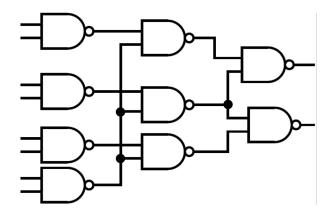
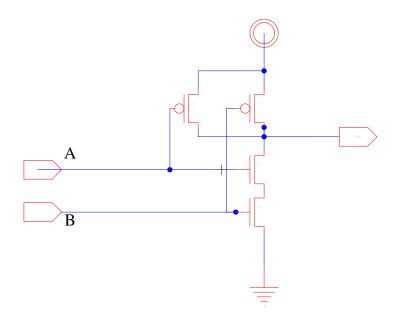

Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0.

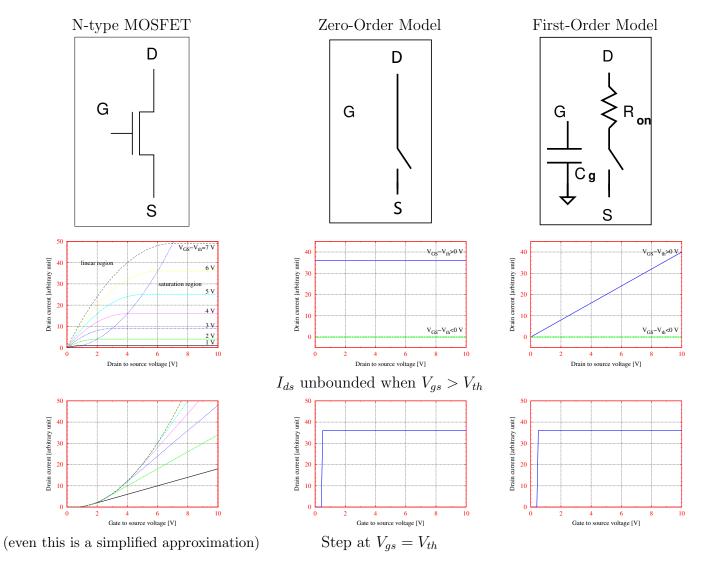
1. What value does $V_{measure}$ take on as $t \to \infty$?


2. Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0. The circuit is then allowed to achieve steady-state.

- (a) What is the time constant, τ ?
- (b) How many seconds does it take before $V_{measure}$ reaches 90% of the final value? Use the table below and e = 2.72.


t (in ps)	$e^{-t/\tau}$	1 - $e^{-t/ au}$
0		
0.1		
1		
2		
2.3		

- (c) At what time does $V_{measure}$ reach 50% of its value? Use $\ln(0.5) = -0.69$.
- 3. Assume each gate puts a load of 1 on each of its two inputs. (All intersecting wires are **not** connected)


What is the load on the most heavily loaded gate output?	
What is the load on the least heavily loaded gate output?	

4. Assuming $R_{on,p} = R_{on,n} = R_{on}$, what are all the possible equivalent resistance values of the gate output stage?

Hint: How many cases are there? What is the resistance for each of the cases?

Case	Resistance

	NMOS	PMOS
Threshold	$V_{thn} > 0$	$V_{thp} < 0$
		$V_{thp} pprox -V_{thn}$
Conduct	positive input	negative input
	$V_{gs} > V_{thn}$	$V_{gs} < V_{thp}$
Drain	most positive terminal	most negative terminal
Source	most negative terminal	most positive terminal
	(source of electrons)	(source of holes)

$$V_{gs} = V_g - V_s \tag{1}$$