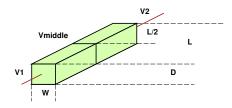
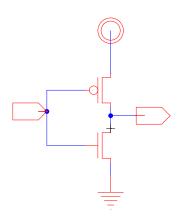

- 1. Below is a capacitor with a 1V bias voltage across it.
 - (a) Draw the charge distribution and electric field for this parallel-plate capacitor.



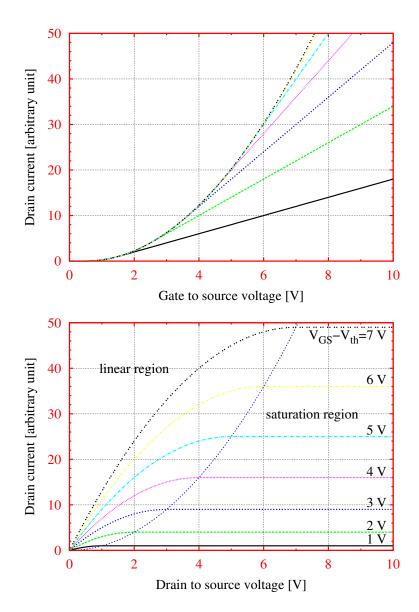
(b) Assume the capacitor has a capacitance of 1F, what is the charge on the top plate? What is the charge on the bottom plate?

2. Fill in the missing currents:

Circuit	Current I_{ds}
Vds Vgs	$1 \mu A \text{ (given)}$
Vds Vgs	
Vds Vds small; Vds< <vgs) ids<="" td="" vgs=""><td></td></vgs)>	


3. Consider a resistor built from a resistive medium that is L units long in the direction of current flow, W units, and D units deep.

If we could insert a metal contact at L/2 and measured the voltage, how would that voltage (V_{middle}) relate to the endpoint voltages V_1 and V_2 ?



4. What current flows in the inverter in steady state? Think about the region of operation of the devices for each input case.

5. For a transistor in subthreshold, If $V_{th} = 300 \text{mV}$, $S = n \left(\frac{kT}{q}\right) \ln(10) = 100 \text{mV}$, what is

$$I_{ds}(V_{gs} = 300 \text{mV})/I_{ds}(V_{gs} = 0 \text{V})?$$

V_{GS}	V_{DS}	Mode	I_{DS}
$> V_{th}$	$ < V_{GS} - V_{th} $	Resistive	$\mu_n C_{OX}\left(\frac{W}{L}\right) \left(\left(V_{GS} - V_{th}\right) V_{DS} - \frac{\left(V_{DS}\right)^2}{2}\right)$
	$> V_{GS} - V_{th}$	Saturation	$\frac{\mu_n C_{OX}}{2} \left(\frac{W}{L}\right) \left(V_{GS} - V_{th}\right)^2$
$< V_{th}$		Subthreshold	$I_S\left(\frac{W}{L}\right)e^{\frac{V_{GS}-V_{th}}{nkT/q}}\left(1-e^{-\frac{V_{DS}}{kT/q}}\right)$