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Stationary stochastic processes

I All probabilities are invariant to time shits, i.e., for any s

P [X (t1 + s) ≥ x1,X (t2 + s) ≥ x2, . . . ,X (tK + s) ≥ xK ] =

P [X (t1) ≥ x1,X (t2) ≥ x2, . . . ,X (tK ) ≥ xK ]

I If above relation is true process is called strictly stationary (SS)

I First order stationary ⇒ probs. of single variables are shift invariant

P [X (t + s) ≥ x ] = P [X (t) ≥ x ]

I Second order stationary ⇒ joint probs. of pairs are shift invariant

P [X (t1 + s) ≥ x1,X (t2 + s) ≥ x2] = P [X (t1) ≥ x1,X (t2) ≥ x2]
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Pdfs and moments of stationary process

I For SS process joint cdfs are shift invariant. Whereby, pdfs also are

fX (t+s)(x) = fX (t)(x) = fX (0)(x) := fX (x)

I As a consequence, the mean of a SS process is constant

µ(t) := E [X (t)] =

∫ ∞
−∞

xfX (t)(x) =

∫ ∞
−∞

xfX (x) = µ

I The variance of a SS process is also constant

var [X (t)] :=

∫ ∞
−∞

(x − µ)2 fX (t)(x) =

∫ ∞
−∞

(x − µ)2 fX (x) = σ2

I The power of a SS process (second moment) is also constant

E
[
X 2(t)

]
:=

∫ ∞
−∞

x2fX (t)(x) =

∫ ∞
−∞

x2fX (x) = σ2 + µ2
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Joint pdfs of stationary process

I Joint pdf of two values of a SS stochastic process

fX (t1)X (t2)(x1, x2) = fX (0)X (t2−t1)(x1, x2)

I Have used shift invariance for t1 shift (t1 − t1 = 0 and t2 − t1)

I Result above true for any pair t1, t2

⇒ Joint pdf depends only on time difference s := t2 − t1

I Writing t1 = t and t2 = t + s we equivalently have

fX (t)X (t+s)(x1, x2) = fX (0)X (s)(x1, x2) = fX (x1, x2; s)
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Stationary processes and limit distributions

I Stationary processes follow the footsteps of limit distributions

I For Markov processes limit distributions exist under mild conditions
I Limit distributions also exist for some non-Markov processes

I Process somewhat easier to analyze in the limit as t →∞
I Properties of the process can be derived from the limit distribution

I Stationary process ≈ study of limit distribution

I Formally ⇒ initialize at limit distribution

I In practice ⇒ results true for time sufficiently large

I Deterministic linear systems ⇒ transient + steady state behavior

I Stationary systems akin to the study of steady state behavior

I But steady state is in a probabilistic sense (probs., not realizations)
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Autocorrelation function

I From the definition of autocorrelation function we can write

RX (t1, t2) = E [X (t1)X (t2)] =

∫ ∞
−∞

∫ ∞
−∞

x1x2fX (t1)X (t2)(x1, x2) dx1dx2

I For SS process fX (t1)X (t2)(·) depends on time difference only

RX (t1, t2) =

∫ ∞
−∞

∫ ∞
−∞

x1x2fX (0)X (t2−t1)(x1, x2) dx1dx2 = E [X (0)X (t2−t1)]

I It then follows that RX (t1, t2) is a function of t2 − t1 only

RX (t1, t2) = RX (0, t2 − t1) := RX (s)

I RX (s) is the autocorrelation function of a SS stochastic process

I Variable s denotes a time difference / shift

I RX (s) determines correlation between values X (t) spaced s in time
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Autocovariance function

I Similarly to autocorrelation, define the autocovariance function as

CX (t1, t2) = E
[(
X (t1)− µ(t1)

)(
X (t2)− µ(t2)

)]
I Expand product to write autocovariance function as

CX (t1, t2) = E [X (t1)X (t2)] +µ(t1)µ(t2)−E [X (t1)]µ(t2)−E [X (t2)]µ(t1)

I For SS process µ(t1) = µ(t2) = µ and E [X (t1)X (t2)] = RX (t2 − t1)

CX (t1, t2) = RX (t2 − t1)− µ2 = CX (t2 − t1)

I Autocovariance depends only on the time shift t2 − t1

I Most of the time we’ll assume that µ = 0 in which case

RX (s) = CX (s)

I If µ 6= 0 can instead study process X (t)− µ whose mean is null
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Wide sense stationary processes

I A process is wide sense stationary (WSS) if it is not stationary but

⇒ Mean is constant ⇒ µ(t) = µ for all t

⇒ Autocorrelation is shift invariant ⇒ RX (t1, t2) = RX (t2 − t1)

I Consequently, autocovariance of WSS process is also shift invariant

CX (t1, t2) = E [X (t1)X (t2)] + µ(t1)µ(t2)− E [X (t1)]µ(t2)− E [X (t2)]µ(t1)

= RX (t2 − t1)− µ2

I Most of the analysis of stationary processes is based on the
autocorrelation function

I Thus, such analysis does not require stationarity, WSS is sufficient
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Wide sense and strict stationarity

I SS processes have shift invariant pdfs

I In particular ⇒ constant mean
⇒ shift invariant autocorrelation

I Then, a SS process is also WSS

I For that reason WSS is also called weak sense stationary

I The opposite is obviously not true

I But if Gaussian, process determined by mean and autocorrelation

I Thus, WSS implies SS for Gaussian process

I WSS and SS are equivalent for Gaussian process (more coming)
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Gaussian wide sense stationary process

I WSS Gaussian process X (t) with mean 0 and autocorrelation R(s)

I The covariance matrix for X (t1 + s),X (t2 + s), . . . ,X (tn + s) is

C(t1+s, . . . , tn+s) =


R(t1 + s, t1 + s) R(t1 + s, t2 + s) . . . R(t1 + s, tn + s)
R(t2 + s, t1 + s) R(t2 + s, t2 + s) . . . R(t2 + s, tn + s)

...
...

. . .
...

R(tn + s, t1 + s) R(tn + s, t2 + s) . . . R(tn + s, tn + s)


I For WSS process, autocorrelations depend only on time differences

C(t1 + s, . . . , tk + s) =


R(t1 − t1) R(t2 − t1) . . . R(tn − t1)
R(t1 − t2) R(t2 − t2) . . . R(tn − t2)

...
...

. . .
...

R(t1 − tn) R(t2 − tn) . . . R(tn − tn)

 = C(t1, . . . , tk )

I Covariance matrices C(t1, . . . , tk) are shift invariant
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Gaussian wide sense stationary process (continued)

I The joint pdf of X (t1 + s),X (t2 + s), . . . ,X (tn + s) is

fX (t1+s),...,X (tn+s)(x1, . . . , xn) = N (0,C(t1 + s, . . . , tn + s); [x1, . . . , xn]T )

I Completely determined by C(t1 + s, . . . , tn + s)

I Since covariance matrix is shift invariant can write

fX (t1+s),...,X (tn+s)(x1, . . . , xn) = N (0,C(t1, . . . , tn); [x1, . . . , xn]T )

I Expression on the right is the pdf of X (t1),X (t2), . . . ,X (tn). Then

fX (t1+s),...,X (tn+s)(x1, . . . , xn) = fX (t1),...,X (tn)(x1, . . . , xn)

I Joint pdf of X (t1),X (t2), . . . ,X (tn) is shift invariant

⇒ Proving that WSS is equivalent to SS for Gaussian processes
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Properties of autocorrelation function

For WSS processes:

(i) The autocorrelation for s = 0 is the energy of the process

RX (0) = E
[
X 2(t)

]
= E [X (t)X (t + 0)]

(ii) The autocorrelation function is symmetric ⇒ RX (s) = RX (−s)

Proof: Commutative property of product & shift invariance of RX (t1, t2)

RX (s) = RX (t, t + s)

= E [X (t)X (t + s)] = E [X (t + s)X (t)]

= RX (t + s, t)

= RX (t, t − s)

= RX (−s)
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Properties of autocorrelation function (continued)

For WSS processes:

(iii) Maximum absolute value of the autocorrelation function is for s = 0∣∣RX (s)
∣∣ ≤ RX (0)

Proof: Expand the square E
[(
X (t + s)± X (t)

)2]
E
[(
X (t + s)± X (t)

)2]
= E

[
X 2(t + s)

]
+ E

[
X 2(t)

]
± 2E

[
X 2(t + s)X 2(t)

]
= RX (0) + RX (0)± 2RX (s)

Square E
[(
X (t + s)± X (t)

)2]
is always positive, then

0 ≤ E
[(
X (t + s)± X (t)

)2]
= 2RX (0)± 2RX (s)

Rearranging terms ⇒ RX (0) ≥ ∓RX (s)
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Definition of Fourier transform

I The Fourier transform of a function (signal) x(t) is

X (f ) = F
(
x(t)

)
:=

∫ ∞
−∞

x(t)e−j2πft dt

I where the complex exponential is

e−j2πft = cos(−j2πft) + j sin(−j2πft)

= cos(j2πft)− j sin(j2πft)

I The Fourier transform is complex (has a real and a imaginary part)

I The argument f of the Fourier transform is referred to as frequency
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Examples

I Fourier transform of a constant X (t) = c

F
(
c
)

=

∫ ∞
−∞

ce−j2πft dt = cδ(f )

I Fourier transform of scaled delta function x(t) = cδ(t)

F
(
cδ(t)

)
=

∫ ∞
−∞

cδ(t)e−j2πft dt = c

I For a complex exponential X (t) = e j2πf0t with frequency f0 we have

F
(
e j2πf0t

)
=

∫ ∞
−∞

e j2πf0te−j2πft dt =

∫ ∞
−∞

e−j2π(f−f0)t dt = δ(f − f0)

I For a shifted delta δ(t − t0) we have

F
(
δ(t − t0)

)
=

∫ ∞
−∞

δ(t − t0)e−j2πft dt = e−j2πft0

I Note the symmetry in the first two and last two transforms
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Fourier transform of a cosine

I Begin noticing that we may write cos(2πf0t) = 1
2e

j2πf0t + 1
2e
−j2πf0t

I Fourier transformation is a linear operation (integral), then

F
(

cos(2πf0t)
)

=

∫ ∞
−∞

(
1

2
e j2πf0t +

1

2
e−j2πf0t

)
e−j2πft dt

=
1

2
δ(f − f0) +

1

2
δ(f + f0)

I A pair of delta functions at frequencies f = ±f0

I Since f0 is the frequency of the cosine it (somewhat) justifies the
name frequency for the variable f
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Inverse Fourier transform

I If X (f ) is the Fourier transform of x(t), x(t) can be recovered as

x(t) =

∫ ∞
−∞

X (f )e j2πft df

I Above transformation is the inverse Fourier transform

I Sign in the exponent changes with respect to Fourier transform

I To show that x(t) can be expressed as above integral, substitute
X (f ) for its definition∫ ∞

−∞
X (f )e j2πft df =

∫ ∞
−∞

(∫ ∞
−∞

x(u)e−j2πfu du

)
e j2πft df
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Inverse Fourier transform

I Nested integral can be written as double integral∫ ∞
−∞

X (f )e j2πft df =

∫ ∞
−∞

∫ ∞
−∞

x(u)e−j2πfue j2πft du df

I Rewrite as nested integral with integration with respect to f carried
on first∫ ∞

−∞
X (f )e j2πft df =

∫ ∞
−∞

x(u)

(∫ ∞
−∞

e−j2πf (t−u) df

)
du

I Innermost integral is a delta function∫ ∞
−∞

X (f )e j2πft df =

∫ ∞
−∞

x(u)δ(t − u) du = x(t)
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Frequency components of a signal

I Inverse Fourier transform permits interpretation of Fourier transform

x(t) =

∫ ∞
−∞

X (f )e j2πft df ≈ (∆f )
∞∑

n=∞
X (fn)e j2πfnt

I Signal x(t) written as linear combination of complex exponentials

I X (f ) determines the weight of frequency f in the signal x(t)

f

X (f )

f

X (f )

I Signal on the left contains low frequencies (changes slowly)

I Signal on the right contains high frequencies (changes fast)
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Systems

I A system is characterized by an input (x(t)) output (y(t)) relation

I This relation is between functions, not values

I Each output value y(t) depends on all input values x(t)

x(t)
System

y(t)
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Time invariant system

I A system is time invariant if a delayed input yields a delayed output

I I.e., if input x(t) yields output y(t) then input x(t−s) yields y(t−s)

I Think of output applied s time units later

x(t − s)
System

y(t − s)

Stoch. Systems Analysis Stationary processes 25



Linear system

I A system is linear if the output of a linear combination of inputs is
the same linear combination of the respective outputs

I That is if input x1(t) yields output y1(t) and x2(t) yields y2(t), then

a1x1(t) + a2x2(t) ⇒ a1y1(t) + a2y2(t)

a1x1(t) + a2x2(t)
System

a1y1(t) + a2y2(t)
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Linear time invariant system

I Linear + time invariant system = linear time invariant system (LTI)

I Denote as h(t) the system’s output when the input is δ(t)

I h(t) is the impulse response of the LTI system

δ(t)
LTI

h(t)

I System is completely characterized by impulse response

x(t) =

∫ ∞
−∞

x(u)h(t − u) du = (x ∗ h)(t)

I The output is the convolution of the input with the impulse response
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Frequency response of linear time invariant system

I The frequency response of a LTI system is

H(f ) := F(h(t)) =

∫ ∞
−∞

h(t)e−j2πft dt

I I.e., the Fourier transform of the impulse response h(t)

I If a signal with spectrum X (f ) is input to a LTI system with freq.
response H(f ) the spectrum of the output is

Y (f ) = H(f )X (f )

X (f )
H(f ) Y(f)=H(f)X(f)
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More on frequency response

I Frequency components of input get “scaled” by H(f )
I Since H(f ) is complex, scaling is a complex number
I It represents a scaling part (amplitude) and a phase shift (argument)

I Effect of LTI on input easier to analyze

⇒ Product instead of convolution

X (f ) H(f ) Y(f)=H(f)X(f)

f

X (f )

f

H(f )

f

Y (f )
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Linear filters

I Linear filter (system) with ⇒ impulse response h(t)
⇒ frequency response H(f )

I Input to filter is wide sense stationary (WSS) stochastic process X (t)

I Process is 0 mean with autocorrelation function RX (s)

I Output is obviously another stochastic process Y (t)

I Describe Y (t) in terms of ⇒ properties of X (t)
⇒ filters impulse and/or frequency response

I Is Y (t) WSS? Mean of Y (t)? Autocorrelation function of Y (t)?

I Easier and more enlightening in the frequency domain

X (t)

RX (s)
h(t)/H(f )

Y (t)

RY (s)
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Power spectral density

I The power spectral density (PSD) of a stochastic process is the
Fourier transform of the autocorrelation function

SX (f ) = F
(
RX (s)

)
=

∫ ∞
−∞

RX (s)e−j2πfs ds

I Does SX (f ) carry information about frequency components of X (t)?

I Not clear, SX (f ) is Fourier transform of RX (s), not X (t)

I But yes. We’ll see SX (f ) describes spectrum of X (t) in some sense

I Is it possible to relate PSDs at the input and output of a linear filter?

SX (f )
H(f ) SY (f ) = ...
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Example: Power spectral density of white noise

I Autocorrelation of white noise W (t) is ⇒ RW (s) = σ2δ(s)

I PSD of white noise is Fourier transform of RW (s)

SW (f ) =

∫ ∞
−∞

σ2δ(s)e−j2πfs ds = σ2

I PSD of white noise is constant for all frequencies

I That’s why it’s white ⇒ Contains all frequencies in equal measure

σ2

f

SW (f )
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Process’s power

I The power of process X (t) is its (constant) second moment

P = E
[
X 2(t)

]
= RX (0)

I Use expression for inverse Fourier transform evaluated at t = 0

RX (s) =

∫ ∞
−∞

SX (f )e−j2πf s df ⇒ RX (0) =

∫ ∞
−∞

SX (f )e−j2πf 0 df

I Since e0 = 1, can write RX (0) and therefore process’s power as

P =

∫ ∞
−∞

SX (f ) df

f

SX (f )
P

I Area under PSD is the power of the process
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Autocorrelation of filter’s output

I Let us start with second question

I Compute autocorrelation function RY (s) of filter’s output Y (t)

I Start noting that for any times t and s filter’s output is

Y (t) =

∫ ∞
−∞

h(u1)X (t−u1) du1, Y (t+s) =

∫ ∞
−∞

h(u2)X (t+s−u2) du2

I The autocorrelation function RY (s) of the process Y (t) is

RY (s) = RY (t, t + s) = E [Y (t)Y (t + s)]

I Substituting Y (t) and Y (t + s) by their convolution forms

RY (s) = E
[∫ ∞
−∞

h(u1)X (t − u1) du1

∫ ∞
−∞

h(u2)X (t + s − u2) du2

]
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Autocorrelation of filter’s output (continued)

I Product of integrals is double integral of product

RY (s) = E
[∫ ∞
−∞

∫ ∞
−∞

h(u1)X (t − u1)h(u2)X (t + s − u2) du1du2

]
I Exchange order of integral and expectation

RY (s) =

∫ ∞
−∞

∫ ∞
−∞

h(u1)E
[
X (t − u1)X (t + s − u2)

]
h(u2) du1du2

I Expectation in the integral is autocorrelation function of input X (t)

E
[
X (t−u1)X (t+s−u2)

]
= RX

(
t−u1−

(
t+s−u2

))
= RX

(
s−u1+u2

)
I Which upon substitution in expression for RY (s) yields

RY (s) =

∫ ∞
−∞

∫ ∞
−∞

h(u1)RX

(
s − u1 + u2

)
h(u2) du1du2
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Power spectral density of filter’s output

I Power spectral density of Y (t) is Fourier transform of RY (s)

SY (f ) = F
(
RY (s)

)
=

∫ ∞
−∞

RY (s)e−j2πfs ds

I Substituting RY (s) for its value

SY (f ) =

∫ ∞
−∞

(∫ ∞
−∞

∫ ∞
−∞

h(u1)RX

(
s − u1 + u2

)
h(u2) du1du2

)
e−j2πfs dv

I Change variable s by variable v = s − u1 + u2 (dv = ds)

SY (f ) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h(u1)RX (v)h(u2)e−j2πf (v+u1−u2) du1du2dv

I Rewrite exponential as e−j2πf (v+u1−u2) = e−j2πfve−j2πfu1e+j2πfu2

Stoch. Systems Analysis Stationary processes 37



Power spectral density of filter’s output

I Write triple integral as product of three integrals

SY (f ) =

∫ ∞
−∞

h(u1)e−j2πfu1 du1

∫ ∞
−∞

RX (v)e−j2πfv dv

∫ ∞
−∞

h(u2)e j2πfu2 du2

I Integrals are Fourier transforms

SY (f ) = F
(
h(u1)

)
×F

(
RX (v)

)
×F

(
h(−u2)

)
I Note definitions of ⇒ X (t)’s PSD ⇒ SX (f ) = F

(
RX (s)

)
⇒ Filter’s frequency response ⇒ H(f ) := F

(
h(t)

)
Also note that ⇒ H∗(f ) := F

(
h(−t)

)
)

I Latter three observations yield (also use H(f )H∗(f ) =
∣∣H(f )

∣∣2)

SY (f ) = H(f )SX (f )H∗(f ) =
∣∣H(f )

∣∣2SX (f )
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Example: White noise filtering

I Input process X (t) = W (t) = white noise with variance σ2

I Filter with frequency response H(f ). PSD of output Y (t)?

I PSD of input ⇒ SW (f ) = σ2

I PSD of output ⇒ SY (f ) =
∣∣H(f )

∣∣2SW (f ) =
∣∣H(f )

∣∣2σ2

I Output’s spectrum is the filter’s frequency response scaled by σ2

SX (f )
∣∣H(f )

∣∣2 SY (f ) =
∣∣H(f )

∣∣2SX (f )

f

SX (f )

f

∣∣H(f )
∣∣2

f

SY (f )

I Systems identification ⇒ LTI system with unknown response

I Input white noise ⇒ PSD of output is frequency response of filter
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Interpretation of PSD

I Consider a narrowband filter with frequency response centered at f0

H(f ) = 1 for: f0 − h/2 ≤ f ≤ f0 + h/2

f0 − h/2 ≤ f ≤ f0 + h/2

I Input is WSS process with PSD SX (f ). Output’s power PY is

PY =

∫ ∞
−∞

SY (f ) df =

∫ ∞
−∞

SX (f )
∣∣H(f )

∣∣2 df≈ h
(
SX (f0) + SX (−f0)

)
I SX (f ) is the power density the process X (t) contains at frequency f

SX (f )
∣∣H(f )

∣∣2 SY (f ) =
∣∣H(f )

∣∣2SX (f )

f

SX (f )

f

∣∣H(f )
∣∣2

f0−f0

f

SY (f )

f0−f0
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Thanks

I It has been my pleasure. I am very happy abut how things turned out

I If you need my help at some point in the next 30 years, let me know

I I will be retired after that
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