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In previous weeks, we have focused our attention on discrete time
signal processing, image processing, and principal component analysis
(PCA). These three seemingly unrelated areas can be thought of as the
study of signals on particular graphs: a directed cycle, a lattice and a
covariance graph. Thus, the theory of signal processing for graphs can
be conceived as a unifying theory which develops tools for more gen-
eral graph domains and, when particularized for the mentioned graphs,
recovers some of the existing results.

1 Intro to graph theory

Formally, a graph is a triplet G = (V , E , W) where V = {1, 2, . . . , N} is a
finite set of N nodes or vertices, E ⊆ V × V is a set of edges defined as
order pairs (n, m) and W : E → R is a map from the set of edges to scalar
values, wnm. Weights wnm represent the similarity or level of relationship
from n to m. The adjacency matrix A ∈ RN×N of a graph is defined as

Amn =

{
wnm, if (n, m) ∈ E ;
0, otherwise.

(1)

In unweighted graphs, Amn is either 1 (if nodes n and m are connected) or
0 (otherwise). For undirected graphs, the adjacency matrix is symmetric,
i.e. wnm = wmn for all nodes n and m. When this is not the case, we say
that the graph is directed.

Graph signals are mappings x : V → R from the vertices of the graph
into the real (or complex) numbers. Graph signals can be represented as
vectors x ∈ RN where xn stores the signal value at the nth vertex in V .
Notice that this assumes an indexing of the nodes, which coincides with
the indexing used in the adjacency matrix.
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The degree of a node is the sum of the weights of the edges incident
to this node. Formally, the degree of node i, deg(i) is defined as

deg(i) = ∑
j∈N (i)

wij, (2)

where N (i) stands for the neighborhood of node i, i.e., all other nodes
connected to node i. The degree matrix D ∈ RN×N is a diagonal matrix
such that Dii = deg(i). In directed graphs, each node has an out-degree
(sum of the weights of all edges out of the node) and an in-degree (sum
the weights of all edges into the node).

Given a graph G with adjacency matrix A and degree matrix D, we
define the Laplacian matrix L ∈ RN×N as

L = D−A. (3)

Equivalently, L can be defined elementwise as

Lij =


deg(i), if i = j;
−wji, if (j, i) ∈ E ;
0, otherwise.

(4)

The Laplacian acts as a difference operator on graph signals. To see why
this is true, consider a graph signal x on graph G and define the new
signal y = Lx where each element yi is computed as

yi = [Lx]i = ∑
j∈N (i)

wji(xi − xj). (5)

Notice that the element yi measures the difference between the value of
the signal x at node i and at its neighborhood. The Laplacian has very
specific spectral properties. In particular, the Laplacian of any undirected
graph is positive semi-definite (all its eigenvalues are nonnegative) and
has an eigenvalue of 0. Moreover, the multiplicity of the 0 eigenvalue is
equal to the number of connected components in the graph.

Given an arbitrary graph G = (V , E , W), a graph-shift operator S ∈
RN×N is a matrix satisfying Sij = 0 for i 6= j and (i, j) 6∈ E . That is, S can
take nonzero values in the edges of G or in its diagonal. Some common
choices for S include the adjacency matrix A and the Laplacian L. We
consider normal graph-shift operators, i.e. operators that can be written
as S = VΛVH where the columns of V are the eigenvectors of S and Λ

is a diagonal matrix containing the eigenvalues of S. See Fig. 1 for an
example graph.
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Figure 1. Example of a six node graph and its corresponding graph shift operator.
Observe that the nodes are labeled, and that the graph shift operator is nonzero
only where there is an edge, or in the diagonal.

For a given graph-shift operator S = VΛVH , the Graph Fourier Trans-
form (GFT) of x is defined as

x̃(k) = 〈x, vk〉 =
N

∑
n=1

x(n)v∗k (n). (6)

Equation (6) can be rewritten in matrix form to obtain

x̃ = VHx. (7)

Since the columns of V are the eigenvectors vk of S, x̃(k) = vH
k x is the

inner product between vk and x. We think of the eigenvectors vk as os-
cillation modes associated to the eigenvalues in the same way that, in
discrete time signal processing, different complex exponentials are asso-
ciated to frequency values. In particular, GFT is equivalent to DFT when
V = F, i.e. vk = ekN , the complex exponential vector.

In order to measure how much a signal oscillates within a graph, the
concept of total variation can be extended from traditional signal pro-
cessing. Classically, the total variation of a signal is defined as the sum of
squared differences in consecutive signal samples, ∑n (xn − xn−1)

2. This
concept can be extended to graphs where the notion of neighborhood
replaces that of consecutive nodes to obtain

TVG(x) =
N

∑
n=1

∑
m∈N (n)

(xn − xm)
2 wmn = xTLx. (8)

As can be seen from (8) the total variation of a signal in a graph can be
written as a quadratic form that depends on the Laplacian of that graph.
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Total variation allows us to interpret the ordering of the eigenvalues of
the Laplacian in terms of frequencies, i.e., larger eigenvalues correspond
to higher frequencies (larger total variation). The eigenvectors associated
with large eigenvalues oscillate rapidly whereas the eigenvectors associ-
ated with small eigenvalues vary slowly.

The inverse graph Fourier transform (iGFT) of a graph signal x̃ ∈ RN

is given by

x(n) =
N−1

∑
k=0

x̃(k)vk(n), (9)

which can be rewritten in matrix form to obtain

x = Vx̃. (10)

The orthonormality of V ensures that, indeed, the GFT and iGFT are
inverse operations. Orthonormality also allows the extension of other
classical results to the graph domain, e.g., Parseval’s theorem.

2 Connection with traditional signal processing

Let us begin by analyzing the connection between graph signal process-
ing and traditional finite discrete time signal processing. The latter is a
particular case of the former when the graph considered is a directed cy-
cle, as we will discuss in this section. Recall that the adjacency matrix of
a directed cycle is

Adc =


1

1
1

. . .
1

 , (11)

where the unspecified entries are zeros.

2.1 Generate a directed cyclic graph
2.1 Generate a directed cyclic graph. Write a function in MATLAB that
takes as an input the number N of nodes in a graph and generates the
adjacency matrix of a directed cyclic graph as described in (11). Show
your output (through imagesc for example) for N = 20.
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2.2 Compare your graph basis with the Fourier basis
2.2 Compare your graph basis with the Fourier basis. Fix N = 20 and
consider the graph-shift operator S1 = Adc equal to the adjacency matrix
of the directed cycle. Consider the discrete Fourier basis F and show the
result of the following computation

FHS1F = Λ1. (12)

What is the structure of matrix Λ1? What does this tell you about the
columns of FH? Confirm your answer by showing that the first column of
FH indeed satisfies the property stated. What does this tell you about the
relation between DFT and GFT for this particular graph-shift operator?

Consider now a symmetric graph with adjacency matrix Asc = Adc +
AT

dc and pick as a graph-shift operator its Laplacian S2 = Lsc. Repeat the
computation in (12) for S2. What is the relation between DFT and GFT
for this new operator S2?

3 The graph frequency domain

In this section we are going to analyze the frequency representation of
different graph signals defined on a graph.

3.1 Compute the Graph Fourier Transform of a graph sig-
nal

3.1 Compute the Graph Fourier Transform of a graph signal. Write a
function in MATLAB that takes as an input a graph shift S ∈ RN×N and a
signal x ∈ RN defined on the graph and generates as output x̃ ∈ RN , the
graph Fourier representation of x. Make sure to order the eigenvectors of
S in increasing order of absolute value of the associated eigenvalues.

3.2 Understanding the data
3.2 Understanding the data. Load the file graph sp data.mat. You will
see the adjacency matrix of a graph A ∈ R50×50, and four graph signals
called xi ∈ R50 for i = 1, 2, 3 and y ∈ R50. How many connected compo-
nents does the graph have? Plot signals x1, x2 and x3. Can you tell which
one ‘varies faster’ in the graph domain?

3.3 Finding the frequency representation of signals
3.3 Finding the frequency representation of signals. For the remainder
of the lab practice, we define as graph-shift S = L the Laplacian of the
loaded graph with adjacency matrix A. Using your function in Section
3.1, plot x̃1, x̃2, x̃3, i.e. the frequency representations of x1, x2, and x3,
respectively. By looking at the plots, can you tell which signal varies
slower and which one varies faster in the graph domain?
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3.4 Quantifying the variation of signals
3.4 Quantifying the variation of signals. Use total variation through
the Laplacian quadratic form in (8) to quantify the variation of a signal in
a graph. Do these results confirm your intuition from Section 3.3?

3.5 Compute the inverse Graph Fourier Transform of a
graph signal

3.5 Compute the inverse Graph Fourier Transform of a graph sig-
nal. Write a function in MATLAB that takes as an input a graph shift
S ∈ RN×N and the frequency coefficients x̃ ∈ RN of a graph signal and
outputs x ∈ RN , the original signal. Make sure to order the eigenvectors
of S in increasing order of absolute value of the associated eigenvalues.

3.6 Reconstruction and Parseval’s theorem
3.6 Reconstruction and Parseval’s theorem. If you need to compress
x1 by only keeping K = 5 frequency coefficients, which ones would you
keep? Perform the reconstruction and plot the original signal and the
reconstructed one. Also, compute the energy of the error. Can you com-
pute the energy of the reconstruction error without actually performing
the reconstruction? What quality of the GFT allows you to do this?

3.7 Denoising a graph signal
3.7 Denoising a graph signal. Assume that graph signal y loaded from
the file graph sp data.mat is in fact composed of a graph signal z of band-
width 3 contaminated with white noise. Your objective is to recover z by
keeping the correct frequency coefficients. Plot ỹ, y and your recovered
signal z.
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