
Week 11: Gaussian processes

White Gaussian noise

Solutions

A Independence. Jointly normal random variables (RVs) have the property of being indepen-
dent if and only if they are uncorrelated. This is not true in general: it is very specific of Gaussian
RVs (the only other case I know is RVs that take on only two different values, e.g., the Bernoulli
RV). Note also that the RVs must be jointly normal: it is possible for X and Y to be normally
distributed and for (X,Y ) to not be a bivariate Gaussian.

Nevertheless, the definition given in (1) from the exercise implies joint normality. Hence, suffices
to show that W (t1) and W (t2) are not correlated for t1 6= t2. From (5), the autocorrelation function
of the Gaussian process is RW (t1, t2) = σ2δ(t1 − t2). Intuitively, we have that RW (t1, t2) = 0
for t1 6= t2.

If you want to be formal, however, remember that we only defined δ(t) in terms of an inte-
gral [see (4)]. So we cannot say δ(t) = 0 for t 6= 0 without proving it. This is actually fairly simple.
Suppose t 6= 0 and write∫ t+ε

t−ε
δ(τ)dτ =

∫ t+ε

t−ε
1× δ(τ)dτ = 0, for all ε > 0,

where we used f(t) = 1 for all t in (4). Since f(τ) > 0 over the interval [t − ε, t + ε], the integral
vanishes if and only if δ(τ) = 0 for τ ∈ [t− ε, t+ ε].

B The integral of WGN. [Refer to slides 13, 40, and 41 of markov gaussian stationary processes].
Recall that integration is a linear functional. Thus, X(t) is a Gaussian process since it is defined
as the linear functional of a Gaussian process.

Given that µW (t) = 0, the mean function of X(t) is

µX(t) = E
[∫ t

0
W (u)du

]
=

∫ t

0
E[W (u)]du =

∫ t

0
µW (t)du = 0.

Switching the expected value and the integral like that should make you uneasy. After all, the
expected value is an integral operator and it is not always the case that integrals can just be
exchanged like that. In this case, however, we are justified (take a look at Fubini’s theorem). We
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are going to use the same result to derive the autocorrelation function of X(t):

RX(t1, t2) = E
[(∫ t1

0
W (u1)du1

)(∫ t2

0
W (u2)du2

)]
= E

[∫ t1

0

∫ t2

0
W (u1)W (u2)du2du1

]
=

∫ t1

0

∫ t2

0
E[W (u1)W (u2)]du2du1

=

∫ t1

0

∫ t2

0
RW (u1, u2)du2du1

=

∫ t1

0

∫ t2

0
σ2δ(u1 − u2)du2du1,

where we used the fact that RW (u1, u2) = E[W (u1)W (u2)] = σ2δ(u1−u2). Now, from the definition
of the δ distribution in (4), we obtain

RX(t1, t2) =

{∫ t1
0 σ2du1 = σ2t1, for t1 < t2∫ t2
0 σ2du2 = σ2t2, for t1 > t2

= σ2 min(t1, t2).

Given that X(t) is a Gaussian process, X(t) is normally distributed for all t, i.e., X(t) ∼
N (µ(t),

√
RX(t, t)). Hence,

P [X(t) > a] = 1− P [X(t) ≤ a] = 1− Φ

(
a

σ
√
t

)
, (1)

where Φ is the cdf of a standard normal random variable.

C Discrete time representation of WGN. Proceeding as in Part B, we can obtain the mean
value function of Wh(n):

µWh
(n) = E [Wh(n)] = E

[∫ (n+1)h

nh
W (τ)dτ

]
=

∫ (n+1)h

nh
E [W (τ)] dτ =

∫ (n+1)h

nh
0dτ = 0.
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Its autocorrelation function, RWh
(n1, n2), is given by

RWh
(n1, n2) = E [Wh(n1)Wh(n2)]

= E

[(∫ (n1+1)h

n1h
W (u1)du1

)(∫ (n2+1)h

n2h
W (u2)du2

)]

= E

[∫ (n1+1)h

n1h

∫ (n2+1)h

n2h
W (u1)W (u2)du2du1

]

=

∫ (n1+1)h

n1h

∫ (n2+1)h

n2h
E [W (u1)W (u2)] du2du1

=

∫ (n1+1)h

n1h

∫ (n2+1)h

n2h
σ2δ(u1 − u2)du2du1

=

{
σ2h, n1 = n2

0, n1 6= n2
.

D Simulating X(t). The following MATLAB script simulates the process X(t) using its dis-
crete time version Xh(n) obtained from Wh(n) derived in Part C.

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 h = 0.01; % Discretization step size
6 sigma sq = 1; % Instantaneous variance
7 T = 10; % Duration of simulation
8

9 % Simulation
10 W = sigma sq*sqrt(h)*randn(floor(T/h) + 1, 1);
11 X = cumsum(W);
12

13 % Plot
14 figure();
15 plot(0:h:T, X, 'Linewidth', 2);
16 xlabel('Time (t)')
17 ylabel('X(t)');
18 xlim([0 T]);
19 grid;
20

21

22 %%% Export figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23 set(gcf,'Color','w');
24 export fig -q101 -pdf HW11 D.pdf
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A result of this simulation is shown in Figure 1.
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Figure 1: A sample path of the simulated Gaussian (Wiener) process X(t) using a discrete approx-
imation with step size h = 0.01 (part D).
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