear differential
equations.
†Specialized computer languages have been developed to facilitate discrete-event simulation.
Examples are ARENA ® , SIMSCRIPT ® , and GPSS ®.
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Unfortunately, it is probable that some complex systems will never be
represented in sufficient detail by manageable mathematical models. Yet a
conceptual model can be applied in situations where it is difficult to obtain
meaningful quantitative models; for example, the principle of negative
feedback (with its beneficial effects on stability and sensitivity) often is
applied successfully without the use of a mathematical model. The system
concepts that are associated with mathematical models serve as a guide to
the exploration of complex systems. By the use of specific models for small
subsystems, by computer analysis of the combined subsystem models, and
by the application of model concepts (such as feedback) to the whole
system, we can better understand large systems.

The Modeling Process

The process of modeling can be divided into two closely related steps: (1)
establishing the model structure and (2) supplying the data. We focus
primarily on the first step. However, we cannot ignore the second; it is
seldom useful to establish a model structure for which we cannot obtain
data.

We begin the modeling process by examining the system of interest. In
many complex systems, even the boundaries of the system are not clear.
The motivation for modeling such a system is usually a desire to solve a
problem, to improve an unsatisfactory situation, or to satisfy a felt need.
We must describe the system and the manner in which it performs in a
simple fashion, omitting unnecessary detail. As we begin to understand
better the relationship between the system and the problem which
motivates study of the system, we will be able to establish suitable
boundaries for the system.

Suppose a housing official of a large city is concerned because the
number of vacant apartments in his city cycles badly, some times being so
high as to seriously depress rental rates, other times being so low as to
make it difficult for people to find or afford housing.* What is the reason
for the cycling? To answer this question, we need to explore the “housing
system.” Should we include in “the system” the financial institutions which
provide capital? The construction industry and labor unions which affect
new construction? The welfare system which supports a significant fraction
of low-income housing? Initially, we would be likely to concern ourselves
only with the direct mechanisms by which vacant apartments are
generated (new construction, people moving out, etc.) and eliminated (new
renters).

Should the model account for different sizes of apartments? Different
styles? Different locations? Seasonal variations in the number of vacan-

*The idea for this example was obtained from Truxal [1.1], Chapter 21.
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ties? A model that accounts for all these factors would require detailed
data (as a function of time) for each factor. These data are not likely to be
readily available. Rather, obtaining the data would require the cooperation
of many apartment managers and an extensive data-taking operation over
at least a l-year period. A more likely approach, at least initially, would be
to develop a simple model which predicts the average number of vacancies
(of any type) in the city in a l-year period. Data concerning this quantity
are probably available for at least a large fraction of the large apartment
complexes in the city.

Once the approximate extent of the system and the approximate degree
of detail of the model have been determined, the course of model devel-
opment usually progresses through the following steps:

1. Development of a simple physical model.
2. Derivation of a mathematical model of the physical model.
3. Obtaining of data from which model parameters are determined.
4. Validation of the model.

In deriving a model for a system it usually helps to visualize the
behavior of the unfamiliar system in terms of the behavior of familiar
systems which are similar. It is for this reason that we start with a simple
physical model. The physical model of the system is likely to be conceptual
rather than actual. It is a simple abstraction which retains only the
essential characteristics of the original system. In the case of the apartment
vacancy model introduced above, a simple physical model might consist of
a set of identical empty boxes (vacant apartments). At l-year intervals
some number of boxes is added by construction or renters moving out;
another number of boxes is removed by new renters. See Figure 1.4.

Yearly addition
by construction
or moving out

Yearly
removal by
new renters

Figure 1.4. Simple physical model of apartment vacancies.
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A mathematical model of a system is usually easier to derive from a
simple physical model than from the system itself. In most instances the
mathematical model consists of algebraic and/or differential equations.
The mathematical model must be kept simple in order that it be solvable
analytically or by means of practical computer techniques. Generally, the
model simplifications that reduce data requirements also reduce the
complexity of the mathematical model. For example, in the housing system
described above, the aggregation of the various types of apartments into a
single type greatly reduces the number of variables in the mathematical
model. Other simplifying approximations which may be appropriate in
some situations are (1) ignoring interaction between the system and its
environment; (2) neglecting uncertainty and noise; (3) lumping distributed
characteristics; and (4) assuming linearity and time invariance. Sage [1.10]
describes some techniques that are useful in identifying the structure and
parameter values of those systems that act in a linear fashion.

Mathematical Model of Apartment Vacancies

In order to demonstrate the logical thought process entailed in the
derivation of a mathematical model, we derive a mathematical model of
the physical model of apartment vacancies illustrated in Figure 1.4.

We expect that the number of “apartment construction starts” in a given
year is approximately equal to the apparent need for new apartments. We
formalize this statement by postulating the following relationship:

(1.10)

where S (n) = number of apartment construction starts in year n;

V (n) = average number of vacant apartments during the l-year
period centered at the beginning of year n.

Underlying (1.10) is the assumption that the people who build apartments
feel that the city should have approximately vd vacancies.  The
proportionality factor a! and the number of vacancies vd should be selected
in such a manner that (1.10) most nearly describes recent historical data
for the city.

Of course, actual apartment completions lag behind the starts by an
appreciable time. We formalize this statement by the equation

C(n)=S(n-I) (1.11)

where C(n) is the number of completions in year n, and 2 is the average
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construction time. A suitable value for the lag I should be determined from
historical data.

Let R(n) denote the number of new apartments rented during year n.
We can include in R (n) the families who move out of apartments during
the year [R (n) can be negative]. From Figure 1.4, it is apparent that

AV(n)= C(n)- R(n) (1.12)

where A V(n) = V (n + 1) - V(n), the increase in vacant apartments during
the l-year period.

The empirical relations (1.10)-(1.11) and the logical statement (1.12) can
be related pictorially by means of a block diagram. A block diagram is a
conceptual tool which is useful for clarifying the structure of a model or
for portraying sequences of events. It dramatizes cause and effect
relationships. A block diagram of the mathematical model (1.10)-(1.12) is
shown in Figure 1.5. Each block in the diagram displays one of the
relationships in the mathematical model. *

Figure 1.5 establishes the model structure. In order to determine the
values of the model parameters and to validate the model, we need
historical data for each variable in the model. The data that we need in
order to pick appropriate values for the parameters (Y, vd, and 2 are
historical values of yearly starts S (n), yearly completions C(n),  and yearly
average vacancies V(n). We would probably pick the values of LY,  vd, and I
by the least-square data-fitting process known as linear regression (see
Section 6.1).

Figure 1.5. Block diagram model of apartment vacancies.

*See Cannon [1.2] for a detailed discussion of block diagrams and their use.
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After parameter values have been determined, we need to verify that the
mathematical model is a sufficiently good representation of the actual
apartment vacancy system. In order to validate the model, we need
historical values of the model input R (n) and output V(n).  Since we
required data for V(n)  previously, the only additional data needed are a
corresponding set of yearly rentals R (n) (new rentals minus renters moving
out). We use the input data R(n)  for a sequence of years together with the
mathematical model to obtain a predicted sequence of values of V(n).  The
model is validated if the predicted values of V(n) agree sufficiently with
the corresponding historical values of V(n).  If the model were verified to
be accurate to a certain precision for historical data, we would feel
confident that it would exhibit approximately the same accuracy in pre-
dicting future apartment vacancies. A housing official would probably be
satisfied if the predicted vacancies were within 10% of the actual average
vacancies. Of course, predictions of future values of V(n)  have to be based
on assumed future values of R (n). If future values of R (n) cannot be
predicted with reasonable confidence, then another model must be de-
veloped to relate the demand for apartments R (n) to those variables which
affect demand.

If the data do not validate the model to a sufficient degree, then the
model structure must be modified; additional factors must be accounted
for. Specifically, the number of apartment construction starts S(n) is likely
to depend not only on the demand for housing R(n), but also on the
number of uncompleted housing starts (starts from the previous I- 1
years). The number of starts S(n) is also likely to depend on the availabil-
ity of capital at a favorable interest rate. Thus an improved apartment
vacancy model would probably have more than one input variable.

Once a validated model has been obtained, it can be used to aid city
officials in determining an appropriate housing policy. City officials can
affect the number of apartment vacancies by modifying the variables
which are inputs to the model. Demand for apartments R(n) can be
affected by adjusting tax rates, rent subsidies, urban renewal plans, etc. If
the final model includes interest rate as an input, this interest rate can be
affected by means of interest rate subsidies.

Suppose that low interest capital has been plentiful, and there has been
an overabundance of housing. Specifically, suppose recent historical data
indicate that the best values for the parameters of the model in Figure 1.5
are l/d= 1000 apartments, a = 0.5, and I= 2 years, and that reasonable
initial conditions are V(0) = 1500 vacancies, and S (-2) = S (-1) = 0
apartments. Suppose that as a result of a new rent subsidy program we
expect the future demand to be R (n) = 500 apartments, n = 0,1,2,. . . .
According to the mathematical model of (1.10)-( 1.12) and Figure 1.5, the
new rent subsidy program will cause the apartment vacancies in the city to
exhibit the behavior shown in Table 1.1 and Figure 1.6.
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Table 1.1 Apartment Vacancies Predicted by Figure 1.5

n v(n) S(n) coo R(n) A V(n) V(n+ 1)

According to Figure 1.6, the model predicts that severe housing short-
ages will result from the new housing policy. If the model is correct, and if
social pressures make the rent subsidy program mandatory, then the city
officials must compensate for the policy by encouraging builders to expand
the available housing. (Perhaps this expansion could be encouraged by
publicizing the predicted housing shortage, or by having the city assume
some of the risk of investment in new construction.)

If the model has not been carefully validated, however, the predictions
that result from the model should be used with caution. The fact that
builders themselves might predict future housing shortages is ignored in

Figure 1.6. Apartment vacancies predicted by Figure 1.5.
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(1.10). Thus this simple model of the relationship between vacancies and
construction starts should probably be modified to more accurately
describe the process by which builders decide to start new construction.
Then the determination of model parameter values and the validation of
the model should be repeated for the new model before it is used to predict
the effect of housing policies.

The modeling process we have described has been used extensively to
describe such situations as the flow of electric power in large transmission
line networks and the growth of competing species in ecosystems. It is
apparent that the same modeling process can be used to describe the
relationships among the variables in many other types of systems. For
example, it is suitable for describing the response of an eye pupil to
variations in light intensity, the response of a banking system to market
fluctuations, or the response of the people of a given country to variations
in the world price of oil. It is in the social, economic, and biological fields
that system modeling is likely to have its greatest impact in the future.

1.5 Solution of Linear Algebraic Equations

To this point our discussion has been of an introductory nature. The
development of vector space concepts and the vector space language
begins in Chapter 2. We now explore briefly, in a matrix format, the
process of solving sets of linear algebraic equations, in order that we be
able to use such sets of equations in the examples of Chapter 2 and later
chapters. In this discussion we emphasize practical techniques for
computing solutions to sets of linear algebraic equations and for
computing the inverses of square matrices.

Models of most systems eventually lead to the formation and solution of
sets of linear algebraic equations. For example, it is common practice to
replace the derivatives in a differential equation by finite differences,
thereby producing a set of linear algebraic equations which can be solved
by a digital computer. The solution of nonlinear equations almost always
requires linearization and, again, involves solution of linear algebraic
equations (Chapter 8). Thus simultaneous algebraic equations are funda-
mental to practical analysis.

There is a wide variety of methods for solving a set of linear algebraic
equations.* The design of practical computer algorithms which will obtain
accurate solutions in an efficient manner calls upon most of the concepts
of this book: spectral analysis, least-square optimization, orthogonaliza-
tion, iteration, etc. Frequently, the sets of equations that arise in practice

*See Forsythe [ 1.6].
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are nearly degenerate; that is, they border on being unsolvable by compu-
ters which have finite accuracy. Furthermore, the number of equations can
be large; finite-difference approximations for partial differential equations
sometimes involve more than 100,000 equations (P&C 2.17). Thus the
solution of linear algebraic equations constitutes one of the easiest, and yet
one of the most difficult problems.

Any set of linear algebraic equations can be written in the form

(1.13)

Equation (1.13) easily fits the symbolic structure of the basic system model

(1.1). Suppose we define x f {[i,&,  . . . ,&} and y A {qr,~,  . . .,nm} as the
unknown inputs and known outputs, respectively, of the model, T. Our
immediate goal is to clarify the manner in which T, by way of the
coefficients au, relates x to y. Associated with (1.13) are three basic
questions:

1. Do the equations possess a solution x for each given y; that is, are the
equations consistent?

2. Is the solution unique; that is: are there enough independent equa-
tions to determine x?

3. What is the solution (or solutions)?

It is appropriate to ask the same questions concerning (1.1). Although the
third question may appear to be the most pertinent for a specific problem,
the answers to the other two give valuable insight into the structure of the
model and its applicability to the situation it is supposed to represent. Such
insight is generally the real reason for solving the equations, and certainly
the prime purpose of our present analysis.

We rephrase the problem in matrix notation in order to separate the
information about the system {au} from the information about the “state”
or “condition” of the system (the variables {$.},  { nj}).

(1.14)
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Matrix multiplication is defined in such a way that (1.13) and (1.14) are
equivalent.* The notation of (1.14) is close to the abstract symbolism of
(1.1). In order to be more direct concerning the meaning of T, we redefine
x and y as the column matrices:

Then (1.14) states

AX=y (1.15)

where A is the m X n matrix of equation coefficients. The system T can be

defined explicitly by TX i Ax; that is, the abstract operation of the system
model T on the “vector” x is multiplication of x by the matrix A.

Typical of the classical methods of solution of (1.15) is Cramer’s formula
(Appendix 1):

where A(i) is the matrix A with its ith column replaced by y. The formula
applies only when A is square (m = n) and det(A)#O.  The method
indicates that for square A, det(A)#O  is a necessary and sufficient
condition to guarantee a unique solution x to (1.15).

The most efficient scheme for evaluating a determinant requires
approximately n3/3 multiplications (Appendix 1 and P&C 1.3). Thus
solution for x using Cramer’s formula requires (n + l)n3/3  multiplications.
Compared with other techniques, Cramer’s formula is not a practical tool
for analyzing linear equations.

Row Reduction

Ordinary elimination of variables forms the basis for an efficient method
of solution to (1.15). In point of fact, it is the basis for most computer
algorithms for solving sets of linear algebraic equations. In essence, the
method consists in successively adding some multiple of one equation to
another until only one variable remains in each equation; then we obtain

*See Appendix 1 for a brief introduction to matrices and determinants.
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the unknowns by inspection. For example:

The elimination method reduces to an automatable procedure (or
algorithm) which requires no creative decision making by the user. Since
the unknowns are unaffected by the procedure, they need not be written
down; the above elimination process is expressed in matrix notation by

The first matrix in this elimination process is (A i y); we call it the
augmented matrix (we augmented A with y). We refer to the matrix version
of this elimination process as row reduction of the matrix (A i y). Specifi-
cally, row reduction of a matrix B consists in systematically operating on
the rows of B as if they were equations until (a) the first nonzero element
in each row is 1; (b) each column which contains the leading 1 for some
row has all its other entries 0; and (c) the leading l’s are in an order which
descends from the left, with all zero rows at the bottom. We need the last
requirement only to make the row-reduced matrix unique. We call the
row-reduced matrix the echelon form (or Hermite normal form) of B.

There are two basic techniques for row reducing a matrix. In Gauss-
Jordan elimination we complete the operations on each column, obtaining
a single 1 with all other elements 0, before concerning ourselves with
succeeding columns (Example 1). In Gaussian elimination we first eliminate
all elements below the main diagonal, one column at a time, thereby
making the matrix “upper triangular.” We then eliminate elements above
the diagonal by a process commonly called “back substitution.” In Ex-
ample 2 the first three steps demonstrate the triangularization, the last two
the back substitution. Although the two methods are similar, Gaussian
elimination is 33% more efficient than Gauss-Jordan elimination for large
sets of equations (say, n > 5); Gaussian elimination requires about n3/3
multiplications to row reduce (A i y) for an n X n matrix A. Gauss-Jordan
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elimination requires about n3/2  multiplications. Both methods are far
superior to Cramer’s formula for solving linear algebraic equations (P&C
1.3).
Example 1. Gauss Jordan Elimination

Example 2. Gaussian Elimination

In the row reduction of small matrices by hand, the number of
multiplications is of less concern than is accuracy. To guard against errors
during row reduction of a matrix B, we can add a “check” column whose
ith element is the sum of the elements in the ith row of B. Throughout the
row-reduction process the ith element in the check column should remain
equal to the sum of all other elements in the ith row; wherever it is not
equal to that sum, one of the elements in that. row is in error. Because
adding fractions by hand is complicated, we can avoid fractions by not
forcing nonzero elements to be 1 until the last step in the row-reduction
process.

Example 3. Row Reduction by Hand
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If we are interested in the solution to a set of equations Ax= y as a
function of y, we can carry an unspecified y through the row-reduction
process.

Example 4. Row Reduction with an Unspecified Column

The solution to the equations
Example 4 can be expressed

represented by the matrix (A i y) of

Clearly, the final coefficients on the variables {qi}  constitute the inverse
matrix A- ‘. The coefficients which multiply these variables during the
row reduction keep a record of the elimination operations on the rows
of A. The variables {rli}  merely serve to keep the coefficients separated.
The row reduction of Example 4 was, in effect, performed on (A i I) to
obtain (I i A- ‘), where I is the identity matrix; that is,*

Row reduction is an efficient method for computing A- ‘. Yet in most
instances, computation of A-’ is, in itself, inefficient, Computing A-’ by
using Gaussian elimination on (A i I) requires $n’ multiplications for an
n x n matrix A (P&C 1.3). Since this is four times the number of multipli-
cations needed to find the solution x for a given y, we find the inverse only
when we actually need it—when we are interested in the properties of the
system model (the set of equations) and of the matrix A which represents
it.

*In Appendix 1, A- * is defined as a matrix which satisfies A- ‘A = AA- ’ = I. In P&C 1.4 we
find that if such a matrix exists, the row reduction of (A i I) will produce it.
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Many system models lead to matrices which are not square; there can be
more equations than unknowns; there can be fewer. Even if the matrix is
square, its inverse need not exist. Yet for any m x n matrix A, row
reduction of (A i I) yields complete information about the equation
including answers to the questions of existence and uniqueness of the
solutions (P&C 1.1, 1.2).

Example 5. Solution by Row Reduction-a Nonsquare Matrix. Suppose we
obtain the following equations from three independent measurements of some
quantity

Then

which we row reduce to

We interpret the row reduced matrix to mean

Unless 9, = q2= q3, the equations allow no solution. In our example the equations
are not consistent; q1 = q3 = 1.2, but 772  = 1.3. If the equations were consistent, the
row-reduced equations indicate that the solution would not be unique; for example,
if r/2 were 1.2, the solution would be

Row and Column Interpretations

We have, to this point, viewed the matrix multiplication in (1.14) as the
operation of the system on x to produce y. This interpretation is expressed
in (1.15). We now suggest two more interpretations that will be useful
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throughout our discussions of modeling. It is apparent from (1.14) and
(1.15) that the columns of the matrix A are in some sense similar to y; they
both contain the same number (m) of elements. We call them column
vectors of A, and denote the jth column vector by A,,. Again, the rows of
A are similar to x, both containing n elements; we denote the ith row vector
of A by A(‘). If we focus on the column vectors of A, (1.14) becomes

(1.16)

That is, y is a simple combination of the column vectors of A; the elements
of x specify the combination. We will make use of this column vector
interpretation in Section 2.2 and thereafter.

Changing our focus to the row vectors of A, (1.14) becomes

(1.17)

Each element of y is determined by the corresponding row vector of A. By
this interpretation, we are merely focusing separately on each of the
equations of (1.13). We can use the geometrical pictures of analytic
geometry to help develop a physical feel for the individual algebraic
equations of (1.17). Suppose

(1.18)

where e is some constant. The 2 X 1 matrix x and the 1 X 2 matrices A(‘) are
each equivalent to a vector (or arrow) in a plane. We simply pick
coordinate axes and associate with each element of x or A(‘)  a component
along one of the axes. Thus we can represent (1.18) geometrically as in
Figure 1.7. The vectors x such that

A!‘)x  = a constant

terminate on a line perpendicular to the vector A(‘). The solution x to the
pair of equations lies at the intersection of the lines A(‘)x = 2 and Ac2)x = 3.
Since the lines in Figure 1.7 have a well-defined intersection, the equations
of (1.18) possess a well-defined (unique) solution. However, if e+O,  At2)+
A(‘) and the system becomes degenerate; the lines become parallel, the
equations become inconsistent, and there is no solution (intersection). If
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Figure 1.7. Row vector interpretation of (1.18) for e = 0.25.

the numbers on the right side of (1.18) were equal, the lines would overlap,
the equations would be consistent, but the solution would not be
unique—any x terminating on the common line would satisfy both
equations.

The geometrical example of (1.18) and Figure 1.7 introduces a signifi-
cant computational difficulty which exists in nearly degenerate systems of
equations. Slight changes in the numbers on the right side of (1.18) result
in slight shifts in the positions of the lines in Figure 1.7. Slight changes in
the equation coefficients cause slight tilts in these lines. If c is nearly zero,
the lines are nearly parallel, and slight perturbations in the line positions or
angles cause large swings in the intersection (or solution) x. A solution to a
matrix equation which is very sensitive to small changes (or errors) in the
data is called an unstable solution. A matrix (or the corresponding set of
equations) which leads to an unstable solution is said to be ill-conditioned.
Assume the matrix is normalized so that the magnitude of its largest
element is approximately one. Then the magnitudes of the elements of the
inverse matrix indicate the degree of sensitivity of the solution x of (1.14)
to errors in the data, { ati} or { rli}.  In Section 6.6 we define a condition
number which indicates the size of the largest elements of the inverse. A
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very large condition number implies that the matrix is ill-conditioned. The
size of det(A) is another indication of the ill-conditioning of the equations;
as the equations become more degenerate, det(A) must approach zero
(P&C 1.6). However, det(A) is not an absolute measure of ill-conditioning
as is the condition number.

Numerical Error

There are two fundamental sources of error in the solution to a set of
linear algebraic equations, measurement error and computer roundoff.
When the data that are used to make up a set of equations come from
physical measurements, these data usually contain empirical error. Even if
the data are exact, however, the numbers are rounded by the computer;
the data can be represented only to a finite number of significant digits.
Thus inaccuracies in the equation data are the rule, not the exception. As
computations are carried out, further rounding occurs. Although indi-
vidual inaccuracies are slight, their cumulative effect can be disastrous if
handled carelessly.

The following example demonstrates that slight errors in the data can be
vastly magnified by straightforward use of row-reduction techniques. Let

(1.19)

Suppose the element az2 is in error by 0.5%; that is, az2 = 1.01±0.005.
Elimination operations on the first column reduces (1.19) to

(1.20)

where the subtraction of two nearly equal numbers has magnified the error
at the element in question to about 50%, that is, the new element in row 2,
column 2, is 0.01±0.005. Were we to use this element to eliminate the
other elements in column 2, we would propagate this 50% error throughout
the matrix; that is, we would obtain

(1.21)

Further computations would be meaningless. Fortunately, we do not need
to divide by the inaccurate element. We merely interchange rows 2 and 3
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in (1.20) to obtain

27

(1.22)

This interchange is equivalent to writing the equations in a different order.
We now use the larger and more accurate element “2” of row 2, column 2
to eliminate the other elements in column 2:

(1.23)

The element moved into position for elimination of other elements in its
column is called a pivot. The process of interchanging rows to avoid
division by relatively small (and therefore inaccurate) numbers is called
pivoting or positioning for size. We also can move the inaccurate element
from row 2, column 2 of (1.20) by interchanging columns 2 and 3 if we
change the order of the variables & and t, which multiply these columns.
This column interchange is also used in pivoting. All good computer
algorithms for solving sets of linear algebraic equations or for inverting
square matrices use some form of pivoting to minimize the magnification
and propagation of errors in the data. Scaling of the equations is also an
important part of these algorithms.

The matrix of (1.19) is not ill-conditioned. It is apparent, therefore, that
we must compute solutions carefully, regardless of the conditioning of the
equations, if we are to avoid magnification of errors. If the equations are
ill-conditioned, however, careful computing (scaling and pivoting) and the
use of double precision arithmetic (additional significant digits) are crucial.
Furthermore, division by small numbers is inevitable at some point in the
process of solving ill-conditioned equations, and errors will be magnified.
An iterative technique for improving the computed solution to a set of
ill-conditioned equations is described in P&C 1.5.

If a set of equations is very ill-conditioned, it may be that the underlying
system is degenerate. Perhaps the matrix would be singular, were it not for
empirical error in the data. (That is, perhaps e should be zero in (1.18) and
Figure 1.7.) Then in order to completely solve the set of equations, we not
only need to compute a particular solution x as described above, but we
also need to estimate the full set of “near solutions” (the locus of the
“nearly-overlapping” lines of Figure 1.7 for E = 0). We describe a technique
for computing this set of “near solutions” in Section 2.4. Further informa-
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tion on the solution of linear algebraic equations is contained in Forsythe
and Moler [1.4] and Forsythe [1.5].

1.6 Problems and Comments

*1.1 Exploring matrix equations by row reduction: let A be an m x n matrix.
Row reduction of (A i y) for an unspecified column vector y
=(77,*  * . q,)T,  or the equivalent row reduction of (A i I) for an m X m
matrix I, determines the conditions which must be satisfied by y in
order for the equation Ax= y to have a solution; the set of vectors y
for which a solution x exists is called the range of A. The same row
reduction determines the set of solutions x for y = (0. . . O)T;  this set of
solutions is referred to as the nullspace of A. If the nullspace of A
contains nonzero vectors, the solutions to Ax= y cannot be unique.
Let the matrix equation be

(a) Row reduce (A i I).
(b) Determine the range of A; that is, determine the relationships

that must exist among the elements {vi}  of y in order for the
matrix equation Ax= y to have a solution.

(c) Determine the nullspace of A.
(d) Determine the solutions x for the specified right-hand side y.
(e) Give an example of a matrix equation that is both inconsistent

and underdetermined; that is, an equation for which y is not in
the range of A and for which the nullspace of A is nonzero.

1.2 Use the row-reduction technique to determine the solutions to the
following sets of equations:
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1.3 Efficiency of computations: the number of multiplications performed
during a computation is a measure of the efficiency of a computa-
tional technique. Let A be an invertible n x n matrix. Determine the
number of multiplications required:
(a) To compute A-’ by Gaussian elimination;
(b) To compute A-’ by Gauss-Jordan elimination;
(c) To compute det(A), using Gaussian elimination to triangularize

A (Example 2, Appendix 1).
Determine the number of multiplications required to solve Ax = y for
a specific vector y by:
(d) Cramer’s rule [Hint: use the answer to (c)].
(e) The computation in (a) and the multiplication A- ‘y;
(j) Direct row reduction of (A i y).

1.4 Elementary matrices: the row reduction of an m X n matrix A consists
in performing elementary operations on the rows of A. Each such
operation is equivalent to the multiplication of A by a simple m x m
matrix which we refer to as an elementary matrix.
(a) For m = 5, find the elementary matrices corresponding to the

following:
(1) the multiplication of row 3 by a constant c;
(2) the addition of row 4 to row 1;
(3) the interchange of row 3 with row 5.

(b) Every elementary matrix is invertible. Find the inverses of the
elementary matrices determined in (a).
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(c) The row reduction of (A i I) is equivalent to multiplication of
(A i I) by an invertible matrix B (a product of elementary
matrices). Show that if A is square and (A i I) can be row
reduced to the form (I i B), then AB=BA=I,  and therefore
B=A-‘.

1.5 Iterative improvement of solutions: the solution to the matrix equation
Ax= y can be obtained by Gaussian elimination. As a result of
roundoff, the computed solution xi is usually in error. Denote the
error by x-xi, where x is the exact solution. A computable measure

of the error is the residual rl 4 y-Ax,. If we could solve exactly for
(x-xi) in the equation A(x - xi) = y - Ax, = r,, we could obtain the
exact solution. We solve Az, = rl by Gaussian elimination to obtain a

correction zi; x2. i xi + zi is an improved solution. By repeating the
improvement process iteratively, we obtain an approximate solution
which is accurate to the number of significant digits used in the
computation. However, the residuals rk =y --Ax, must be computed
to double precision; otherwise the corrections, zk, will not be im-
provements. See Forsythe and Moler [1.4, p. 49]. Let

To five figures, the solution to Ax = y is x = (-0.11864 0.76271) T .
(a) Compute an approximate solution xi by Gaussian elimination,

rounding all computations to three significant digits (slide rule
accuracy).

(b) Find the residual rl by hand computation to full accuracy.
(c) Round r1 to three significant digits, if necessary, and compute

the correction z,. Find x2=x, +z,.
1.6 Determinants and volumes: using a natural correspondence between

row vectors and arrows in a plane, we associate a parallelogram with
the rows of every real 2 x 2 matrix A. For example,
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(a) Show that the area of the above parallelogram is equal to the
determinant of the matrix A which is associated with it.

(b) For the right-hand coordinate system shown above, we define
the sign of the area to be positive if A(‘)  turns counterclockwise
inside the parallogram in order to reach Ac2);  if A(*)  turns
clockwise, the area is negative. Show graphically that the area of
the above parallelogram obeys the following properties of de-
terminants:
(1) The value of det(A) is not changed if we add to one row of A

a multiple of another row of A;
(2) The sign of det(A) is reversed if we interchange two rows of

(3) If we multiply one row of A by c, then det(A) is multiplied
by c;

(4) If the rows of A are dependent (i.e., one is a multiple of the
other), then det(A) = 0.

(c) The geometrical interpretation of det(A) can be extended to
n x n matrices by defining n-dimensional spaces, n-dimensional
parallelepipeds, and signed volumes. See Martin and Mizel [1.9].
Since det(AT)=  det(A),  the volume of the parallelopiped
described by the columns of A equals the volume described by
the rows of A. Verify graphically that the geometrical
interpretation of determinants extends to 3 x 3 matrices.

1.7 Partitioned matrices: it is sometimes useful to partition a matrix into
an array of submatrices. If P and  are conformable, we can form
the partitions

in a manner which allows us to express PQ as

(a) Assume that A is an invertible matrix. The following factoriza-
tion can be verified by the block multiplication described above:
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(b) Show that for any submatrix P of appropriate dimensions,

Use this result with (a) to show that

(c) Use (a) to show that

The number of multiplications required to compute the determinant
or the inverse of an n x n matrix can be reduced by a factor of eight
(if n is large) by use of the partitioning schemes in (b) or (c),
respectively.
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