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Discrete Complex exponentials

I Discrete complex exponential of discrete frequency k and duration N

ekN(n) =
1√
N

e j2πkn/N =
1√
N

exp(j2πkn/N)

I The complex exponential is explicitly given by

e j2πkn/N = cos(2πkn/N) + j sin(2πkn/N)

I Real part is a discrete cosine and imaginary part a discrete sine

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−1

−0.5

0

0.5

1

Re
(
ej2πkn/N

)
, with k = 2 and N = 32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−1

−0.5

0

0.5

1

Im
(
ej2πkn/N

)
, with k = 2 and N = 32

Signal and Information Processing Discrete Fourier transform 3



Equivalent frequencies

Theorem
If k − l = N the signals ekN(n) and elN(n) coincide for all n, i.e.,

ekN(n) =
e j2πkn/N√

N
=

e j2πln/N√
N

= elN(n)

I Exponentials with frequencies k and l are equivalent if k − l = N
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Orthogonality

Theorem
Complex exponentials with nonequivalent frequencies are orthogonal. I.e.

〈ekN , elN〉 = 0

when k − l < N. E.g., when k = 0, . . .N − 1, or k = −N/2 + 1, . . . ,N/2.

I Signals of canonical sets are “unrelated.” Different rates of change

I Also note that the energy is ‖ekN‖2 = 〈ekN , ekN〉 = 1

I Exponentials with frequencies k = 0, 1, . . . ,N − 1 are orthonormal

〈ekN , elN〉 = δ(l − k)

I They are an orthonormal basis of signal space with N samples
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Conjugate frequencies

Theorem
Opposite frequencies k and −k yield conjugate signals: e−kN = e∗kN(n)

Proof.

I Just use the definitions to write the chain of equalities

e−kN(n) =
e j2π(−k)n/N√

N
=

e−j2πkn/N√
N

=

[
e j2πkn/N√

N

]∗
= e∗kN(n)

I Opposite frequencies ⇒ Same real part. Opposite imaginary part

⇒ The cosine is the same, the sine changes sign
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Physical meaning

I Of the N canonical frequencies, only N/2 + 1 are distinct.

0, 1, . . . , N/2− 1 N/2
−1, . . . , −N/2 + 1

N − 1, . . . , N/2 + 1

I Frequencies 0 and N/2 have no counterpart. Others have conjugates

I Canonical set −N/2 + 1, . . . ,−1, 0, 1, . . . ,N/2 easier to interpret

I Reasonable ⇒ Can’t have more than N/2 oscillations in N samples

I With sampling frequency fs and signal duration T = NTs = N/fs

⇒ Discrete frequency k ⇒ frequency f0 =
k

T
=

k

NTs
=

k

N
fs

I Frequencies from 0 to N/2↔ fs/2 have physical meaning

⇒ Negative frequencies are conjugates of the positive frequencies
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Definition of discrete Fourier transform (DFT)

I Signal x of duration N with elements x(n) for n = 0, . . . ,N − 1

I X is the discrete Fourier transform (DFT) of x if for all k ∈ Z

X (k) :=
1√
N

N−1∑
n=0

x(n)e−j2πkn/N =
1√
N

N−1∑
n=0

x(n) exp(−j2πkn/N)

I We write X = F(x). All values of X depend on all values of x

I The argument k of the DFT is referred to as frequency

I DFT is complex even if signal is real ⇒ X (k) = XR(k) + jXI (k)

⇒ It is customary to focus on magnitude∣∣∣X (k)
∣∣∣ =

[
X 2
R(k) + X 2

I (k)
]1/2

=
[
X (k)X ∗(k)

]1/2
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DFT elements as inner products

I Discrete complex exponential (freq. k) ⇒ e−kN(n) =
1√
N
e−j2πkn/N

I Can rewrite DFT as ⇒ X (k) =
N−1∑
n=0

x(n)e−kN(n) =
N−1∑
n=0

x(n)e∗kN(n)

I And from the definition of inner product ⇒ X (k) = 〈x , ekN〉

I DFT element X (k) ⇒ inner product of x(n) with ekN(n)

⇒ Projection of x(n) onto complex exponential of frequency k

⇒ How much of the signal x is an oscillation of frequency k
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DFT of a square pulse (derivation)

I The unit energy square pulse is the signal uM(n) that takes values

uM (n) =
1√
M

if 0 ≤ n < M

uM (n) = 0 if M ≤ n
t

uM (n)

1/
√
M

M − 1 N − 1

I Since only the first M−1 elements of uM(n) are not null, the DFT is

X (k) =
1√
N

N−1∑
n=0

uM(n)e−j2πkn/N =
1√
N

M−1∑
n=0

1√
M

e−j2πkn/N

I X (k) = sum of first M components of exponential of frequency −k

I Can reduce to simpler expression but who cares? ⇒ It’s just a sum
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DFT of a square pulse (illustration)

I Square pulse of length M = 2 and overall signal duration N = 32

X (k) =
1√
N

1∑
n=0

1√
2
e−j2πkn/N =

1√
2N

(
1 + e−j2πk/N

)
I E.g., X (k) =

2√
2N

at k = 0,±N, . . . and X (k) = 0 at k = 0,±3N/2, . . .
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I This DFT is periodic with period N ⇒ true in general
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Periodicity of the DFT

I Consider frequencies k and k + N. The DFT at k + N is

X (k + N) :=
1√
N

N−1∑
n=0

x(n)e−j2π(k+N)n/N

I Complex exponentials of freqs. k and k + N are equivalent. Then

X (k + N) :=
1√
N

N−1∑
n=0

x(n)e−j2πkn/N = X (k)

I DFT values N apart are equivalent ⇒ DFT has period N

I Suffices to look at N consecutive frequencies ⇒ canonical sets

⇒ Computation ⇒ k ∈ [0,N − 1]

⇒ Interpretation ⇒ k ∈ [−N/2,N/2] (actually, N + 1 freqs.)

⇒ Related by chop and shift ⇒ [−N/2,−1] ∼ [N/2,N − 1]
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Canonical set k ∈ [0,N − 1]

I DFT of the square pulse highlighting frequencies k ∈ [0,N − 1]
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Modulus |X (k)| of the DFT of square pulse, duration N = 32, pulse length M = 2

I Frequencies larger than N/2 have no clear physical meaning
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Canonical set k ∈ [−N/2,N/2]

I DFT of the square pulse highlighting frequencies k ∈ [−N/2,N/2]

I Negative freq. −k has the same interpretation as positive freq. k

I One redundant element ⇒ X (−N/2) = X (N/2). Just convenient
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I Obtain frequencies k ∈ [−N/2,−1] from frequencies [N/2,N − 1]
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Pulses of different length

I The DFT X gives information on how fast the signal x changes
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I For length M = 2 have
weight at high frequencies

I Length M = 4 concentrates
weight at lower frequencies

I Pulse of length M = 2
changes more than a pulse
of length M = 4
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More DFTs of pulses of different length

I The lengthier the pulse the less it changes ⇒ DFT concentrates at zero freq.
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DFT of a delta function

I The delta function is δ(0) = 1 and δ(n) = 0, else. Then, the DFT is

X (k) =
1√
N

N−1∑
n=0

δ(n)e−j2πkn/N =
1√
N
δ(0)e−j2πk0/N =

1√
N
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Time index n = 0, 1, . . . , 15 = [0, 15]

Delta function x(n) = δ(n)

⇒ ⇒
DFT
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√
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Frequency index k = 0, 1, . . . , 15 = [0, 15]

DFT of delta function X (k) = 1/
√

N

I Only the N values k ∈ [0, 15] shown. DFT defined for all k but periodic

I Observe that the energy is conserved ‖X‖2 = ‖δ‖2 = 1
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DFT of a shifted delta function

I For shifted delta δ(n0 − n0) = 1 and δ(n − n0) = 0 otherwise. Thus

X (k) =
1√
N

N−1∑
n=0

δ(n − n0)e−j2πkn/N =
1√
N
δ(n0 − n0)e−j2πkn0/N

I Of course δ(n0 − n0) = δ(0) = 1, implying that

X (k) =
1√
N
e−j2πkn0/N = e−n0N(k)

I Complex exponential of frequency −n0 (below, N = 16 and n0 = 1)
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DFT of a complex exponential

I Complex exponential of freq. k0 ⇒ x(n) =
1√
N
e j2πk0n/N = ek0N(n)

I Use inner product form of DFT definition ⇒ X (k) = 〈ek0N , ekN〉

I Orthonormality of complex exponentials ⇒ 〈ek0N , ekN〉 = δ(k − k0)
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DFT of a constant

I Constant function x(n) = 1/
√
N (it has unit energy) and k = 0

⇒ Complex exponential with frequency k0 = 0 ⇒ x(n) = e0N

I Use inner product form of DFT definition ⇒ X (k) = 〈e0N , ekN〉

I Complex exponential orthonormality ⇒ 〈e0N , ekN〉 = δ(k − 0) = δ(k)
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I DFT of constant x(n) = 1/
√
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Observations

I DFT of a signal captures its rate of change

I Signals that change faster have more DFT weight at high frequencies

I DFT conserves energy (all have unit energy in our examples)

I Energy of DFT X = F(x) is the same as energy of the signal x

I Indeed, an important property we will show

I Duality of signal - transform pairs (signals and DFTs come in pairs)

I DFT of delta is a constant. DFT of constant is a delta

I DFT of exponential is shifted delta. DFT of shifted delta is exponential

I Indeed, a fact that follows from the form of the inverse DFT
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Units

I Sampling time Ts , sampling frequency fs , signal duration T = NTs

I Discrete frequency k ⇒ k oscillations in time NTs = Period NTs/k

I Discrete frequency k equivalent to real frequency fk =
k

NTs
= k

fs
N

I In particular, k = N/2 equivalent to ⇒ fN/2 =
N/2fs
N

=
fs
2

I Set of frequencies k ∈ [−N/2,N/2] equivalent to real frequencies ...

⇒ That lie between −fs/2 and fs/2

⇒ Are spaced by fs/N (difference between frequencies fk and fk+1)

I Interval width given by sampling frequency. Resolution given by N
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Units in DFT of a discrete complex exponential

I Complex exponential of frequency f0 = k0fs/N

⇒ Discrete frequency k0 and DFT ⇒ X (k) = δ(k − k0)

I But frequency k0 corresponds to frequency f0 ⇒ X (f ) = δ(f − f0)

k0 1 2 N
2-1-2- N2

1

k0

k0 fs
N

2fs
N

fs
2- fsN- 2fsN- fs2

1

f0 = k0
fs
N

I True only when frequency f0 = (k0/N)fs is a multiple of fs/N
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Units in DFT of a square pulse

I Square pulse of length T0 = 4s observed during a total of T = 32s.

I Sampled every Ts = 125ms ⇒ Sample frequency fs = 8Hz

I Total number of samples ⇒ N = T/Ts = 256

I Maximum frequency k = N/2 = 128 ↔ fk = fN/2 = fs/2 = 4Hz

I Fequency resolution fs/N = 8Hz/256 = 0.03125Hz
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Units in DFT of a square pulse

I Interval between freqs. ⇒ fs/N = 8Hz/256 = 1/32 = 0.03125Hz

⇒ 32 equally spaced frees for each 1Hz interval = 8 every 0.125 Hz.

-0.750Hz -0.625Hz -0.500Hz -0.375Hz -0.250Hz -0.125 0 0.125Hz 0.250Hz 0.375Hz 0.500Hz 0.625Hz 0.750Hz
0
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Frequencies 0,±0.03125Hz,±0.06250Hz, . . . ,±0.750Hz

Sampling frequency fs = 8Hz, duration T = 32s, length T = 4s

I Zeros of DFT are at frequencies 0.250Hz, 0.500 Hz, 0.750 Hz, . . .

⇒ Thus, zeros are at frequencies are 1/T0, 2/T0, 3/T0, . . .

I Most (a lot) of the DFT energy is between freqs. −1/T0 and 1/T0
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Definition of DFT inverse

I Given a Fourier transform X , the inverse (i)DFT x = F−1(X ) is

x(n) :=
1√
N

N−1∑
k=0

X (k)e j2πkn/N =
1√
N

N−1∑
k=0

X (k) exp(j2πkn/N)

I Same as DFT but for sign in the exponent (also, sum over k, not n)

I Any summation over N consecutive frequencies works as well. E.g.,

x(n) =
1√
N

N/2∑
k=−N/2+1

X (k)e j2πkn/N

I Because for a DFT X we know that it must be X (k + N) = X (k)
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iDFT is, indeed, the inverse of the DFT

Theorem
The inverse DFT of the DFT of x is the signal x ⇒ F−1[F(x)] = x

I Every signal x can be written as a sum of complex exponentials

x(n) =
1√
N

N−1∑
k=0

X (k)e j2πkn/N =
1√
N

N/2∑
k=−N/2+1

X (k)e j2πkn/N

I Coefficient multiplying e j2πkn/N is X (k) = kth element of DFT of x

X (k) :=
1√
N

N−1∑
n=0

x(n)e−j2πkn/N
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Proof of DFT inverse formula

Proof.

I Let X = F(x) be the DFT of x . Let x̃ = F−1(X ) be the iDFT of X .

⇒ We want to show that x̃ ≡ x

I From the definition of the iDFT of X ⇒ x̃(ñ) =
1√
N

N−1∑
k=0

X (k)e j2πkñ/N

I From the definition of the DFT of x ⇒ X (k) :=
1√
N

N−1∑
n=0

x(n)e−j2πkn/N

I Substituting expression for X (k) into expression for x̃(ñ) yields

x̃(ñ) =
1√
N

N−1∑
k=0

[
1√
N

N−1∑
n=0

x(n)e−j2πkn/N

]
e j2πkñ/N
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Proof of DFT inverse formula

Proof.

I Exchange summation order to sum first over k and then over n

x̃(ñ) =
N−1∑
n=0

x(n)

[ N−1∑
k=0

1√
N
e j2πkñ/N

1√
N
e−j2πkn/N

]
I Pulled x(n) out because it doesn’t depend on k

I Innermost sum is the inner product between eñN and enN . Orthonormality:

N−1∑
k=0

1√
N
e j2πkñ/N

1√
N
e−j2πkn/N = δ(ñ − n)

I Reducing to ⇒ x̃(ñ) =
N−1∑
n=0

x(n)δ(ñ − n) = x(ñ)

I Last equation is true because only term n = ñ is not null in the sum
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Inverse DFT as inner product

I Discrete complex exponential (freq. n) ⇒ enN(k) =
1√
N
e j2πkn/N

I Rewrite iDFT as ⇒ x(n) =
N−1∑
k=0

X (k)enN(k) =
N−1∑
k=0

X (k)e∗−nN(k)

I And from the definition of inner product ⇒ x(n) = 〈X , enN〉

I iDFT element X (k) ⇒ inner product of X (k) with e−nN(k)

I Different from DFT, this is not the most useful interpretation
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Inverse DFT as successive approximations

I Signal as sum of exponentials ⇒ x(n) =
1√
N

N/2∑
k=−N/2+1

X (k)e j2πkn/N

I Expand the sum inside out from k = 0 to k = ±1, to k = ±2, . . .

x(n) = X (0) e j2π0n/N constant

+ X (1) e j2π1n/N + X (−1) e−j2π1n/N single oscillation

+ X (2) e j2π2n/N + X (−2) e−j2π2n/N double oscillation

...
...

...
...

...

+ X

(
N

2
− 1

)
e j2π(

N
2
−1)n/N + X

(
−
N

2
+ 1

)
e−j2π( N

2
−1)n/N

(
N

2
− 1

)
– oscillation

+ X

(
N

2

)
e j2π(

N
2 )n/N

N

2
– oscillation

I Start with slow variations and progress on to add faster variations
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequency k = 0 only (DC component)
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Discrete time index n ∈ [0, 255]

Pulse reconstruction with k=0 frequencies (N = 256, M = 128)

I Bound to be not very good ⇒ Just the average signal value
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies k = 0, k = ±1, and k = ±2
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Discrete time index n ∈ [0, 255]

Pulse reconstruction with k=2 frequencies (N = 256, M = 128)

I Not too bad, sort of looks like a pulse ⇒ only 3 frequencies
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies up to k = 4
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Discrete time index n ∈ [0, 255]

Pulse reconstruction with k=4 frequencies (N = 256, M = 128)

I Starts to look like a good approximation
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies up to k = 8
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Pulse reconstruction with k=8 frequencies (N = 256, M = 128)

I Good approximation of the N = 256 values with 9 DFT coefficients
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies up to k = 16
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Pulse reconstruction with k=16 frequencies (N = 256, M = 128)

I Compression ⇒ Store k + 1 = 17 DFT values instead of N = 128 samples
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies up to k = 32
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Pulse reconstruction with k=32 frequencies (N = 256, M = 128)

I Can tradeoff less compression for better signal accuracy
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Spectrum (re)shaping

(1) Start with a signal x with elements x(n). Compute DFT X as

X (k) :=
1√
N

N−1∑
n=0

x(n)e−j2πkn/N

(2) (Re)shape spectrum ⇒ Transform DFT X into DFT Y

(3) With DFT Y available, recover signal y with inverse DFT

y(n) :=
1√
N

N−1∑
k=0

Y (k)e j2πkn/N

x
F

X
SS

Y
F−1

y

Signal and Information Processing Discrete Fourier transform 41



Spectrum reshaping to remove noise

I An application of spectrum reshaping is to clean a noisy signal

I Signal with some underlying trend (good) and some noise (bad)
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Discrete time index n ∈ [0, 128]

Original signal x(n). It moves randomly, but not that much

I Which is which? ⇒ Not clear ⇒ Let’s look at the spectrum (DFT)
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Spectrum reshaping to remove noise

I An application of spectrum reshaping is to clean a noisy signal

I Now the trend (spikes) is clearly separated from the noise (the floor)
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Frequency index k ∈ [−64, 64]

DFT X (k) of original signal

I How do we remove the noise? ⇒ Reshape the spectrum
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Spectrum reshaping to remove noise

I An application of spectrum reshaping is to clean a noisy signal

I Remove freqs. larger than 8 ⇒ Y (k) = 0 for k > 8, Y (k) = X (k) else
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Frequency index k ∈ [−64, 64]

DFT Y (k) of signal with reshaped spectrum

I How do we recover the trend? ⇒ Inverse DFT
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Spectrum reshaping to remove noise

I An application of spectrum reshaping is to clean a noisy signal

I Inverse DFT of reshaped specturm Y (k) yields cleaned signal y(n)
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Discrete time index n ∈ [0, 128]

Signal y(n) reconstructed from cleaned spectrum

I The trend now is clearly visible. Noise has been removed
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Properties of the DFT

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT
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Three important properties of DFTs

I DFTs of real signals (no imaginary part) are conjugate symmetric

X (−k) = X ∗(k)

I Signals of unit energy have transforms of unit energy

I More generically, the DFT preserves energy (Parseval’s theorem)

N−1∑
n=0

|x(n)|2 = ‖x‖2 = ‖X‖2 =
N−1∑
k=0

|X (k)|2

I The DFT operator is a linear operator

F(ax + by) = aF(x) + bF(y)
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Symmetry

Theorem
The DFT X = F(x) of a real signal x is conjugate symmetric

X (−k) = X ∗(k)

I Can recover all DFT components from those with freqs. k ∈ [0,N/2]

I What about components with freqs. k ∈ [−N/2,−1]?

⇒ Conjugates of those with freqs k ∈ [0,N/2]

I Other elements are equivalent to one in [−N/2,N/2] (periodicity)
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Proof of symmetry property

Proof.

I Write the DFT X (−k) using its definition

X (−k) =
1√
N

N−1∑
n=0

x(n)e−j2π(−k)n/N

I When the signal is real, its conjugate is itself ⇒ x(n) = x∗(n)

I Conjugating a complex exponential ⇒ changing the exponent’s sign

I Can then rewrite ⇒ X (−k) =
1√
N

N−1∑
n=0

x∗(n)
(
e−j2πkn/N

)∗
I Sum and multiplication can change order with conjugation

X (−k) =

[
1√
N

N−1∑
n=0

x(n)e−j2πkn/N

]∗
= X ∗(k)
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Energy conservation

Theorem (Parseval)

Let X = F(x) be the DFT of signal x. The energies of x and X are the
same, i.e.,

N−1∑
n=0

|x(n)|2 = ‖x‖2 = ‖X‖2 =
N−1∑
k=0

|X (k)|2

I In energy of DFT, any set of consecutive freqs. would do. E.g.,

‖X‖2 =
N−1∑
k=0

|X (k)|2 =

N/2∑
k=−N/2+1

|X (k)|2
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Proof of Parseval’s Theorem

Proof.

I From the definition of the energy of X ⇒ ‖X‖2 =
N−1∑
k=0

X (k)X ∗(k)

I From the definition of the DFT of x ⇒ X (k) :=
1√
N

N−1∑
n=0

x(n)e−j2πkn/N

I Substitute expression for X (k) into one for ‖X‖2 (observe conjugation)

‖X‖2 =
N−1∑
k=0

[
1√
N

N−1∑
n=0

x(n)e−j2πkn/N

][
1√
N

N−1∑
ñ=0

x∗(ñ)e+j2πkñ/N

]
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Proof of Parseval’s Theorem

Proof.

I Distribute product and exchange order of summations ⇒ sum over k first

‖X‖2 =
N−1∑
n=0

N−1∑
ñ=0

x(n)x∗(ñ)

[ N−1∑
k=0

1√
N
e−j2πkn/N 1√

N
e+j2πkñ/N

]
I Pulled x(n) and x∗(ñ) out because they don’t depend on k

I Innermost sum is the inner product between eñN and enN . Orthonormality:

N−1∑
k=0

1√
N
e−j2πkn/N 1√

N
e+j2πkñ/N = 〈eñN , enN〉 = δ(ñ − n)

I Thus ⇒ ‖X‖2 =
N−1∑
n=0

N−1∑
ñ=0

x(n)x∗(ñ)δ(ñ − n) =
N−1∑
n=0

x(n)x∗(n) = ‖x‖2

I True because only terms n = ñ are not null in the sum
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Linearity

Theorem
The DFT of a linear combination of signals is the linear combination of
the respective DFTs of the individual signals,

F(ax + by) = aF(x) + bF(y).

I In particular...

⇒ Adding signals (z = x + y) ⇒ Adding DFTs (Z = X + Y )

⇒ Scaling signals(y = ax) ⇒ Scaling DFTs (Y = aX )
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Proof of Linearity

Proof.

I Let Z := F(ax + by). From the definition of the DFT we have

Z (k) =
1√
N

N−1∑
n=0

[
ax(n) + by(n)

]
e−j2πkn/N

I Expand the product, reorder terms, identify the DFTs of x and y

Z (k) =
a√
N

N−1∑
n=0

x(n)e−j2πkn/N +
b√
N

N−1∑
n=0

y(n)e−j2πkn/N

I First sum is DFT X = F(x). Second sum is DFT Y = F(y)

Z (k) = aX (k) + bY (k)
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DFT of a discrete cosine

I DFT of discrete cosine of freq. k0 ⇒ x(n) =
1√
N

cos(2πk0n/N)

I Can write cosine as a sum of discrete complex exponentials

x(n) =
1

2
√
N

[
e j2πk0n/N + e−j2πk0n/N

]
=

1

2

[
ek0N(n) + e−k0N(n)

]

I From linearity of DFTs ⇒ X = F(x) =
1

2

[
F(ek0N) + F(e−k0N)

]
I DFT of complex exponential ekN is delta function δ(k − k0). Then

X (k) =
1

2

[
δ(k − k0) + δ(k + k0)

]
I A pair of deltas at positive and negative frequency k0
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DFT of a discrete sine

I DFT of discrete sine of freq. k0 ⇒ x(n) =
1√
N

sin(2πk0n/N)

I Can write sine as a difference of discrete complex exponentials

x(n) =
1

2j
√
N

[
e j2πk0n/N−e−j2πk0n/N

]
=
−j
2

[
ek0N(n)−e−k0N(n)

]

I From linearity of DFTs ⇒ X = F(x) =
j

2

[
F(e−k0N)−F(ek0N)

]
I DFT of complex exponential ekN is delta function δ(k − k0). Then

X (k) =
j

2

[
δ(k + k0)−δ(k − k0)

]
I Pair of opposite complex deltas at positive and negative frequency k0
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DFT of discrete cosine and discrete sine

I Cosine has real part only (top). Sine has imaginary part only (bottom)

k

1/2

k0 N/2

1/2

−k0−N/2 kk0 N/2−k0−N/2

kk0 N/2−k0−N/2 k

-1/2

k0

N/2

1/2

−k0−N/2

I Cosine is symmetric around k = 0. Sine is antisymmetric around k = 0.
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DFT of discrete cosine and discrete sine (more)

I Real and imaginary parts are different but the moduli are the same

k

1/2

k0 N/2

1/2

−k0−N/2 k

1/2

k0 N/2

1/2

−k0−N/2

I Cosine and sine are essentially the same signal (shifted versions)

⇒ The moduli of their DFTs are identical

⇒ Phase difference captured by phase of complex number X (±k0)
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