

V_{GS}	V_{DS}	Mode	I_{DS}
$>V_{th}$	$ < V_{GS} - V_{th} $	Resistive	$\mu_n C_{OX}\left(\frac{W}{L}\right) \left(\left(V_{GS} - V_{th}\right) V_{DS} - \frac{\left(V_{DS}\right)^2}{2}\right)$
	$ > V_{GS} - V_{th} $ $ &< V_{DSAT} $	Saturation	$\frac{\mu_n C_{OX}}{2} \left(\frac{W}{L} \right) \left(V_{GS} - V_{th} \right)^2$
	$\& < V_{DSAT}$,
	$> V_{DSAT}$	Velocity Saturation	$ u_{sat}C_{OX}W\left(V_{GS}-V_{th}-\frac{V_{DSAT}}{2}\right) $
$< V_{th}$		Subthreshold	$I_S\left(\frac{W}{L}\right)e^{\frac{V_{GS}-V_{th}}{nkT/q}}$

- 1. Consider an NMOS transistor with L_{eff} =25nm and V_{ds} =1V
 - (a) What is the electrical field (F) in $V/\mu m$ in the channel between source and drain?

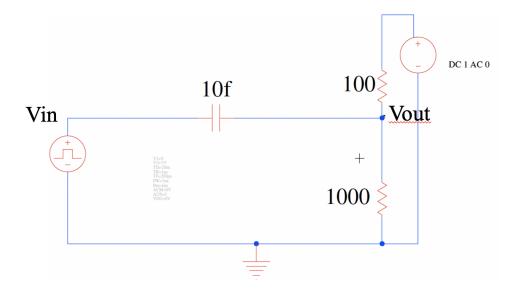
$$(F = V/L)$$

(b) With an electron mobility of $\mu_n = 500 \text{ cm}^2/(\text{V} \cdot \text{s})$, what is the velocity of the electron in this field? (in m/s)?

(velocity
$$v = \mu \times F$$
)

(c) At what V_{ds} voltage does the velocity reach 10^5 m/s?

2.	How many capacitance values might we need to represent a 4-terminal transistor?
	(fourth terminal is body)



Hint: How many terminal pairs are there?

Terminal Pair	Capacitance

Use in class for notes to summarize cases and capacitances.

3. Assuming a step input from 0 to 1V by the pulse generator on the left, what does the voltage on Vout as a function of time look like?

Hints: What is the initial voltage? What is the steady-state voltage as $t \to \infty$?