

## Discrete Fourier transform

Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/

January 20, 2016



Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT



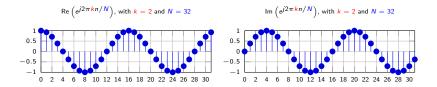
Discrete complex exponential of discrete frequency k and duration N

$$e_{kN}(n) = \frac{1}{\sqrt{N}} e^{j2\pi kn/N} = \frac{1}{\sqrt{N}} \exp(j2\pi kn/N)$$

The complex exponential is explicitly given by

$$e^{j2\pi kn/N} = \cos(2\pi kn/N) + j\sin(2\pi kn/N)$$

▶ Real part is a discrete cosine and imaginary part a discrete sine





## Theorem If k - l = N the signals $e_{kN}(n)$ and $e_{lN}(n)$ coincide for all n, i.e.,

$$e_{kN}(n) = \frac{e^{j2\pi kn/N}}{\sqrt{N}} = \frac{e^{j2\pi ln/N}}{\sqrt{N}} = e_{lN}(n)$$

Exponentials with frequencies k and l are equivalent if k - l = N



### Theorem

Complex exponentials with nonequivalent frequencies are orthogonal. I.e.

$$\langle e_{kN}, e_{IN} \rangle = 0$$

when k - l < N. E.g., when k = 0, ..., N - 1, or k = -N/2 + 1, ..., N/2.

- Signals of canonical sets are "unrelated." Different rates of change
- Also note that the energy is  $||e_{kN}||^2 = \langle e_{kN}, e_{kN} \rangle = 1$
- Exponentials with frequencies k = 0, 1, ..., N 1 are orthonormal

$$\langle e_{kN}, e_{IN} \rangle = \delta(I-k)$$

► They are an orthonormal basis of signal space with N samples



### Theorem

Opposite frequencies k and -k yield conjugate signals:  $e_{-kN} = e_{kN}^*(n)$ 

### Proof.

Just use the definitions to write the chain of equalities

$$e_{-kN}(n) = \frac{e^{j2\pi(-k)n/N}}{\sqrt{N}} = \frac{e^{-j2\pi kn/N}}{\sqrt{N}} = \left[\frac{e^{j2\pi kn/N}}{\sqrt{N}}\right]^* = e_{kN}^*(n) \quad \Box$$

▶ Opposite frequencies ⇒ Same real part. Opposite imaginary part
 ⇒ The cosine is the same, the sine changes sign



• Of the N canonical frequencies, only N/2 + 1 are distinct.

0, 1, ..., 
$$N/2 - 1$$
  $N/2$   
-1, ...,  $-N/2 + 1$   
 $N - 1$ , ...,  $N/2 + 1$ 

Frequencies 0 and N/2 have no counterpart. Others have conjugates

- Canonical set  $-N/2 + 1, \dots, -1, 0, 1, \dots, N/2$  easier to interpret
- Reasonable  $\Rightarrow$  Can't have more than N/2 oscillations in N samples
- ► With sampling frequency  $f_s$  and signal duration  $T = NT_s = N/f_s$ ⇒ Discrete frequency k ⇒ frequency  $f_0 = \frac{k}{T} = \frac{k}{NT_s} = \frac{k}{N}f_s$
- ▶ Frequencies from 0 to  $N/2 \leftrightarrow f_s/2$  have physical meaning
  - $\Rightarrow$  Negative frequencies are conjugates of the positive frequencies



Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT



- Signal x of duration N with elements x(n) for n = 0, ..., N 1
- ▶ X is the discrete Fourier transform (DFT) of x if for all  $k \in \mathbb{Z}$

$$X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) \exp(-j2\pi k n/N)$$

- We write  $X = \mathcal{F}(x)$ . All values of X depend on all values of x
- The argument k of the DFT is referred to as frequency
- ► DFT is complex even if signal is real  $\Rightarrow X(k) = X_R(k) + jX_I(k)$  $\Rightarrow$  It is customary to focus on magnitude

$$|X(k)| = [X_R^2(k) + X_I^2(k)]^{1/2} = [X(k)X^*(k)]^{1/2}$$



► Discrete complex exponential (freq. k)  $\Rightarrow e_{-kN}(n) = \frac{1}{\sqrt{N}}e^{-j2\pi kn/N}$ 

• Can rewrite DFT as 
$$\Rightarrow X(k) = \sum_{n=0}^{N-1} x(n)e_{-kN}(n) = \sum_{n=0}^{N-1} x(n)e_{kN}^*(n)$$

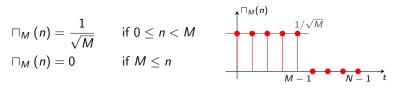
• And from the definition of inner product  $\Rightarrow X(k) = \langle x, e_{kN} \rangle$ 

DFT element X(k) ⇒ inner product of x(n) with e<sub>kN</sub>(n)
 ⇒ Projection of x(n) onto complex exponential of frequency k
 ⇒ How much of the signal x is an oscillation of frequency k

# DFT of a square pulse (derivation)



▶ The unit energy square pulse is the signal  $\sqcap_M(n)$  that takes values



▶ Since only the first M-1 elements of  $\sqcap_M(n)$  are not null, the DFT is

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \prod_{M} (n) e^{-j2\pi k n/N} = \frac{1}{\sqrt{N}} \sum_{n=0}^{M-1} \frac{1}{\sqrt{M}} e^{-j2\pi k n/N}$$

• X(k) = sum of first M components of exponential of frequency -k

• Can reduce to simpler expression but who cares?  $\Rightarrow$  It's just a sum

# DFT of a square pulse (illustration)

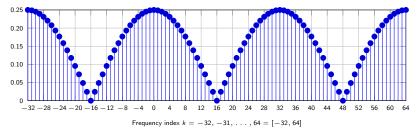


• Square pulse of length M = 2 and overall signal duration N = 32

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{1} \frac{1}{\sqrt{2}} e^{-j2\pi k n/N} = \frac{1}{\sqrt{2N}} \left( 1 + e^{-j2\pi k/N} \right)$$

• E.g.,  $X(k) = \frac{2}{\sqrt{2N}}$  at  $k = 0, \pm N, \dots$  and X(k) = 0 at  $k = 0, \pm 3N/2, \dots$ 

Modulus |X(k)| of the DFT of square pulse, duration N = 32, pulse length M = 2



• This DFT is periodic with period  $N \Rightarrow$  true in general



• Consider frequencies k and k + N. The DFT at k + N is

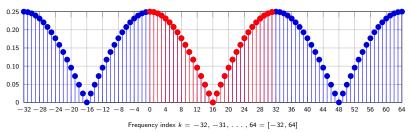
$$X(k+N) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi(k+N)n/N}$$

• Complex exponentials of freqs. k and k + N are equivalent. Then

$$X(k+N) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} = X(k)$$

- DFT values N apart are equivalent  $\Rightarrow$  DFT has period N
- ► Suffices to look at *N* consecutive frequencies  $\Rightarrow$  canonical sets  $\Rightarrow$  Computation  $\Rightarrow k \in [0, N - 1]$   $\Rightarrow$  Interpretation  $\Rightarrow k \in [-N/2, N/2]$  (actually, N + 1 freqs.)
  - $\Rightarrow$  Related by chop and shift  $\Rightarrow [-N/2, -1] \sim [N/2, N-1]$

## ▶ DFT of the square pulse highlighting frequencies $k \in [0, N-1]$



Modulus |X(k)| of the DFT of square pulse, duration N = 32, pulse length M = 2

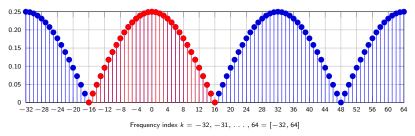
Frequencies larger than N/2 have no clear physical meaning



# Canonical set $k \in [-N/2, N/2]$



- ▶ DFT of the square pulse highlighting frequencies  $k \in [-N/2, N/2]$
- Negative freq. -k has the same interpretation as positive freq. k
- One redundant element  $\Rightarrow X(-N/2) = X(N/2)$ . Just convenient

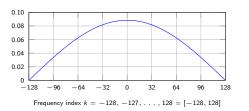


Modulus |X(k)| of the DFT of square pulse, duration N = 32, pulse length M = 2

▶ Obtain frequencies  $k \in [-N/2, -1]$  from frequencies [N/2, N-1]

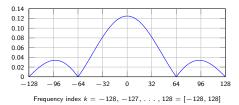
## Pulses of different length

## ► The DFT X gives information on how fast the signal x changes



DFT modulus of square pulse, duration N = 256, pulse length M = 2

DFT modulus of square pulse, duration N = 256, pulse length M = 4



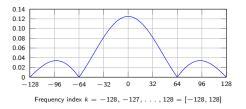
- For length M = 2 have weight at high frequencies
- Length M = 4 concentrates weight at lower frequencies
- Pulse of length M = 2 changes more than a pulse of length M = 4



## More DFTs of pulses of different length

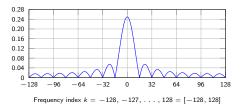


### • The lengthier the pulse the less it changes $\Rightarrow$ DFT concentrates at zero freq.

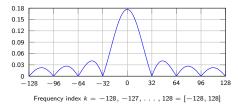


DFT modulus of square pulse, duration N = 256, pulse length M = 4

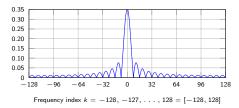
DFT modulus of square pulse, duration N = 256, pulse length M = 16



DFT modules of square pulse, duration N = 256, pulse length M = 8



DFT modulus of square pulse, duration N = 256, pulse length M = 32

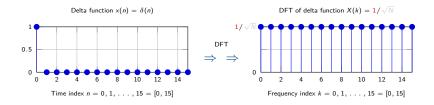


#### Signal and Information Processing



▶ The delta function is  $\delta(0) = 1$  and  $\delta(n) = 0$ , else. Then, the DFT is

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \delta(n) e^{-j2\pi k n/N} = \frac{1}{\sqrt{N}} \delta(0) e^{-j2\pi k 0/N} = \frac{1}{\sqrt{N}}$$



- Only the N values  $k \in [0, 15]$  shown. DFT defined for all k but periodic
- Observe that the energy is conserved  $||X||^2 = ||\delta||^2 = 1$

## DFT of a shifted delta function



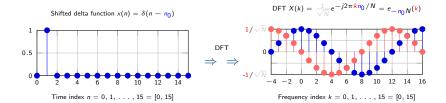
▶ For shifted delta  $\delta(n_0 - n_0) = 1$  and  $\delta(n - n_0) = 0$  otherwise. Thus

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \delta(n-n_0) e^{-j2\pi kn/N} = \frac{1}{\sqrt{N}} \delta(n_0-n_0) e^{-j2\pi kn_0/N}$$

• Of course  $\delta(n_0 - n_0) = \delta(0) = 1$ , implying that

$$X(k) = \frac{1}{\sqrt{N}} e^{-j2\pi k n_0/N} = e_{-n_0N}(k)$$

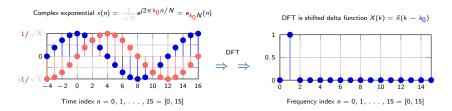
• Complex exponential of frequency  $-n_0$  (below, N = 16 and  $n_0 = 1$ )



# DFT of a complex exponential



- Complex exponential of freq.  $k_0 \Rightarrow x(n) = \frac{1}{\sqrt{N}} e^{j2\pi k_0 n/N} = e_{k_0 N}(n)$
- ▶ Use inner product form of DFT definition  $\Rightarrow X(k) = \langle e_{k_0N}, e_{kN} \rangle$
- Orthonormality of complex exponentials  $\Rightarrow \langle e_{k_0N}, e_{kN} \rangle = \delta(k k_0)$

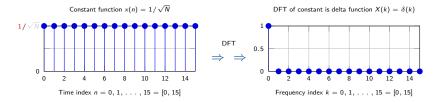


▶ DFT of exponential  $e_{k_0N}(n)$  is shifted delta  $X(k) = \delta(k - k_0)$ 

# DFT of a constant



- Constant function x(n) = 1/√N (it has unit energy) and k = 0
  ⇒ Complex exponential with frequency k<sub>0</sub> = 0 ⇒ x(n) = e<sub>0N</sub>
- Use inner product form of DFT definition  $\Rightarrow X(k) = \langle e_{0N}, e_{kN} \rangle$
- Complex exponential orthonormality  $\Rightarrow \langle e_{0N}, e_{kN} \rangle = \delta(k-0) = \delta(k)$



• DFT of constant  $x(n) = 1/\sqrt{N}$  is delta function  $X(k) = \delta(k)$ 



- DFT of a signal captures its rate of change
- Signals that change faster have more DFT weight at high frequencies
- DFT conserves energy (all have unit energy in our examples)
- Energy of DFT  $X = \mathcal{F}(x)$  is the same as energy of the signal x
- Indeed, an important property we will show
- Duality of signal transform pairs (signals and DFTs come in pairs)
- DFT of delta is a constant. DFT of constant is a delta
- > DFT of exponential is shifted delta. DFT of shifted delta is exponential
- Indeed, a fact that follows from the form of the inverse DFT



Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT





- ▶ Sampling time  $T_s$ , sampling frequency  $f_s$ , signal duration  $T = NT_s$
- Discrete frequency  $k \Rightarrow k$  oscillations in time  $NT_s$  = Period  $NT_s/k$

• Discrete frequency k equivalent to real frequency  $f_k = \frac{k}{NT_s} = k \frac{f_s}{N}$ 

• In particular, 
$$k = N/2$$
 equivalent to  $\Rightarrow f_{N/2} = \frac{N/2f_s}{N} = \frac{f_s}{2}$ 

▶ Set of frequencies  $k \in [-N/2, N/2]$  equivalent to real frequencies ... ⇒ That lie between  $-f_s/2$  and  $f_s/2$ 

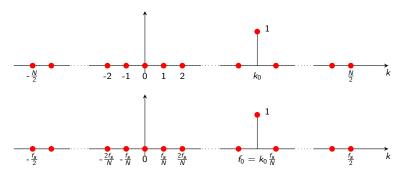
 $\Rightarrow$  Are spaced by  $f_s/N$  (difference between frequencies  $f_k$  and  $f_{k+1}$ )

• Interval width given by sampling frequency. Resolution given by N

# Units in DFT of a discrete complex exponential



- Complex exponential of frequency  $f_0 = k_0 f_s / N$ 
  - $\Rightarrow$  Discrete frequency  $k_0$  and DFT  $\Rightarrow X(k) = \delta(k k_0)$
- But frequency  $k_0$  corresponds to frequency  $f_0 \Rightarrow X(f) = \delta(f f_0)$



• True only when frequency  $f_0 = (k_0/N)f_s$  is a multiple of  $f_s/N$ 

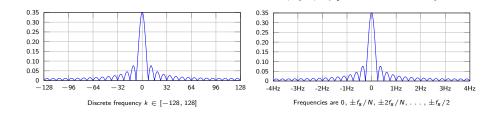
## Units in DFT of a square pulse

Discrete index, duration N = 256, pulse length M = 32



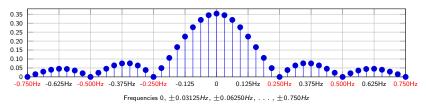
Sampling frequency  $f_5 = 8$ Hz, duration T = 32s, length T = 4s

- Square pulse of length  $T_0 = 4s$  observed during a total of T = 32s.
- ▶ Sampled every  $T_s = 125$ ms  $\Rightarrow$  Sample frequency  $f_s = 8$ Hz
- Total number of samples  $\Rightarrow N = T/T_s = 256$
- Maximum frequency  $k = N/2 = 128 \leftrightarrow f_k = f_{N/2} = f_s/2 = 4Hz$
- Fequency resolution  $f_s/N = 8Hz/256 = 0.03125Hz$





► Interval between freqs.  $\Rightarrow f_s/N = 8Hz/256 = 1/32 = 0.03125Hz$  $\Rightarrow 32$  equally spaced frees for each 1Hz interval = 8 every 0.125 Hz.



Sampling frequency  $f_S = 8$ Hz, duration T = 32s, length T = 4s

Zeros of DFT are at frequencies 0.250Hz, 0.500 Hz, 0.750 Hz, ...

 $\Rightarrow$  Thus, zeros are at frequencies are  $1/T_0, 2/T_0, 3/T_0, \dots$ 

• Most (a lot) of the DFT energy is between freqs.  $-1/T_0$  and  $1/T_0$ 



Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT



• Given a Fourier transform X, the inverse (i)DFT  $x = \mathcal{F}^{-1}(X)$  is

$$x(n) := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{j2\pi kn/N} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) \exp(j2\pi kn/N)$$

- ▶ Same as DFT but for sign in the exponent (also, sum over k, not n)
- ► Any summation over N consecutive frequencies works as well. E.g.,

$$\mathbf{x}(n) = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} \mathbf{X}(k) e^{j2\pi k n/N}$$

• Because for a DFT X we know that it must be X(k + N) = X(k)



### Theorem

The inverse DFT of the DFT of x is the signal  $x \Rightarrow \mathcal{F}^{-1}[\mathcal{F}(x)] = x$ 

• Every signal x can be written as a sum of complex exponentials

$$x(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{j2\pi kn/N} = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} X(k) e^{j2\pi kn/N}$$

• Coefficient multiplying  $e^{j2\pi kn/N}$  is X(k) = kth element of DFT of x

$$\boldsymbol{X}(\boldsymbol{k}) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \boldsymbol{x}(n) e^{-j2\pi \boldsymbol{k} n/N}$$



### Proof.

► Let  $X = \mathcal{F}(x)$  be the DFT of x. Let  $\tilde{x} = \mathcal{F}^{-1}(X)$  be the iDFT of X. ⇒ We want to show that  $\tilde{x} \equiv x$ 

From the definition of the iDFT of  $X \Rightarrow \tilde{x}(\tilde{n}) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{j2\pi k\tilde{n}/N}$ 

From the definition of the DFT of 
$$x \Rightarrow X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N}$$

• Substituting expression for X(k) into expression for  $\tilde{x}(\tilde{n})$  yields

$$\tilde{x}(\tilde{n}) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \left[ \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} \right] e^{j2\pi k \tilde{n}/N}$$



### Proof.

• Exchange summation order to sum first over k and then over n

$$\tilde{x}(\tilde{n}) = \sum_{n=0}^{N-1} x(n) \left[ \sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{j2\pi k\tilde{n}/N} \frac{1}{\sqrt{N}} e^{-j2\pi kn/N} \right]$$

- Pulled x(n) out because it doesn't depend on k
- ▶ Innermost sum is the inner product between  $e_{nN}$  and  $e_{nN}$ . Orthonormality:

$$\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{j2\pi k\tilde{n}/N} \frac{1}{\sqrt{N}} e^{-j2\pi kn/N} = \delta(\tilde{n}-n)$$

• Reducing to 
$$\Rightarrow \tilde{x}(\tilde{n}) = \sum_{n=0}^{N-1} x(n)\delta(\tilde{n}-n) = x(\tilde{n})$$

▶ Last equation is true because only term  $n = \tilde{n}$  is not null in the sum



► Discrete complex exponential (freq. *n*)  $\Rightarrow e_{nN}(\mathbf{k}) = \frac{1}{\sqrt{N}}e^{j2\pi\mathbf{k}n/N}$ 

• Rewrite iDFT as 
$$\Rightarrow x(n) = \sum_{k=0}^{N-1} X(k) e_{nN}(k) = \sum_{k=0}^{N-1} X(k) e_{-nN}^*(k)$$

• And from the definition of inner product  $\Rightarrow x(n) = \langle X, e_{nN} \rangle$ 

- iDFT element  $X(k) \Rightarrow$  inner product of X(k) with  $e_{-nN}(k)$
- Different from DFT, this is not the most useful interpretation

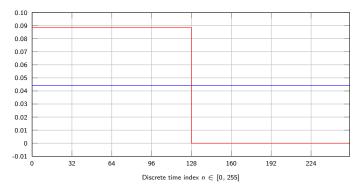
# Inverse DFT as successive approximations



- ► Signal as sum of exponentials  $\Rightarrow x(n) = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} X(k) e^{i2\pi k n/N}$
- Expand the sum inside out from k = 0 to  $k = \pm 1$ , to  $k = \pm 2, \ldots$ 
  - $\begin{aligned} \mathbf{x}(n) &= X(0) \qquad e^{j2\pi 0n/N} & \text{constant} \\ &+ X(1) \qquad e^{j2\pi 1n/N} &+ X(-1) \qquad e^{-j2\pi 1n/N} & \text{single oscillation} \\ &+ X(2) \qquad e^{j2\pi 2n/N} &+ X(-2) \qquad e^{-j2\pi 2n/N} & \text{double oscillation} \\ &\vdots &\vdots &\vdots &\vdots &\vdots \\ &+ X\left(\frac{N}{2}-1\right)e^{j2\pi \left(\frac{N}{2}-1\right)n/N} + X\left(-\frac{N}{2}+1\right)e^{-j2\pi \left(\frac{N}{2}-1\right)n/N} & \left(\frac{N}{2}-1\right) \text{oscillation} \\ &+ X\left(\frac{N}{2}\right) \qquad e^{j2\pi \left(\frac{N}{2}\right)n/N} & \frac{N}{2} \text{oscillation} \end{aligned}$
- Start with slow variations and progress on to add faster variations

## Reconstruction of square pulse

- Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequency k = 0 only (DC component)



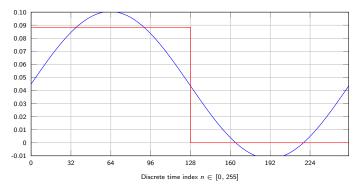
Pulse reconstruction with k=0 frequencies (N = 256, M = 128)

▶ Bound to be not very good ⇒ Just the average signal value



## Reconstruction of square pulse

- Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequencies k = 0,  $k = \pm 1$ , and  $k = \pm 2$

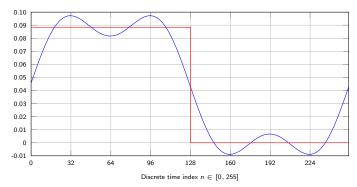


Pulse reconstruction with k=2 frequencies (N = 256, M = 128)

• Not too bad, sort of looks like a pulse  $\Rightarrow$  only 3 frequencies



- Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequencies up to k = 4

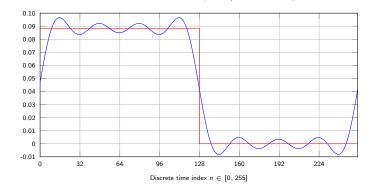


Pulse reconstruction with k=4 frequencies (N = 256, M = 128)

Starts to look like a good approximation



- Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequencies up to k = 8

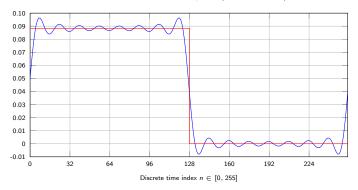


Pulse reconstruction with k=8 frequencies (N = 256, M = 128)

• Good approximation of the N = 256 values with 9 DFT coefficients



- Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequencies up to k = 16

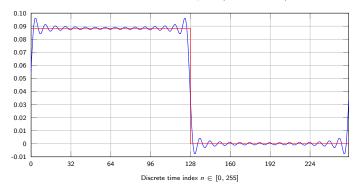


Pulse reconstruction with k=16 frequencies (N = 256, M = 128)

• Compression  $\Rightarrow$  Store k + 1 = 17 DFT values instead of N = 128 samples



- Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequencies up to k = 32



Pulse reconstruction with k=32 frequencies (N = 256, M = 128)

Can tradeoff less compression for better signal accuracy





(1) Start with a signal x with elements x(n). Compute DFT X as

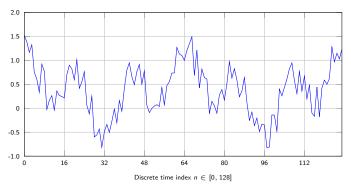
$$X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N}$$

(2) (Re)shape spectrum  $\Rightarrow$  Transform DFT X into DFT Y

(3) With DFT Y available, recover signal y with inverse DFT

$$y(n) := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} Y(k) e^{j2\pi k n/N}$$

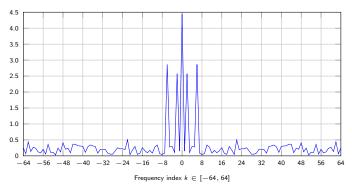
- Penn Renn
- An application of spectrum reshaping is to clean a noisy signal
- Signal with some underlying trend (good) and some noise (bad)



Original signal x(n). It moves randomly, but not that much

• Which is which?  $\Rightarrow$  Not clear  $\Rightarrow$  Let's look at the spectrum (DFT)

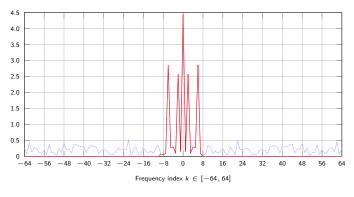
- Penn Renn
- An application of spectrum reshaping is to clean a noisy signal
- ▶ Now the trend (spikes) is clearly separated from the noise (the floor)



DFT X(k) of original signal

• How do we remove the noise?  $\Rightarrow$  Reshape the spectrum

- An application of spectrum reshaping is to clean a noisy signal
- ▶ Remove freqs. larger than 8  $\Rightarrow$  Y(k) = 0 for k > 8, Y(k) = X(k) else

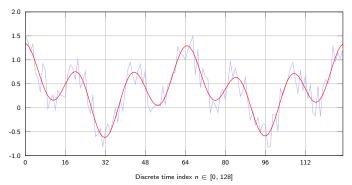


DFT Y(k) of signal with reshaped spectrum

• How do we recover the trend?  $\Rightarrow$  Inverse DFT



- Penn
- > An application of spectrum reshaping is to clean a noisy signal
- Inverse DFT of reshaped specturm Y(k) yields cleaned signal y(n)



Signal y(n) reconstructed from cleaned spectrum

> The trend now is clearly visible. Noise has been removed



Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT



► DFTs of real signals (no imaginary part) are conjugate symmetric

$$X(-k) = X^*(k)$$

- Signals of unit energy have transforms of unit energy
- More generically, the DFT preserves energy (Parseval's theorem)

$$\sum_{n=0}^{N-1} |x(n)|^2 = ||x||^2 = ||X||^2 = \sum_{k=0}^{N-1} |X(k)|^2$$

The DFT operator is a linear operator

$$\mathcal{F}(ax+by) = a\mathcal{F}(x) + b\mathcal{F}(y)$$



# Theorem The DFT $X = \mathcal{F}(x)$ of a real signal x is conjugate symmetric

 $X(-k) = X^*(k)$ 

- ► Can recover all DFT components from those with freqs.  $k \in [0, N/2]$
- ▶ What about components with freqs.  $k \in [-N/2, -1]$ ?
  - $\Rightarrow$  Conjugates of those with freqs  $k \in [0, N/2]$
- Other elements are equivalent to one in [-N/2, N/2] (periodicity)



#### Proof.

• Write the DFT X(-k) using its definition

$$X(-k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi(-k)n/N}$$

- When the signal is real, its conjugate is itself  $\Rightarrow x(n) = x^*(n)$
- $\blacktriangleright$  Conjugating a complex exponential  $\ \Rightarrow$  changing the exponent's sign

• Can then rewrite 
$$\Rightarrow X(-k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x^*(n) \left(e^{-j2\pi kn/N}\right)^*$$

Sum and multiplication can change order with conjugation

$$X(-k) = \left[\frac{1}{\sqrt{N}}\sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}\right]^* = X^*(k)$$



#### Theorem (Parseval)

Let  $X = \mathcal{F}(x)$  be the DFT of signal x. The energies of x and X are the same, i.e.,

$$\sum_{n=0}^{N-1} |x(n)|^2 = ||x||^2 = ||X||^2 = \sum_{k=0}^{N-1} |X(k)|^2$$

▶ In energy of DFT, any set of consecutive freqs. would do. E.g.,

$$||X||^2 = \sum_{k=0}^{N-1} |X(k)|^2 = \sum_{k=-N/2+1}^{N/2} |X(k)|^2$$



Proof.

From the definition of the energy of  $X \Rightarrow ||X||^2 = \sum_{k=0}^{N-1} X(k)X^*(k)$ 

From the definition of the DFT of 
$$x \Rightarrow X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N}$$

Substitute expression for X(k) into one for  $||X||^2$  (observe conjugation)

$$\|X\|^{2} = \sum_{k=0}^{N-1} \left[ \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} \right] \left[ \frac{1}{\sqrt{N}} \sum_{\tilde{n}=0}^{N-1} x^{*}(\tilde{n}) e^{+j2\pi k \tilde{n}/N} \right]$$

#### Proof.

• Distribute product and exchange order of summations  $\Rightarrow$  sum over k first

$$\|\boldsymbol{X}\|^{2} = \sum_{n=0}^{N-1} \sum_{\tilde{n}=0}^{N-1} x(n) x^{*}(\tilde{n}) \left[ \sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j2\pi kn/N} \frac{1}{\sqrt{N}} e^{+j2\pi k\tilde{n}/N} \right]$$

- Pulled x(n) and  $x^*(\tilde{n})$  out because they don't depend on k
- ▶ Innermost sum is the inner product between  $e_{nN}$  and  $e_{nN}$ . Orthonormality:

$$\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j2\pi kn/N} \frac{1}{\sqrt{N}} e^{+j2\pi k\tilde{n}/N} = \langle e_{\tilde{n}N}, e_{nN} \rangle = \delta(\tilde{n} - n)$$

• Thus 
$$\Rightarrow \|X\|^2 = \sum_{n=0}^{N-1} \sum_{\tilde{n}=0}^{N-1} x(n) x^*(\tilde{n}) \delta(\tilde{n}-n) = \sum_{n=0}^{N-1} x(n) x^*(n) = \|x\|^2$$

• True because only terms  $n = \tilde{n}$  are not null in the sum





#### Theorem

The DFT of a linear combination of signals is the linear combination of the respective DFTs of the individual signals,

 $\mathcal{F}(ax+by)=a\mathcal{F}(x)+b\mathcal{F}(y).$ 

In particular...

- $\Rightarrow$  Adding signals (z = x + y)  $\Rightarrow$  Adding DFTs (Z = X + Y)
- $\Rightarrow$  Scaling signals(y = ax)  $\Rightarrow$  Scaling DFTs (Y = aX)



#### Proof.

• Let  $Z := \mathcal{F}(ax + by)$ . From the definition of the DFT we have

$$Z(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left[ a \mathbf{x}(n) + b \mathbf{y}(n) \right] e^{-j2\pi kn/N}$$

Expand the product, reorder terms, identify the DFTs of x and y

$$Z(k) = \frac{a}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N} + \frac{b}{\sqrt{N}} \sum_{n=0}^{N-1} y(n) e^{-j2\pi kn/N}$$

First sum is DFT  $X = \mathcal{F}(x)$ . Second sum is DFT  $Y = \mathcal{F}(y)$ 

$$Z(k) = aX(k) + bY(k)$$



- ► DFT of discrete cosine of freq.  $k_0 \Rightarrow x(n) = \frac{1}{\sqrt{N}} \cos(2\pi k_0 n/N)$
- > Can write cosine as a sum of discrete complex exponentials

$$x(n) = \frac{1}{2\sqrt{N}} \left[ e^{j2\pi k_0 n/N} + e^{-j2\pi k_0 n/N} \right] = \frac{1}{2} \left[ e_{k_0 N}(n) + e_{-k_0 N}(n) \right]$$

From linearity of DFTs 
$$\Rightarrow X = \mathcal{F}(x) = \frac{1}{2} \Big[ \mathcal{F}(e_{k_0 N}) + \mathcal{F}(e_{-k_0 N}) \Big]$$

▶ DFT of complex exponential  $e_{kN}$  is delta function  $\delta(k - k_0)$ . Then

$$X(k) = rac{1}{2} \Big[ \delta(k-k_0) + \delta(k+k_0) \Big]$$

• A pair of deltas at positive and negative frequency  $k_0$ 



- ▶ DFT of discrete sine of freq.  $k_0 \Rightarrow x(n) = \frac{1}{\sqrt{M}} \sin(2\pi k_0 n/N)$
- ► Can write sine as a difference of discrete complex exponentials

$$x(n) = \frac{1}{2j\sqrt{N}} \left[ e^{j2\pi k_0 n/N} - e^{-j2\pi k_0 n/N} \right] = \frac{-j}{2} \left[ e_{k_0 N}(n) - e_{-k_0 N}(n) \right]$$

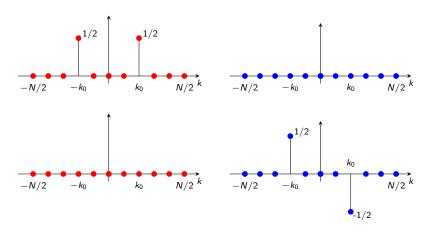
- From linearity of DFTs  $\Rightarrow X = \mathcal{F}(x) = \frac{j}{2} \Big[ \mathcal{F}(e_{-k_0 N}) \mathcal{F}(e_{k_0 N}) \Big]$
- ▶ DFT of complex exponential  $e_{kN}$  is delta function  $\delta(k k_0)$ . Then

$$X(k) = \frac{j}{2} \left[ \delta(k+k_0) - \delta(k-k_0) \right]$$

▶ Pair of opposite complex deltas at positive and negative frequency k<sub>0</sub>



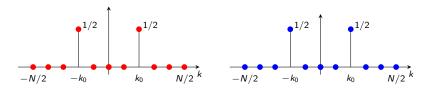
Cosine has real part only (top). Sine has imaginary part only (bottom)



• Cosine is symmetric around k = 0. Sine is antisymmetric around k = 0.



Real and imaginary parts are different but the moduli are the same



Cosine and sine are essentially the same signal (shifted versions)
 The moduli of their DFTs are identical

 $\Rightarrow$  Phase difference captured by phase of complex number  $X(\pm k_0)$