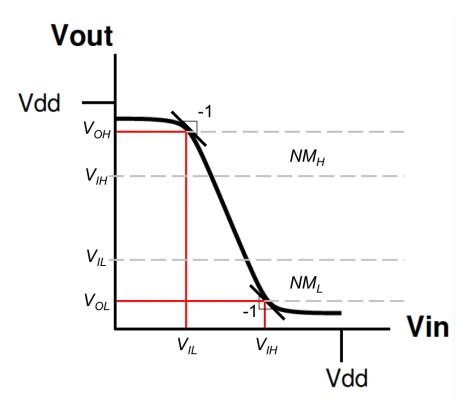

Please work before lecture starts.

Hint: When inputs are equivalent, you can exploit symmetry to use the following simplified circuit for reasoning: (Convince yourself these are equivalent.)

What is the digital output assuming ideal NAND gates and	
all inputs are logical 1?	
What is the output assuming all inputs are 1.0 and each	
NAND gate computes the real-valued function NAND(A,	
B)= $(1.0 - (A \times B))$ where A, B are the real-valued inputs	
to the NAND2 gate and '-' and '×' are the real-valued math-	
ematical operators. Use table below for intermediary out-	
puts.	
What is the output assuming all inputs are 0.95 and each	
nand gate computes $NAND(A, B) = (1.0 - A \times B)$ [same as-	
sumptions as above and table below].	


Hint: When inputs are at 0.95, output of first NAND2 gate is: $1.0 - (0.95)^2 \approx 0.1$.

	Value after i -th NAND2 gate						
input	1	2	3	4	5	6	
1.0							
0.95	0.1						

What is the resistance of the 100 μ m long wire?a 1 mm long wire?a 1 cm long wire?How large is an Integrated Circuit chip (die)
(e.g. your desktop or laptop processor)?

Consider a wire 1 μ m wide and 1 μ m tall with a resistivity $\rho = 10^{-7}$ Ohm-m.

$Regeneration/Restoration/Static \ Discipline:$

$$NM_H = V_{OH} - V_{IH} \tag{1}$$

$$NM_L = V_{IL} - V_{OL} \tag{2}$$

As long as input(s) respect: $V_{in} < V_{IL}$ or $V_{in} > V_{IH}$, output, V_{out} , will have: $V_{out} < V_{OL}$ or $V_{out} > V_{OH}$