

Stochastic Systems Analysis and Simulations

Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu <http://www.seas.upenn.edu/users/~aribeiro/>

August 27, 2019

メロメ メ母メ メミメメミメ

[Presentations](#page-2-0)

[Class description and contents](#page-10-0)

[Gambling](#page-17-0)

メロメ メ御 メメ きょく きょう

目

- ▶ Alejandro Ribeiro, Luiz Chamon, Fernando Gama
- ▶ Walnut 3401 floor 4B. <https://alelab.seas.upenn.edu/>
- \blacktriangleright Teaching assistants: Vinicius Lima
- ► Class email: [ese303@seas.upenn.edu.](mailto:ese303@seas.upenn.edu)
- ▶ Don't write to our personal addresses. Please.
- \triangleright We also have a separate grader
- \triangleright We meet on the Berger auditorium in Skirkanich Hall
- \blacktriangleright Mondays, Wednesdays, Fridays 10 am to 11 am
- \triangleright My office hours, Wednesdays and Fridays from 11 am to 12 pm
- \triangleright Anytime, as long as you have something interesting to tell me
- ▶ <https://ese303.seas.upenn.edu/>

イロメ イ母メ イヨメ イヨメ

Prerequisites

\blacktriangleright Probability theory

- \triangleright Stochastic processes are time-varying random entities
- If unknown, need to learn as we go
- \triangleright Will cover in first seven lectures

\blacktriangleright Linear algebra

- \triangleright Vector matrix notation, systems of linear equations, eigenvalues
- \triangleright Programming in Matlab
- \blacktriangleright Needed for homework.
- \blacktriangleright If you know programming you can learn Matlab in one afternoon
- \triangleright But it has to be this afternoon
- \triangleright Differential equations, Fourier transforms
- \triangleright Appear here and there. Should not be a problem

イロメ イ母メ イヨメ イヨメー

- \blacktriangleright 14 homework sets in 14 weeks
- \triangleright Collaboration accepted, welcomed, and encouraged
- \triangleright Sets graded as 0 (bad), 1 (good), 2 (very good) and 3 (outstanding)
- \triangleright We'll use the 3 sparingly. Goal is to earn 28 homework points
- \triangleright First Midterm examination starts on Monday October 7, 36 points
- ▶ Take home due on Wednesday October 9
- \triangleright Work independently. No collaboration, no discussion
- \triangleright Second midterm is on Monday December 9 worth 36 points
- \triangleright At least 60 points are required for passing.
- ► C requires at least 70 points. B at least 80. A at least 90
- \triangleright Goal is for everyone to earn an A

イロメ イ母メ イヨメ イヨメ

- \triangleright Textbook for the class is (older or newer editions acceptable)
- \triangleright Sheldon M. Ross "Introduction to Probability Models", Academic Press, whatever ed.
- ▶ Same topics at advanced level (more rigor, includes proofs)
- ▶ Sheldon Ross "Stochastic Processes", John Wiley & sons, 2nd ed.
- \triangleright Stohastic processes in systems biology
- ▶ Darren J. Wilkinson "Stochastic Modelling for Systems Biology", Chapman & Hall/CRC, 1st ed.
- \blacktriangleright Part on simulation of chemical reactions taken from here
- \triangleright Use of stochastic processes in finance
- ▶ Masaaki Kijima "Stochastic Processes with Applications to Finance", Chapman & Hall/CRC, 1st ed.

メロメ メ御 メメ きょくきょう

 \blacktriangleright Just that. Not a programming class

メロメ メ御メ メ君メ メ君メー

重

- \triangleright This class has a reputation for been hard and demanding \Rightarrow I do not entirely agree but I take the point
- \triangleright On the other hand, the quality ratings are very good
	- \Rightarrow S. Reid Warren Jr. Award (2012)
	- \Rightarrow Lindback Award for Distinguished Teaching (2017)
	- \Rightarrow Collected the two possible teaching awards in 8 years
- \triangleright This is, really, a great class. You will do things that look like magic
- \triangleright Also, the class is front loaded. It will become easier after the break. \Rightarrow Don't drop it! You will enjoy it.

イロメ イ母メ イヨメ イヨメ

- \blacktriangleright I ask questions to individual students (cold calling).
	- \Rightarrow Absolutely zero premium (penalty) on right (wrong) answer
- \triangleright Do these questions serve any purpose?
	- \Rightarrow I need to gauge what you understand of what I say
	- \Rightarrow There are different ways of explaining ideas
	- \Rightarrow Spatial memory associates parts of the room with concepts
	- \Rightarrow People remember conversations better than lectures
- \triangleright Can anyone explain to me why this is called cold calling?

[Presentations](#page-2-0)

[Class description and contents](#page-10-0)

[Gambling](#page-17-0)

メロメ メ御 メメ きょく きょう

目

- \blacktriangleright Anything random that evolves in time
- \blacktriangleright Time can be discrete $(0, 1, ...)$ or continuous
- \triangleright More formally, assign a function to a random event
- \triangleright Compare with "random variable assigns a value to a random event"
- \triangleright Generalizes concept of random vector to functions
- \triangleright Or generalizes the concept of function to random settings
- \triangleright Can interpret a stochastic process as a set of random variables
- \triangleright Not always the most appropriate way of thinking

イロメ イ母メ イヨメ イヨメ

A voice recognition system

► Random event \sim word spoken. Stochastic process \sim the waveform

 \blacktriangleright Try the file speech signals.m

4 0 8

- \blacktriangleright Probability theory review (6 lectures)
	- \blacktriangleright Probability spaces
	- **Conditional probability: time** $n + 1$ **given time n, future given past ...**
	- ► Limits in probability, almost sure limits: behavior as $t \to \infty$...
	- \triangleright Common probability distributions (binomial, exponential, Poisson, Gaussian)
- \triangleright Stochastic processes are complicated entities
- \triangleright Restrict attention to particular classes that are somewhat tractable
- \blacktriangleright Markov chains (9 lectures)
- \triangleright Continuous time Markov chains (12 lectures)
- \triangleright Stationary random processes (9 lectures)
- \triangleright Midterm covers up to Markov chains

メロメ メ母メ メミメメミメ

Markov chains

- A set of states $1, 2, \ldots$ At time *n*, state is X_n
- \blacktriangleright Memoryless property
	- \Rightarrow Probability of next state X_{n+1} depends on current state X_n
	- \Rightarrow But not on past states X_{n-1} , X_{n-2} , ...
- \blacktriangleright Can be happy $(X_n = 0)$ or sad $(X_n = 1)$
- \blacktriangleright Happiness tomorrow affected by happiness today only
- \triangleright Whether happy or sad today, likely to be happy tomorrow
- \triangleright But when sad, a little less likely so
- \triangleright Classification of states, ergodicity, limiting distributions
- \triangleright Google's page rank, machine learning, virus propagation, queues ...

メロメ メ御 メメ きょくきょう

- A set of states $1, 2, \ldots$ Continuous time index t
- \blacktriangleright Transition between states can happen at any time
- \triangleright Future depends on present but is independent of the past

 \blacktriangleright Probability of changing state in an infinitesimal time dt

メロメ メ母メ メミメ メミメ

- \triangleright Poisson processes, exponential distributions, transition probabilities, Kolmogorov equations, limit distributions
- \triangleright Chemical reactions, queues, communication networks, weather forecasting ...

- \triangleright Continuous time t, continuous state $x(t)$, not necessarily memoryless
- \triangleright System has a steady state in a random sense
- \triangleright Prob. distribution of $x(t)$ constant or becomes constant as t grows
- \triangleright Brownian motion, white noise, Gaussian processes, autocorrelation, power spectral density.
- \triangleright Black Scholes model for option pricing, speech, noise in electric circuits, filtering and equalization ...

メロメ メ母メ メミメ メミメ

[Presentations](#page-2-0)

[Class description and contents](#page-10-0)

[Gambling](#page-17-0)

メロメ メ御き メミメ メミメー

目

 \triangleright There is a certain game in a certain casino in which ...

 \Rightarrow your chances of winning are $p > 1/2$

- \triangleright You place \$1 bets
	- (a) With probability p you gain \$1 and
	- (b) With probability $(1 p)$ you lose your \$1 bet
- \blacktriangleright The catch is that you either
	- (a) Play until you go broke (lose all your money)
	- (b) Keep playing forever
- \triangleright You start with an initial wealth of $\frac{6}{3}w_0$
- \triangleright Shall you play this game?

K ロ ▶ K 何 ▶

ヨメ メヨメ

- \triangleright Let t be a time index (number of bets placed)
- \triangleright Denote as $x(t)$ the outcome of the bet at time t
	- \blacktriangleright $x(t) = 1$ if bet is won (with probability p)
	- \triangleright x(t) = 0 if bet is lost (probability $(1 p)$)
- \blacktriangleright $x(t)$ is called a Bernoulli random varible with parameter p
- Denote as $w(t)$ the player's wealth at time t
- At time $t = 0$, $w(0) = w_0$
- At times $t > 0$ wealth $w(t)$ depends on past wins and losses
- \blacktriangleright More specifically we have
	- \triangleright When bet is won $w(t) = w(t-1) + 1$
	- \triangleright When bet is lost $w(t) = w(t-1) 1$

メロメ メ都 メメ きょく ミメー

Coding

 $t=0; w(t)=w_0; \textit{max}_t=10^3; \textit{/} \textit{/} \text{Initialize variables}$ $\%$ repeat while not broke up to time max_t while $(w(t) > 0)$ & $(t < max_t)$ do $x(t) = \text{random('bino',1,p)}$; % Draw Bernoulli random variable if $x(t) == 1$ then $w(t + 1) = w(t) + b$; % If $x = 1$ wealth increases by b else $x(t + 1) = w(t) - b$; % If $x = 0$ wealth decreases by b end $t = t + 1$: end

Initial wealth $w_0 = 20$, bet $b = 1$, win probability $p = 0.55$

 \blacktriangleright Shall we play?

メロメ メ都 メメ きょく ミメー

One lucky player

- She didn't go broke. After $t = 1000$ bets, her wealth is $w(t) = 109$
- \triangleright Less likely to go broke now because wealth increased

◆ ロ ▶ → 何

おす草を

Two lucky players

- \blacktriangleright Wealths are $w_1(t) = 109$ and $w_2(t) = 139$
- Increasing wealth seems to be a pattern

∢ ロ ▶ (印

Ten lucky players

- \blacktriangleright Wealths $w_i(t)$ between 78 and 139
- Increasing wealth is definitely a pattern

←ロ ▶ → 何 ▶

One unlucky player

 \triangleright But this does not mean that all players will turn out as winners

 \blacktriangleright The twelfth player $j = 12$ goes broke

∢ ロ ▶ (印

One unlucky player

 \triangleright But this does not mean that all players will turn out as winners

 \blacktriangleright The twelfth player $j = 12$ goes broke

4 0 8 1

One hundred players

- \triangleright Only one player $(j = 12)$ goes broke
- \blacktriangleright All other players end up with substantially more money

4 0 8

Average tendency

- It is not difficult to find a line estimating the average of $w(t)$
- $\bar{w}(t) \approx w_0 + (2p-1)t \approx w_0 + 0.1t$

∢ ロ ▶ (印

メス 国家

 \triangleright To discover average tendency notice that for all times t we can write

$$
W(t+1) = W(t) + \left(2X(t) - 1\right)
$$

 \triangleright Taking expectation on both sides and using linearity of expectations

$$
\mathbb{E}\left[W(t+1)\right]=\mathbb{E}\left[W(t)\right]+\left(2\mathbb{E}\left[X(t)\right]-1\right)
$$

 \blacktriangleright The expected value of $X(t)$ is

$$
\mathbb{E}[X(t)] = 1 \times P(X(t) = 1) + 0 \times P(X(t) = 1) = p
$$

- \triangleright Which yields $\Rightarrow \mathbb{E}[W(t+1)] = \mathbb{E}[W(t)] + (2p-1)$
- Applying recursively $\Rightarrow \mathbb{E}[W(t+1)] = w_0 + (2p-1)t$

イロメ イ押メ イヨメ イヨメー

- \triangleright For a more accurate analysis analyze simulation's outcome
- \triangleright Consider *J* experiments
- For each experiment, there is a wealth history $w_i(t)$
- \triangleright We can estimate the average outcome as

$$
\bar{w}_J(t) = \frac{1}{J} \sum_{j=1}^J w_j(t)
$$

- $\blacktriangleright \bar{w}_J(t)$ is called the sample average
- Do not confuse $\overline{w}_1(t)$ with $\mathbb{E}[w(t)]$
	- $\rightarrow \bar{w}_J(t)$ is computed from experiments, it is a random quantity in itself
	- \blacktriangleright \mathbb{E} [w(t)] is a property of the random variable w(t)
	- \triangleright We will see later that for large *J*, $\bar{w}_J(t) \rightarrow \mathbb{E}[w(t)]$

メロメ メ御 メメ きょく きょう

Analysis of outcomes: mean

Expected value $\mathbb{E}[w(t)]$ in black (approximation)

Sample average for $J = 10$ (blue), $J = 20$ (red), and $J = 100$ (magenta)

4 0 8 4

Histogram

- \triangleright There is more information in the simulation's output
- \triangleright Estimate the probability distribution function (pdf) \Rightarrow Histogram
- ► Consider a set of points $w^{(0)}, \ldots, w^{(N)}$
- ▶ Indicator function of the event $w^{(n)} \leq w_j < w^{(n+1)}$

$$
\begin{aligned}\n&\blacktriangleright \mathbb{I}\left[w^{(n)} \leq w_j < w^{(n+1)}\right] = 1 \text{ when } w^{(n)} \leq w_j < w^{(n+1)} \\
&\blacktriangleright \mathbb{I}\left[w^{(n)} \leq w_j < w^{(n+1)}\right] = 0 \text{ else}\n\end{aligned}
$$

 \blacktriangleright Histogram is then defined as

$$
H\left[t; w^{(n)}, w^{(n+1)}\right] = \frac{1}{J} \sum_{j=1}^{J} \mathbb{I}\left[w^{(n)} \leq w_j(t) < w^{(n+1)}\right]
$$

Fraction of experiments with wealth $w_j(t)$ between $w^{(n)}$ and $w^{(n+1)}$

メロメ メ都 メメ きょく ミメー

Histogram

 \blacktriangleright The pdf broadens and shifts to the right ($t = 10, 50, 100, 200$)

Ξ

 \triangleright Analysis and simulation of stochastic systems

 \Rightarrow A system that evolves in time with some randomness

- \triangleright They are usually quite complex \Rightarrow Simulations
- \triangleright We will learn how to model stochastic systems, e.g.,
	- \blacktriangleright x(t) Bernoulli with parameter p
	- $w(t) = w(t 1) + 1$ when $x(t) = 1$
	- $w(t) = w(t 1) 1$ when $x(t) = 0$
- \triangleright ... how to analyze, e.g., $\mathbb{E}[W(t)] = w_0 + t(2p 1)$
- \blacktriangleright ... and how to interpret simulations and experiments, e.g,
	- \blacktriangleright Average tendency through sample average

イロメ イ押メ イヨメ イヨメー