
An Introduction to GCC
for the GNU Compilers gcc and g++

Revised and updated

Brian Gough
Foreword by Richard M. Stallman

Copyright c© 2004, 2005 Network Theory Ltd.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being “A
Network Theory Manual”, and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

(a) The Back-Cover Text is: “The development of this manual was funded entirely by
Network Theory Ltd. Copies published by Network Theory Ltd raise money for more free
documentation.”

i

Table of Contents

Foreword . 1

1 Introduction . 2
1.1 A brief history of GCC . 2
1.2 Major features of GCC . 2
1.3 Programming in C and C++ . 3
1.4 Conventions used in this manual . 3

2 Compiling a C program . 5
2.1 Compiling a simple C program . 5
2.2 Finding errors in a simple program . 6
2.3 Compiling multiple source files . 7
2.4 Compiling files independently . 8

2.4.1 Creating object files from source files . 8
2.4.2 Creating executables from object files . 9

2.5 Recompiling and relinking . 9
2.6 A simple makefile . 10
2.7 Linking with external libraries . 11

2.7.1 Link order of libraries . 13
2.8 Using library header files. 13

3 Compilation options . 15
3.1 Setting search paths . 15

3.1.1 Search path example . 15
3.1.2 Environment variables . 17
3.1.3 Extended search paths . 18

3.2 Shared libraries and static libraries . 18
3.3 C language standards . 20

3.3.1 ANSI/ISO . 21
3.3.2 Strict ANSI/ISO . 22
3.3.3 Selecting specific standards . 23

3.4 Warning options in -Wall . 23
3.5 Additional warning options . 25
3.6 Recommended warning options . 28

4 Using the preprocessor . 29
4.1 Defining macros . 29
4.2 Macros with values . 30
4.3 Preprocessing source files . 31

ii

5 Compiling for debugging 34
5.1 Examining core files . 34
5.2 Displaying a backtrace . 36
5.3 Setting a breakpoint . 36
5.4 Stepping through the program. 37
5.5 Modifying variables . 37
5.6 Continuing execution . 38
5.7 More information . 38

6 Compiling with optimization 39
6.1 Source-level optimization . 39

6.1.1 Common subexpression elimination . 39
6.1.2 Function inlining . 39

6.2 Speed-space tradeoffs . 41
6.2.1 Loop unrolling . 41

6.3 Scheduling . 42
6.4 Optimization levels . 42
6.5 Examples . 43
6.6 Optimization and debugging . 45
6.7 Optimization and compiler warnings . 45

7 Compiling a C++ program 47
7.1 Compiling a simple C++ program . 47
7.2 C++ compilation options . 48
7.3 Using the C++ standard library . 49
7.4 Templates . 49

7.4.1 Using C++ standard library templates 49
7.4.2 Providing your own templates . 50
7.4.3 Explicit template instantiation . 52
7.4.4 The export keyword . 53

8 Platform-specific options 54
8.1 Intel and AMD x86 options . 54

8.1.1 x86 extensions . 54
8.1.2 x86 64-bit processors . 55

8.2 DEC Alpha options . 55
8.3 SPARC options . 56
8.4 POWER/PowerPC options . 56
8.5 Multi-architecture support . 57
8.6 Floating-point issues . 57
8.7 Portability of signed and unsigned types . 59

iii

9 Troubleshooting . 62
9.1 Help for command-line options . 62
9.2 Version numbers . 62
9.3 Verbose compilation . 62
9.4 Stopping a program in an infinite loop . 63
9.5 Preventing excessive memory usage . 64

10 Compiler-related tools 66
10.1 Creating a library with the GNU archiver 66
10.2 Using the profiler gprof . 68
10.3 Coverage testing with gcov . 70

11 How the compiler works 72
11.1 An overview of the compilation process . 72
11.2 The preprocessor . 72
11.3 The compiler . 73
11.4 The assembler . 73
11.5 The linker . 73

12 Examining compiled files 75
12.1 Identifying files . 75
12.2 Examining the symbol table . 76
12.3 Finding dynamically linked libraries . 76

13 Common error messages 78
13.1 Preprocessor error messages . 78
13.2 Compiler error messages . 79
13.3 Linker error messages . 86
13.4 Runtime error messages . 87

14 Getting help . 88

Further reading . 89

Acknowledgements . 91

Other books from the publisher 92

Free software organizations 93

GNU Free Documentation License 94

Index . 98

1

Foreword

This foreword has been kindly contributed by Richard M. Stallman, the principal author of
GCC and founder of the GNU Project.

This book is a guide to getting started with GCC, the GNU Compiler Collection. It will
tell you how to use GCC as a programming tool. GCC is a programming tool, that’s true—
but it is also something more. It is part of a 20-year campaign for freedom for computer
users.

We all want good software, but what does it mean for software to be “good”? Convenient
features and reliability are what it means to be technically good, but that is not enough.
Good software must also be ethically good: it has to respect the users’ freedom.

As a user of software, you should have the right to run it as you see fit, the right to
study the source code and then change it as you see fit, the right to redistribute copies of it
to others, and the right to publish a modified version so that you can contribute to building
the community. When a program respects your freedom in this way, we call it free software.
Before GCC, there were other compilers for C, Fortran, Ada, etc. But they were not free
software; you could not use them in freedom. I wrote GCC so we could use a compiler
without giving up our freedom.

A compiler alone is not enough—to use a computer system, you need a whole operating
system. In 1983, all operating systems for modern computers were non-free. To remedy
this, in 1984 I began developing the GNU operating system, a Unix-like system that would
be free software. Developing GCC was one part of developing GNU.

By the early 90s, the nearly-finished GNU operating system was completed by the ad-
dition of a kernel, Linux, that became free software in 1992. The combined GNU/Linux
operating system has achieved the goal of making it possible to use a computer in freedom.
But freedom is never automatically secure, and we need to work to defend it. The Free
Software Movement needs your support.

Richard M. Stallman
February 2004

Chapter 1: Introduction 2

1 Introduction

The purpose of this book is to explain the use of the GNU C and C++ compilers, gcc and
g++. After reading this book you should understand how to compile a program, and how to
use basic compiler options for optimization and debugging. This book does not attempt to
teach the C or C++ languages themselves, since this material can be found in many other
places (see [Further reading], page 89).

Experienced programmers who are familiar with other systems, but new to the GNU
compilers, can skip the early sections of the chapters “Compiling a C program”, “Using
the preprocessor” and “Compiling a C++ program”. The remaining sections and chapters
should provide a good overview of the features of GCC for those already know how to use
other compilers.

1.1 A brief history of GCC

The original author of the GNU C Compiler (GCC) is Richard Stallman, the founder of the
GNU Project.

The GNU Project was started in 1984 to create a complete Unix-like operating system
as free software, in order to promote freedom and cooperation among computer users and
programmers. Every Unix-like operating system needs a C compiler, and as there were no
free compilers in existence at that time, the GNU Project had to develop one from scratch.
The work was funded by donations from individuals and companies to the Free Software
Foundation, a non-profit organization set up to support the work of the GNU Project.

The first release of GCC was made in 1987. This was a significant breakthrough, being
the first portable ANSI C optimizing compiler released as free software. Since that time
GCC has become one of the most important tools in the development of free software.

A major revision of the compiler came with the 2.0 series in 1992, which added the ability
to compile C++. In 1997 an experimental branch of the compiler (EGCS) was created, to
improve optimization and C++ support. Following this work, EGCS was adopted as the
new main-line of GCC development, and these features became widely available in the 3.0
release of GCC in 2001.

Over time GCC has been extended to support many additional languages, including
Fortran, ADA, Java and Objective-C. The acronym GCC is now used to refer to the
“GNU Compiler Collection”. Its development is guided by the GCC Steering Commit-
tee, a group composed of representatives from GCC user communities in industry, research
and academia.

1.2 Major features of GCC

This section describes some of the most important features of GCC.

First of all, GCC is a portable compiler—it runs on most platforms available today, and
can produce output for many types of processors. In addition to the processors used in
personal computers, it also supports microcontrollers, DSPs and 64-bit CPUs.

GCC is not only a native compiler—it can also cross-compile any program, producing
executable files for a different system from the one used by GCC itself. This allows software
to be compiled for embedded systems which are not capable of running a compiler. GCC is

Chapter 1: Introduction 3

written in C with a strong focus on portability, and can compile itself, so it can be adapted
to new systems easily.

GCC has multiple language frontends, for parsing different languages. Programs in each
language can be compiled, or cross-compiled, for any architecture. For example, an ADA
program can be compiled for a microcontroller, or a C program for a supercomputer.

GCC has a modular design, allowing support for new languages and architectures to be
added. Adding a new language front-end to GCC enables the use of that language on any
architecture, provided that the necessary run-time facilities (such as libraries) are available.
Similarly, adding support for a new architecture makes it available to all languages.

Finally, and most importantly, GCC is free software, distributed under the GNU General
Public License (GNU GPL).1 This means you have the freedom to use and to modify GCC,
as with all GNU software. If you need support for a new type of CPU, a new language, or
a new feature you can add it yourself, or hire someone to enhance GCC for you. You can
hire someone to fix a bug if it is important for your work.

Furthermore, you have the freedom to share any enhancements you make to GCC. As a
result of this freedom you can also make use of enhancements to GCC developed by others.
The many features offered by GCC today show how this freedom to cooperate works to
benefit you, and everyone else who uses GCC.

1.3 Programming in C and C++

C and C++ are languages that allow direct access to the computer’s memory. Historically,
they have been used for writing low-level systems software, and applications where high-
performance or control over resource usage are critical. However, great care is required to
ensure that memory is accessed correctly, to avoid corrupting other data-structures. This
book describes techniques that will help in detecting potential errors during compilation,
but the risk in using languages like C or C++ can never be eliminated.

In addition to C and C++ the GNU Project also provides other high-level languages, such
as GNU Common Lisp (gcl), GNU Smalltalk (gst), the GNU Scheme extension language
(guile) and the GNU Compiler for Java (gcj). These languages do not allow the user to
access memory directly, eliminating the possibility of memory access errors. They are a
safer alternative to C and C++ for many applications.

1.4 Conventions used in this manual

This manual contains many examples which can be typed at the keyboard. A command
entered at the terminal is shown like this,

$ command

followed by its output. For example:

$ echo "hello world"

hello world

The first character on the line is the terminal prompt, and should not be typed. The dollar
sign ‘$’ is used as the standard prompt in this manual, although some systems may use a
different character.

1 For details see the license file ‘COPYING’ distributed with GCC.

Chapter 1: Introduction 4

When a command in an example is too long to fit in a single line it is wrapped and then
indented on subsequent lines, like this:

$ echo "an example of a line which is too long to fit

in this manual"

When entered at the keyboard, the entire command should be typed on a single line.

The example source files used in this manual can be downloaded from the publisher’s
website,2 or entered by hand using any text editor, such as the standard GNU editor, emacs.
The example compilation commands use gcc and g++ as the names of the GNU C and C++
compilers, and cc to refer to other compilers. The example programs should work with any
version of GCC. Any command-line options which are only available in recent versions of
GCC are noted in the text.

The examples assume the use of a GNU operating system—there may be minor differ-
ences in the output on other systems. Some non-essential and verbose system-dependent
output messages (such as very long system paths) have been edited in the examples for
brevity. The commands for setting environment variables use the syntax of the standard
GNU shell (bash), and should work with any version of the Bourne shell.

2 See http://www.network-theory.co.uk/gcc/intro/

http://www.network-theory.co.uk/gcc/intro/

Chapter 2: Compiling a C program 5

2 Compiling a C program

This chapter describes how to compile C programs using gcc. Programs can be compiled
from a single source file or from multiple source files, and may use system libraries and
header files.

Compilation refers to the process of converting a program from the textual source code,
in a programming language such as C or C++, into machine code, the sequence of 1’s and
0’s used to control the central processing unit (CPU) of the computer. This machine code
is then stored in a file known as an executable file, sometimes referred to as a binary file.

2.1 Compiling a simple C program

The classic example program for the C language is Hello World. Here is the source code for
our version of the program:

#include <stdio.h>

int

main (void)

{

printf ("Hello, world!\n");

return 0;

}

We will assume that the source code is stored in a file called ‘hello.c’. To compile the file
‘hello.c’ with gcc, use the following command:

$ gcc -Wall hello.c -o hello

This compiles the source code in ‘hello.c’ to machine code and stores it in an executable
file ‘hello’. The output file for the machine code is specified using the ‘-o’ option. This
option is usually given as the last argument on the command line. If it is omitted, the
output is written to a default file called ‘a.out’.

Note that if a file with the same name as the executable file already exists in the current
directory it will be overwritten.

The option ‘-Wall’ turns on all the most commonly-used compiler warnings—it is rec-
ommended that you always use this option! There are many other warning options which
will be discussed in later chapters, but ‘-Wall’ is the most important. GCC will not produce
any warnings unless they are enabled. Compiler warnings are an essential aid in detecting
problems when programming in C and C++.

In this case, the compiler does not produce any warnings with the ‘-Wall’ option, since
the program is completely valid. Source code which does not produce any warnings is said
to compile cleanly.

To run the program, type the path name of the executable like this:

$./hello

Hello, world!

This loads the executable file into memory and causes the CPU to begin executing the
instructions contained within it. The path ./ refers to the current directory, so ./hello

loads and runs the executable file ‘hello’ located in the current directory.

Chapter 2: Compiling a C program 6

2.2 Finding errors in a simple program

As mentioned above, compiler warnings are an essential aid when programming in C and
C++. To demonstrate this, the program below contains a subtle error: it uses the function
printf incorrectly, by specifying a floating-point format ‘%f’ for an integer value:

#include <stdio.h>

int

main (void)

{

printf ("Two plus two is %f\n", 4);

return 0;

}

This error is not obvious at first sight, but can be detected by the compiler if the warning
option ‘-Wall’ has been enabled.

Compiling the program above, ‘bad.c’, with the warning option ‘-Wall’ produces the
following message:

$ gcc -Wall bad.c -o bad

bad.c: In function ‘main’:

bad.c:6: warning: double format, different

type arg (arg 2)

This indicates that a format string has been used incorrectly in the file ‘bad.c’ at line 6. The
messages produced by GCC always have the form file:line-number:message. The compiler
distinguishes between error messages, which prevent successful compilation, and warning
messages which indicate possible problems (but do not stop the program from compiling).

In this case, the correct format specifier should be ‘%d’ for an integer argument. The
allowed format specifiers for printf can be found in any general book on C, such as the
GNU C Library Reference Manual (see [Further reading], page 89).

Without the warning option ‘-Wall’ the program appears to compile cleanly, but pro-
duces incorrect results:

$ gcc bad.c -o bad

$./bad

Two plus two is 2.585495 (incorrect output)

The incorrect format specifier causes the output to be corrupted, because the function
printf is passed an integer instead of a floating-point number. Integers and floating-point
numbers are stored in different formats in memory, and generally occupy different numbers
of bytes, leading to a spurious result. The actual output shown above may differ, depending
on the specific platform and environment.

Clearly, it is very dangerous to develop a program without checking for compiler warn-
ings. If there are any functions which are not used correctly they can cause the program
to crash or produce incorrect results. Turning on the compiler warning option ‘-Wall’ will
catch many of the commonest errors which occur in C programming.

Chapter 2: Compiling a C program 7

2.3 Compiling multiple source files

A program can be split up into multiple files. This makes it easier to edit and understand,
especially in the case of large programs—it also allows the individual parts to be compiled
independently.

In the following example we will split up the program Hello World into three files:
‘main.c’, ‘hello_fn.c’ and the header file ‘hello.h’. Here is the main program ‘main.c’:

#include "hello.h"

int

main (void)

{

hello ("world");

return 0;

}

The original call to the printf system function in the previous program ‘hello.c’ has been
replaced by a call to a new external function hello, which we will define in a separate file
‘hello_fn.c’.

The main program also includes the header file ‘hello.h’ which will contain the dec-
laration of the function hello. The declaration is used to ensure that the types of the
arguments and return value match up correctly between the function call and the function
definition. We no longer need to include the system header file ‘stdio.h’ in ‘main.c’ to
declare the function printf, since the file ‘main.c’ does not call printf directly.

The declaration in ‘hello.h’ is a single line specifying the prototype of the function
hello:

void hello (const char * name);

The definition of the function hello itself is contained in the file ‘hello_fn.c’:

#include <stdio.h>

#include "hello.h"

void

hello (const char * name)

{

printf ("Hello, %s!\n", name);

}

This function prints the message “Hello, name!” using its argument as the value of name.

Incidentally, the difference between the two forms of the include statement #include

"FILE.h" and #include <FILE.h> is that the former searches for ‘FILE.h’ in the current di-
rectory before looking in the system header file directories. The include statement #include
<FILE.h> searches the system header files, but does not look in the current directory by
default.

To compile these source files with gcc, use the following command:

$ gcc -Wall main.c hello_fn.c -o newhello

In this case, we use the ‘-o’ option to specify a different output file for the executable,
‘newhello’. Note that the header file ‘hello.h’ is not specified in the list of files on the

Chapter 2: Compiling a C program 8

command line. The directive #include "hello.h" in the source files instructs the compiler
to include it automatically at the appropriate points.

To run the program, type the path name of the executable:

$./newhello

Hello, world!

All the parts of the program have been combined into a single executable file, which produces
the same result as the executable created from the single source file used earlier.

2.4 Compiling files independently

If a program is stored in a single file then any change to an individual function requires the
whole program to be recompiled to produce a new executable. The recompilation of large
source files can be very time-consuming.

When programs are stored in independent source files, only the files which have changed
need to be recompiled after the source code has been modified. In this approach, the source
files are compiled separately and then linked together—a two stage process. In the first
stage, a file is compiled without creating an executable. The result is referred to as an
object file, and has the extension ‘.o’ when using GCC.

In the second stage, the object files are merged together by a separate program called
the linker. The linker combines all the object files to create a single executable.

An object file contains machine code where any references to the memory addresses
of functions (or variables) in other files are left undefined. This allows source files to be
compiled without direct reference to each other. The linker fills in these missing addresses
when it produces the executable.

2.4.1 Creating object files from source files

The command-line option ‘-c’ is used to compile a source file to an object file. For example,
the following command will compile the source file ‘main.c’ to an object file:

$ gcc -Wall -c main.c

This produces an object file ‘main.o’ containing the machine code for the main function. It
contains a reference to the external function hello, but the corresponding memory address
is left undefined in the object file at this stage (it will be filled in later by linking).

The corresponding command for compiling the hello function in the source file
‘hello_fn.c’ is:

$ gcc -Wall -c hello_fn.c

This produces the object file ‘hello_fn.o’.

Note that there is no need to use the option ‘-o’ to specify the name of the output file
in this case. When compiling with ‘-c’ the compiler automatically creates an object file
whose name is the same as the source file, but with ‘.o’ instead of the original extension.

There is no need to put the header file ‘hello.h’ on the command line, since it is
automatically included by the #include statements in ‘main.c’ and ‘hello_fn.c’.

Chapter 2: Compiling a C program 9

2.4.2 Creating executables from object files

The final step in creating an executable file is to use gcc to link the object files together
and fill in the missing addresses of external functions. To link object files together, they
are simply listed on the command line:

$ gcc main.o hello_fn.o -o hello

This is one of the few occasions where there is no need to use the ‘-Wall’ warning option,
since the individual source files have already been successfully compiled to object code.
Once the source files have been compiled, linking is an unambiguous process which either
succeeds or fails (it fails only if there are references which cannot be resolved).

To perform the linking step gcc uses the linker ld, which is a separate program. On
GNU systems the GNU linker, GNU ld, is used. Other systems may use the GNU linker
with GCC, or may have their own linkers. The linker itself will be discussed later (see
Chapter 11 [How the compiler works], page 72). By running the linker, gcc creates an
executable file from the object files.

The resulting executable file can now be run:

$./hello

Hello, world!

It produces the same output as the version of the program using a single source file in the
previous section.

2.5 Recompiling and relinking

To show how source files can be compiled independently we will edit the main program
‘main.c’ and modify it to print a greeting to everyone instead of world:

#include "hello.h"

int

main (void)

{

hello ("everyone"); /* changed from "world" */

return 0;

}

The updated file ‘main.c’ can now be recompiled with the following command:

$ gcc -Wall -c main.c

This produces a new object file ‘main.o’. There is no need to create a new object file for
‘hello_fn.c’, since that file and the related files that it depends on, such as header files,
have not changed.

The new object file can be relinked with the hello function to create a new executable
file:

$ gcc main.o hello_fn.o -o hello

The resulting executable ‘hello’ now uses the new main function to produce the following
output:

$./hello

Hello, everyone!

Chapter 2: Compiling a C program 10

Note that only the file ‘main.c’ has been recompiled, and then relinked with the existing
object file for the hello function. If the file ‘hello_fn.c’ had been modified instead, we
could have recompiled ‘hello_fn.c’ to create a new object file ‘hello_fn.o’ and relinked
this with the existing file ‘main.o’.1

In a large project with many source files, recompiling only those that have been modified
can make a significant saving. The process of recompiling only the modified files in a project
can be automated with the standard Unix program make.

2.6 A simple makefile

For those unfamiliar with make, this section provides a simple demonstration of its use.
Make is a program in its own right and can be found on all Unix systems. To learn more
about the GNU version of make you will need to consult the GNU Make manual by Richard
M. Stallman and Roland McGrath (see [Further reading], page 89).

Make reads a description of a project from a makefile (by default, called ‘Makefile’ in
the current directory). A makefile specifies a set of compilation rules in terms of targets
(such as executables) and their dependencies (such as object files and source files) in the
following format:

target: dependencies

command

For each target, make checks the modification time of the corresponding dependency files to
determine whether the target needs to be rebuilt using the corresponding command. Note
that the command lines in a makefile must be indented with a single 〈TAB〉 character, not
spaces.

GNU Make contains many default rules, referred to as implicit rules, to simplify the
construction of makefiles. For example, these specify that ‘.o’ files can be obtained from
‘.c’ files by compilation, and that an executable can be made by linking together ‘.o’ files.
Implicit rules are defined in terms of make variables, such as CC (the C compiler) and CFLAGS

(the compilation options for C programs), which can be set using VARIABLE=VALUE lines
in the makefile. For C++ the equivalent variables are CXX and CXXFLAGS, while the make
variable CPPFLAGS sets the preprocessor options. The implicit and user-defined rules are
automatically chained together as necessary by GNU Make.

A simple ‘Makefile’ for the project above can be written as follows:

CC=gcc

CFLAGS=-Wall

main: main.o hello_fn.o

clean:

rm -f main main.o hello_fn.o

The file can be read like this: using the C compiler gcc, with compilation option ‘-Wall’,
build the target executable main from the object files ‘main.o’ and ‘hello_fn.o’ (these, in
turn, will be built via implicit rules from ‘main.c’ and ‘hello_fn.c’). The target clean

1 If the prototype of a function has changed, it is necessary to modify and recompile all of the other source
files which use it.

Chapter 2: Compiling a C program 11

has no dependencies and simply removes all the compiled files.2 The option ‘-f’ (force) on
the rm command suppresses any error messages if the files do not exist.

To use the makefile, type make. When called with no arguments, the first target in the
makefile is built, producing the executable ‘main’:

$ make

gcc -Wall -c -o main.o main.c

gcc -Wall -c -o hello_fn.o hello_fn.c

gcc main.o hello_fn.o -o main

$./main

Hello, world!

To rebuild the executable after modifying a source file, simply type make again. By checking
the timestamps of the target and dependency files, make identifies the files which have
changed and regenerates the corresponding intermediate files needed to update the targets:

$ emacs main.c (edit the file)
$ make

gcc -Wall -c -o main.o main.c

gcc main.o hello_fn.o -o main

$./main

Hello, everyone!

Finally, to remove the generated files, type make clean:

$ make clean

rm -f main main.o hello_fn.o

A more sophisticated makefile would usually contain additional targets for installation (make
install) and testing (make check).

The examples in the rest of this book are small enough not to need makefiles, but the
use of make is recommended for any larger programs.

2.7 Linking with external libraries

A library is a collection of precompiled object files which can be linked into programs.
The most common use of libraries is to provide system functions, such as the square root
function sqrt found in the C math library.

Libraries are typically stored in special archive files with the extension ‘.a’, referred to
as static libraries. They are created from object files with a separate tool, the GNU archiver
ar, and used by the linker to resolve references to functions at compile-time. We will see
later how to create libraries using the ar command (see Chapter 10 [Compiler-related tools],
page 66). For simplicity, only static libraries are covered in this section—dynamic linking
at runtime using shared libraries will be described in the next chapter.

The standard system libraries are usually found in the directories ‘/usr/lib’ and ‘/lib’.3

For example, the C math library is typically stored in the file ‘/usr/lib/libm.a’ on Unix-
like systems. The corresponding prototype declarations for the functions in this library are

2 This assumes that there is no file called ‘clean’ in the current directory—see the discussion of “phony
targets” in the GNU Make manual for details.

3 On systems supporting both 64 and 32-bit executables the 64-bit versions of the libraries will often be
stored in ‘/usr/lib64’ and ‘/lib64’, with the 32-bit versions in ‘/usr/lib’ and ‘/lib’.

Chapter 2: Compiling a C program 12

given in the header file ‘/usr/include/math.h’. The C standard library itself is stored in
‘/usr/lib/libc.a’ and contains functions specified in the ANSI/ISO C standard, such as
‘printf’—this library is linked by default for every C program.

Here is an example program which makes a call to the external function sqrt in the
math library ‘libm.a’:

#include <math.h>

#include <stdio.h>

int

main (void)

{

double x = 2.0;

double y = sqrt (x);

printf ("The square root of %f is %f\n", x, y);

return 0;

}

Trying to create an executable from this source file alone causes the compiler to give an
error at the link stage:

$ gcc -Wall calc.c -o calc

/tmp/ccbR6Ojm.o: In function ‘main’:

/tmp/ccbR6Ojm.o(.text+0x19): undefined reference

to ‘sqrt’

The problem is that the reference to the sqrt function cannot be resolved without the
external math library ‘libm.a’. The function sqrt is not defined in the program or the
default library ‘libc.a’, and the compiler does not link to the file ‘libm.a’ unless it is
explicitly selected. Incidentally, the file mentioned in the error message ‘/tmp/ccbR60jm.o’
is a temporary object file created by the compiler from ‘calc.c’, in order to carry out the
linking process.

To enable the compiler to link the sqrt function to the main program ‘calc.c’ we need
to supply the library ‘libm.a’. One obvious but cumbersome way to do this is to specify it
explicitly on the command line:

$ gcc -Wall calc.c /usr/lib/libm.a -o calc

The library ‘libm.a’ contains object files for all the mathematical functions, such as sin,
cos, exp, log and sqrt. The linker searches through these to find the object file containing
the sqrt function.

Once the object file for the sqrt function has been found, the main program can be
linked and a complete executable produced:

$./calc

The square root of 2.0 is 1.414214

The executable file includes the machine code for the main function and the machine code
for the sqrt function, copied from the corresponding object file in the library ‘libm.a’.

To avoid the need to specify long paths on the command line, the compiler provides a
short-cut option ‘-l’ for linking against libraries. For example, the following command,

Chapter 2: Compiling a C program 13

$ gcc -Wall calc.c -lm -o calc

is equivalent to the original command above using the full library name ‘/usr/lib/libm.a’.

In general, the compiler option ‘-lNAME ’ will attempt to link object files with a library
file ‘libNAME.a’ in the standard library directories. Additional directories can specified with
command-line options and environment variables, to be discussed shortly. A large program
will typically use many ‘-l’ options to link libraries such as the math library, graphics
libraries and networking libraries.

2.7.1 Link order of libraries

The traditional behavior of linkers is to search for external functions from left to right in the
libraries specified on the command line. This means that a library containing the definition
of a function should appear after any source files or object files which use it. This includes
libraries specified with the short-cut ‘-l’ option, as shown in the following command:

$ gcc -Wall calc.c -lm -o calc (correct order)

With some linkers the opposite ordering (placing the ‘-lm’ option before the file which uses
it) would result in an error,

$ cc -Wall -lm calc.c -o calc (incorrect order)
main.o: In function ‘main’:

main.o(.text+0xf): undefined reference to ‘sqrt’

because there is no library or object file containing sqrt after ‘calc.c’. The option ‘-lm’
should appear after the file ‘calc.c’.

When several libraries are being used, the same convention should be followed for the
libraries themselves. A library which calls an external function defined in another library
should appear before the library containing the function.

For example, a program ‘data.c’ using the GNU Linear Programming library
‘libglpk.a’, which in turn uses the math library ‘libm.a’, should be compiled as,

$ gcc -Wall data.c -lglpk -lm

since the object files in ‘libglpk.a’ use functions defined in ‘libm.a’.

Most current linkers will search all libraries, regardless of order, but since some do not
do this it is best to follow the convention of ordering libraries from left to right.

This is worth keeping in mind if you ever encounter unexpected problems with undefined
references, and all the necessary libraries appear to be present on the command line.

2.8 Using library header files

When using a library it is essential to include the appropriate header files, in order to declare
the function arguments and return values with the correct types. Without declarations, the
arguments of a function can be passed with the wrong type, causing corrupted results.

The following example shows another program which makes a function call to the C
math library. In this case, the function pow is used to compute the cube of two (2 raised to
the power of 3):

#include <stdio.h>

int

Chapter 2: Compiling a C program 14

main (void)

{

double x = pow (2.0, 3.0);

printf ("Two cubed is %f\n", x);

return 0;

}

However, the program contains an error—the #include statement for ‘math.h’ is missing,
so the prototype double pow (double x, double y) given there will not be seen by the
compiler.

Compiling the program without any warning options will produce an executable file
which gives incorrect results:

$ gcc badpow.c -lm

$./a.out

Two cubed is 2.851120 (incorrect result, should be 8)

The results are corrupted because the arguments and return value of the call to pow are
passed with incorrect types.4 This can be detected by turning on the warning option ‘-Wall’:

$ gcc -Wall badpow.c -lm

badpow.c: In function ‘main’:

badpow.c:6: warning: implicit declaration of

function ‘pow’

This example shows again the importance of using the warning option ‘-Wall’ to detect
serious problems that could otherwise easily be overlooked.

4 The actual output shown above may differ, depending on the specific platform and environment.

Chapter 3: Compilation options 15

3 Compilation options

This chapter describes other commonly-used compiler options available in GCC. These
options control features such as the search paths used for locating libraries and include
files, the use of additional warnings and diagnostics, preprocessor macros and C language
dialects.

3.1 Setting search paths

In the last chapter, we saw how to link to a program with functions in the C math library
‘libm.a’, using the short-cut option ‘-lm’ and the header file ‘math.h’.

A common problem when compiling a program using library header files is the error:

FILE.h: No such file or directory

This occurs if a header file is not present in the standard include file directories used by
gcc. A similar problem can occur for libraries:

/usr/bin/ld: cannot find library

This happens if a library used for linking is not present in the standard library directories
used by gcc.

By default, gcc searches the following directories for header files:

/usr/local/include/

/usr/include/

and the following directories for libraries:

/usr/local/lib/

/usr/lib/

The list of directories for header files is often referred to as the include path, and the list of
directories for libraries as the library search path or link path.

The directories on these paths are searched in order, from first to last in the two lists
above.1 For example, a header file found in ‘/usr/local/include’ takes precedence over a
file with the same name in ‘/usr/include’. Similarly, a library found in ‘/usr/local/lib’
takes precedence over a library with the same name in ‘/usr/lib’.

When additional libraries are installed in other directories it is necessary to extend the
search paths, in order for the libraries to be found. The compiler options ‘-I’ and ‘-L’ add
new directories to the beginning of the include path and library search path respectively.

3.1.1 Search path example

The following example program uses a library that might be installed as an additional
package on a system—the GNU Database Management Library (GDBM). The GDBM
Library stores key-value pairs in a DBM file, a type of data file which allows values to be
stored and indexed by a key (an arbitrary sequence of characters). Here is the example
program ‘dbmain.c’, which creates a DBM file containing a key ‘testkey’ with the value
‘testvalue’:

1 The default search paths may also include additional system-dependent or site-specific directories, and
directories in the GCC installation itself. For example, on 64-bit platforms additional ‘lib64’ directories
may also be searched by default.

Chapter 3: Compilation options 16

#include <stdio.h>

#include <gdbm.h>

int

main (void)

{

GDBM_FILE dbf;

datum key = { "testkey", 7 }; /* key, length */

datum value = { "testvalue", 9 }; /* value, length */

printf ("Storing key-value pair... ");

dbf = gdbm_open ("test", 0, GDBM_NEWDB, 0644, 0);

gdbm_store (dbf, key, value, GDBM_INSERT);

gdbm_close (dbf);

printf ("done.\n");

return 0;

}

The program uses the header file ‘gdbm.h’ and the library ‘libgdbm.a’. If the library
has been installed in the default location of ‘/usr/local/lib’, with the header file in
‘/usr/local/include’, then the program can be compiled with the following simple com-
mand:

$ gcc -Wall dbmain.c -lgdbm

Both these directories are part of the default gcc include and link paths.

However, if GDBM has been installed in a different location, trying to compile the
program will give the following error:

$ gcc -Wall dbmain.c -lgdbm

dbmain.c:1: gdbm.h: No such file or directory

For example, if version 1.8.3 of the GDBM package is installed under the directory
‘/opt/gdbm-1.8.3’ the location of the header file would be,

/opt/gdbm-1.8.3/include/gdbm.h

which is not part of the default gcc include path. Adding the appropriate directory to the
include path with the command-line option ‘-I’ allows the program to be compiled, but
not linked:

$ gcc -Wall -I/opt/gdbm-1.8.3/include dbmain.c -lgdbm

/usr/bin/ld: cannot find -lgdbm

collect2: ld returned 1 exit status

The directory containing the library is still missing from the link path. It can be added to
the link path using the following option:

-L/opt/gdbm-1.8.3/lib/

The following command line allows the program to be compiled and linked:

$ gcc -Wall -I/opt/gdbm-1.8.3/include

-L/opt/gdbm-1.8.3/lib dbmain.c -lgdbm

Chapter 3: Compilation options 17

This produces the final executable linked to the GDBM library. Before seeing how to run
this executable we will take a brief look at the environment variables that affect the ‘-I’
and ‘-L’ options.

Note that you should never place the absolute paths of header files in #include state-
ments in your source code, as this will prevent the program from compiling on other systems.
The ‘-I’ option or the INCLUDE_PATH variable described below should always be used to set
the include path for header files.

3.1.2 Environment variables

The search paths for header files and libraries can also be controlled through environment
variables in the shell. These may be set automatically for each session using the appropriate
login file, such as ‘.bash_profile’ in the case of GNU Bash.

Additional directories can be added to the include path using the environment variable
C_INCLUDE_PATH (for C header files) or CPLUS_INCLUDE_PATH (for C++ header files). For
example, the following commands will add ‘/opt/gdbm-1.8.3/include’ to the include path
when compiling C programs:

$ C_INCLUDE_PATH=/opt/gdbm-1.8.3/include

$ export C_INCLUDE_PATH

and similarly for C++ programs:

$ CPLUS_INCLUDE_PATH=/opt/gdbm-1.8.3/include

$ export CPLUS_INCLUDE_PATH

This directory will be searched after any directories specified on the command line with the
option ‘-I’, and before the standard default directories (such as ‘/usr/local/include’ and
‘/usr/include’). The shell command export is needed to make the environment variable
available to programs outside the shell itself, such as the compiler—it is only needed once
for each variable in each shell session, and can also be set in the appropriate login file.2

Similarly, additional directories can be added to the link path using the environment vari-
able LIBRARY_PATH. For example, the following commands will add ‘/opt/gdbm-1.8.3/lib’
to the link path:

$ LIBRARY_PATH=/opt/gdbm-1.8.3/lib

$ export LIBRARY_PATH

This directory will be searched after any directories specified on the command line with
the option ‘-L’, and before the standard default directories (such as ‘/usr/local/lib’ and
‘/usr/lib’).

With the environment variable settings given above the program ‘dbmain.c’ can be
compiled without the ‘-I’ and ‘-L’ options,

$ gcc -Wall dbmain.c -lgdbm

because the default paths now use the directories specified in the environment variables
C_INCLUDE_PATH and LIBRARY_PATH. The same compilation command with g++ would use
the environment variables CPLUS_INCLUDE_PATH and LIBRARY_PATH.

2 In GNU Bash, the shorter form export VARIABLE=VALUE is also allowed.

Chapter 3: Compilation options 18

3.1.3 Extended search paths

Following the standard Unix convention for search paths, several directories can be specified
together in an environment variable as a colon separated list:

DIR1:DIR2:DIR3:...

The directories are then searched in order from left to right. A single dot ‘.’ can be used
to specify the current directory.3

For example, the following settings create default include and link paths for pack-
ages installed in the current directory ‘.’ and the ‘include’ and ‘lib’ directories under
‘/opt/gdbm-1.8.3’ and ‘/net’ respectively:

$ C_INCLUDE_PATH=.:/opt/gdbm-1.8.3/include:/net/include

$ LIBRARY_PATH=.:/opt/gdbm-1.8.3/lib:/net/lib

For C++ programs, use the environment variable CPLUS_INCLUDE_PATH instead of
C_INCLUDE_PATH.

To specify multiple search path directories on the command line, the options ‘-I’ and
‘-L’ can be repeated. For example, the following command,

$ gcc -I. -I/opt/gdbm-1.8.3/include -I/net/include

-L. -L/opt/gdbm-1.8.3/lib -L/net/lib

is equivalent to the environment variable settings given above.

When environment variables and command-line options are used together the compiler
searches the directories in the following order:

1. command-line options ‘-I’ and ‘-L’, from left to right

2. directories specified by environment variables, such as C_INCLUDE_PATH (for C pro-
grams), CPLUS_INCLUDE_PATH (for C++ programs) and LIBRARY_PATH

3. default system directories

In day-to-day usage, directories are usually added to the search paths with the options ‘-I’
and ‘-L’.

3.2 Shared libraries and static libraries

Although the example program above has been successfully compiled and linked, a final
step is needed before being able to load and run the executable file.

If an attempt is made to start the executable directly, the following error will occur on
most systems:

$./a.out

./a.out: error while loading shared libraries:

libgdbm.so.3: cannot open shared object file:

No such file or directory

This is because the GDBM package provides a shared library. This type of library requires
special treatment—it must be loaded from disk before the executable will run.

External libraries are usually provided in two forms: static libraries and shared libraries.
Static libraries are the ‘.a’ files seen earlier. When a program is linked against a static

3 The current directory can also be specified using an empty path element. For example, :DIR1:DIR2 is
equivalent to .:DIR1:DIR2 .

Chapter 3: Compilation options 19

library, the machine code from the object files for any external functions used by the program
is copied from the library into the final executable.

Shared libraries are handled with a more advanced form of linking, which makes the
executable file smaller. They use the extension ‘.so’, which stands for shared object.

An executable file linked against a shared library contains only a small table of the
functions it requires, instead of the complete machine code from the object files for the
external functions. Before the executable file starts running, the machine code for the
external functions is copied into memory from the shared library file on disk by the operating
system—a process referred to as dynamic linking.

Dynamic linking makes executable files smaller and saves disk space, because one copy
of a library can be shared between multiple programs. Most operating systems also provide
a virtual memory mechanism which allows one copy of a shared library in physical memory
to be used by all running programs, saving memory as well as disk space.

Furthermore, shared libraries make it possible to update a library without recompiling
the programs which use it (provided the interface to the library does not change).

Because of these advantages gcc compiles programs to use shared libraries by default
on most systems, if they are available. Whenever a static library ‘libNAME.a’ would be
used for linking with the option ‘-lNAME ’ the compiler first checks for an alternative shared
library with the same name and a ‘.so’ extension.

In this case, when the compiler searches for the ‘libgdbm’ library in the link path, it
finds the following two files in the directory ‘/opt/gdbm-1.8.3/lib’:

$ cd /opt/gdbm-1.8.3/lib

$ ls libgdbm.*

libgdbm.a libgdbm.so

Consequently, the ‘libgdbm.so’ shared object file is used in preference to the ‘libgdbm.a’
static library.

However, when the executable file is started its loader function must find the shared
library in order to load it into memory. By default the loader searches for shared libraries
only in a predefined set of system directories, such as ‘/usr/local/lib’ and ‘/usr/lib’. If
the library is not located in one of these directories it must be added to the load path.4

The simplest way to set the load path is through the environment variable LD_LIBRARY_

PATH. For example, the following commands set the load path to ‘/opt/gdbm-1.8.3/lib’
so that ‘libgdbm.so’ can be found:

$ LD_LIBRARY_PATH=/opt/gdbm-1.8.3/lib

$ export LD_LIBRARY_PATH

$./a.out

Storing key-value pair... done.

The executable now runs successfully, prints its message and creates a DBM file called
‘test’ containing the key-value pair ‘testkey’ and ‘testvalue’.

4 Note that the directory containing the shared library can, in principle, be stored (“hard-coded”) in the
executable itself using the linker option ‘-rpath’, but this is not usually done since it creates problems
if the library is moved or the executable is copied to another system.

Chapter 3: Compilation options 20

To save typing, the LD_LIBRARY_PATH environment variable can be set automatically for
each session using the appropriate login file, such as ‘.bash_profile’ for the GNU Bash
shell.

Several shared library directories can be placed in the load path, as a colon separated
list DIR1:DIR2:DIR3:...:DIRN . For example, the following command sets the load path
to use the ‘lib’ directories under ‘/opt/gdbm-1.8.3’ and ‘/opt/gtk-1.4’:

$ LD_LIBRARY_PATH=/opt/gdbm-1.8.3/lib:/opt/gtk-1.4/lib

$ export LD_LIBRARY_PATH

If the load path contains existing entries, it can be extended using the syntax LD_LIBRARY_

PATH=NEWDIRS:$LD_LIBRARY_PATH. For example, the following command adds the direc-
tory ‘/opt/gsl-1.5/lib’ to the load path shown above:

$ LD_LIBRARY_PATH=/opt/gsl-1.5/lib:$LD_LIBRARY_PATH

$ echo $LD_LIBRARY_PATH

/opt/gsl-1.5/lib:/opt/gdbm-1.8.3/lib:/opt/gtk-1.4/lib

It is possible for the system administrator to set the LD_LIBRARY_PATH variable for all
users, by adding it to a default login script, such as ‘/etc/profile’. On GNU systems, a
system-wide path can also be defined in the loader configuration file ‘/etc/ld.so.conf’.

Alternatively, static linking can be forced with the ‘-static’ option to gcc to avoid the
use of shared libraries:

$ gcc -Wall -static -I/opt/gdbm-1.8.3/include/

-L/opt/gdbm-1.8.3/lib/ dbmain.c -lgdbm

This creates an executable linked with the static library ‘libgdbm.a’ which can be run
without setting the environment variable LD_LIBRARY_PATH or putting shared libraries in
the default directories:

$./a.out

Storing key-value pair... done.

As noted earlier, it is also possible to link directly with individual library files by specifying
the full path to the library on the command line. For example, the following command will
link directly with the static library ‘libgdbm.a’,

$ gcc -Wall -I/opt/gdbm-1.8.3/include

dbmain.c /opt/gdbm-1.8.3/lib/libgdbm.a

and the command below will link with the shared library file ‘libgdbm.so’:

$ gcc -Wall -I/opt/gdbm-1.8.3/include

dbmain.c /opt/gdbm-1.8.3/lib/libgdbm.so

In the latter case it is still necessary to set the library load path when running the executable.

3.3 C language standards

By default, gcc compiles programs using the GNU dialect of the C language, referred to
as GNU C. This dialect incorporates the official ANSI/ISO standard for the C language
with several useful GNU extensions, such as nested functions and variable-size arrays. Most
ANSI/ISO programs will compile under GNU C without changes.

There are several options which control the dialect of C used by gcc. The most
commonly-used options are ‘-ansi’ and ‘-pedantic’. The specific dialects of the C
language for each standard can also be selected with the ‘-std’ option.

Chapter 3: Compilation options 21

3.3.1 ANSI/ISO

Occasionally a valid ANSI/ISO program may be incompatible with the extensions in GNU
C. To deal with this situation, the compiler option ‘-ansi’ disables those GNU extensions
which are in conflict with the ANSI/ISO standard. On systems using the GNU C Library
(glibc) it also disables extensions to the C standard library. This allows programs written
for ANSI/ISO C to be compiled without any unwanted effects from GNU extensions.

For example, here is a valid ANSI/ISO C program which uses a variable called asm:

#include <stdio.h>

int

main (void)

{

const char asm[] = "6502";

printf ("the string asm is ’%s’\n", asm);

return 0;

}

The variable name asm is valid under the ANSI/ISO standard, but this program will not
compile in GNU C because asm is a GNU C keyword extension (it allows native assembly
instructions to be used in C functions). Consequently, it cannot be used as a variable name
without giving a compilation error:

$ gcc -Wall ansi.c

ansi.c: In function ‘main’:

ansi.c:6: parse error before ‘asm’

ansi.c:7: parse error before ‘asm’

In contrast, using the ‘-ansi’ option disables the asm keyword extension, and allows the
program above to be compiled correctly:

$ gcc -Wall -ansi ansi.c

$./a.out

the string asm is ’6502’

For reference, the non-standard keywords and macros defined by the GNU C extensions
are asm, inline, typeof, unix and vax. More details can be found in the GCC Reference
Manual “Using GCC” (see [Further reading], page 89).

The next example shows the effect of the ‘-ansi’ option on systems using the GNU
C Library, such as GNU/Linux systems. The program below prints the value of pi, π =
3.14159..., from the preprocessor definition M_PI in the header file ‘math.h’:

#include <math.h>

#include <stdio.h>

int

main (void)

{

printf ("the value of pi is %f\n", M_PI);

return 0;

}

Chapter 3: Compilation options 22

The constant M_PI is not part of the ANSI/ISO C standard library (it comes from the BSD
version of Unix). In this case, the program will not compile with the ‘-ansi’ option:

$ gcc -Wall -ansi pi.c

pi.c: In function ‘main’:

pi.c:7: ‘M_PI’ undeclared (first use in this function)

pi.c:7: (Each undeclared identifier is reported only once

pi.c:7: for each function it appears in.)

The program can be compiled without the ‘-ansi’ option. In this case both the language
and library extensions are enabled by default:

$ gcc -Wall pi.c

$./a.out

the value of pi is 3.141593

It is also possible to compile the program using ANSI/ISO C, by enabling only the extensions
in the GNU C Library itself. This can be achieved by defining special macros, such as _

GNU_SOURCE, which enable extensions in the GNU C Library:5

$ gcc -Wall -ansi -D_GNU_SOURCE pi.c

$./a.out

the value of pi is 3.141593

The GNU C Library provides a number of these macros (referred to as feature test
macros) which allow control over the support for POSIX extensions (_POSIX_C_SOURCE),
BSD extensions (_BSD_SOURCE), SVID extensions (_SVID_SOURCE), XOPEN extensions
(_XOPEN_SOURCE) and GNU extensions (_GNU_SOURCE).

The _GNU_SOURCE macro enables all the extensions together, with the POSIX extensions
taking precedence over the others in cases where they conflict. Further information about
feature test macros can be found in the GNU C Library Reference Manual (see [Further
reading], page 89).

3.3.2 Strict ANSI/ISO

The command-line option ‘-pedantic’ in combination with ‘-ansi’ will cause gcc to reject
all GNU C extensions, not just those that are incompatible with the ANSI/ISO standard.
This helps you to write portable programs which follow the ANSI/ISO standard.

Here is a program which uses variable-size arrays, a GNU C extension. The array x[n]

is declared with a length specified by the integer variable n.

int

main (int argc, char *argv[])

{

int i, n = argc;

double x[n];

for (i = 0; i < n; i++)

x[i] = i;

return 0;

5 The ‘-D’ option for defining macros will be explained in detail in the next chapter.

Chapter 3: Compilation options 23

}

This program will compile with ‘-ansi’, because support for variable length arrays does not
interfere with the compilation of valid ANSI/ISO programs—it is a backwards-compatible
extension:

$ gcc -Wall -ansi gnuarray.c

However, compiling with ‘-ansi -pedantic’ reports warnings about violations of the
ANSI/ISO standard:

$ gcc -Wall -ansi -pedantic gnuarray.c

gnuarray.c: In function ‘main’:

gnuarray.c:5: warning: ISO C90 forbids variable-size

array ‘x’

Note that an absence of warnings from ‘-ansi -pedantic’ does not guarantee that a pro-
gram strictly conforms to the ANSI/ISO standard. The standard itself specifies only a
limited set of circumstances that should generate diagnostics, and these are what ‘-ansi
-pedantic’ reports.

3.3.3 Selecting specific standards

The specific language standard used by GCC can be controlled with the ‘-std’ option. The
following C language standards are supported:

‘-std=c89’ or ‘-std=iso9899:1990’
The original ANSI/ISO C language standard (ANSI X3.159-1989, ISO/IEC
9899:1990). GCC incorporates the corrections in the two ISO Technical Corri-
genda to the original standard.

‘-std=iso9899:199409’
The ISO C language standard with ISO Amendment 1, published in 1994. This
amendment was mainly concerned with internationalization, such as adding
support for multibyte characters to the C library.

‘-std=c99’ or ‘-std=iso9899:1999’
The revised ISO C language standard, published in 1999 (ISO/IEC 9899:1999).

The C language standards with GNU extensions can be selected with the options
‘-std=gnu89’ and ‘-std=gnu99’.

3.4 Warning options in -Wall

As described earlier (see Section 2.1 [Compiling a simple C program], page 5), the warning
option ‘-Wall’ enables warnings for many common errors, and should always be used. It
combines a large number of other, more specific, warning options which can also be selected
individually. Here is a summary of these options:

‘-Wcomment’ (included in ‘-Wall’)
This option warns about nested comments. Nested comments typically arise
when a section of code containing comments is later commented out:

/* commented out

double x = 1.23 ; /* x-position */

*/

Chapter 3: Compilation options 24

Nested comments can be a source of confusion—the safe way to “comment out”
a section of code containing comments is to surround it with the preprocessor
directive #if 0 ... #endif:

/* commented out */

#if 0

double x = 1.23 ; /* x-position */

#endif

‘-Wformat’ (included in ‘-Wall’)
This option warns about the incorrect use of format strings in functions such
as printf and scanf, where the format specifier does not agree with the type
of the corresponding function argument.

‘-Wunused’ (included in ‘-Wall’)
This option warns about unused variables. When a variable is declared but not
used this can be the result of another variable being accidentally substituted
in its place. If the variable is genuinely not needed it can be removed from the
source code.

‘-Wimplicit’ (included in ‘-Wall’)
This option warns about any functions that are used without being declared.
The most common reason for a function to be used without being declared is
forgetting to include a header file.

‘-Wreturn-type’ (included in ‘-Wall’)
This option warns about functions that are defined without a return type but
not declared void. It also catches empty return statements in functions that
are not declared void.

For example, the following program does not use an explicit return value:

#include <stdio.h>

int

main (void)

{

printf ("hello world\n");

return;

}

The lack of a return value in the code above could be the result of an acci-
dental omission by the programmer—the value returned by the main function
is actually the return value of the printf function (the number of characters
printed). To avoid ambiguity, it is preferable to use an explicit value in the
return statement, either as a variable or a constant, such as return 0.

The complete set of warning options included in ‘-Wall’ can be found in the GCC
Reference Manual “Using GCC” (see [Further reading], page 89). The options included in
‘-Wall’ have the common characteristic that they report constructions which are always
wrong, or can easily be rewritten in an unambiguously correct way. This is why they are
so useful—any warning produced by ‘-Wall’ can be taken as an indication of a potentially
serious problem.

Chapter 3: Compilation options 25

3.5 Additional warning options

GCC provides many other warning options that are not included in ‘-Wall’ but are often
useful. Typically these produce warnings for source code which may be technically valid
but is very likely to cause problems. The criteria for these options are based on experience
of common errors—they are not included in ‘-Wall’ because they only indicate possibly
problematic or “suspicious” code.

Since these warnings can be issued for valid code it is not necessary to compile with
them all the time. It is more appropriate to use them periodically and review the results,
checking for anything unexpected, or to enable them for some programs or files.

‘-W’ This is a general option similar to ‘-Wall’ which warns about a selection of
common programming errors, such as functions which can return without a
value (also known as “falling off the end of the function body”), and comparisons
between signed and unsigned values. For example, the following function tests
whether an unsigned integer is negative (which is impossible, of course):

int

foo (unsigned int x)

{

if (x < 0)

return 0; /* cannot occur */

else

return 1;

}

Compiling this function with ‘-Wall’ does not produce a warning,

$ gcc -Wall -c w.c

but does give a warning with ‘-W’:

$ gcc -W -c w.c

w.c: In function ‘foo’:

w.c:4: warning: comparison of unsigned

expression < 0 is always false

In practice, the options ‘-W’ and ‘-Wall’ are normally used together.

‘-Wconversion’
This option warns about implicit type conversions that could cause unexpected
results, such as conversions between floating-point and integer types, between
signed and unsigned types and between types of different width (e.g. long and
short integers). Conversions can occur in expressions and assignments, and in
calls to functions if the types of the arguments do not match those specified in
the prototype.

For example, the integer absolute value function int abs(int i) is easily con-
fused with the corresponding floating-point function double fabs(double x).
This can lead to incorrect results, as shown in the following program:

#include <stdio.h>

#include <stdlib.h>

int

Chapter 3: Compilation options 26

main (void)

{

double x = -3.14;

double y = abs(x); /* should be fabs(x) */

printf ("x = %g |x| = %g\n", x, y);

return 0;

}

Compiling this function with ‘-Wall’ does not produce a warning,

$ gcc -Wall wabs.c

$./a.out

x = -3.14 |x| = 3 (incorrect)

but does give a warning with ‘-Wconversion’:

gcc -Wall -Wconversion wabs.c

wabs.c: In function ‘main’:

wabs.c:8: warning: passing arg 1 of ‘abs’ as

integer rather than floating due to prototype

The ‘-Wconversion’ option also catches errors such as the assignment of a
negative value to an unsigned variable, as in the following code,

unsigned int x = -1;

This is technically allowed by the ANSI/ISO C standard (with the negative
integer being converted to a positive integer, according to the machine repre-
sentation) but could be a simple programming error. If you need to perform
such a conversion you can use an explicit cast, such as (unsigned int)-1, to
avoid any warnings from this option. On two’s-complement machines the cast of
−1 gives the maximum number that can be represented by an unsigned integer.

‘-Wshadow’
This option warns about the redeclaration of a variable name in a scope where
it has already been declared. This is referred to as variable shadowing, and
causes confusion about which occurrence of the variable corresponds to which
value.

The following function declares a local variable y that shadows the declaration
in the body of the function:

double

test (double x)

{

double y = 1.0;

{

double y;

y = x;

}

return y;

}

This is valid ANSI/ISO C, where the return value is 1. The shadowing of the
variable y might make it seem (incorrectly) that the return value is x, when
looking at the line y = x (especially in a large and complicated function).

Chapter 3: Compilation options 27

Shadowing can also occur for function names. For example, the following pro-
gram attempts to define a variable sin which shadows the standard function
sin(x).

double

sin_series (double x)

{

/* series expansion for small x */

double sin = x * (1.0 - x * x / 6.0);

return sin;

}

This error will be detected by the ‘-Wshadow’ option.

‘-Wcast-qual’
This option warns about pointers that are cast to remove a type qualifier, such
as const. For example, the following function discards the const qualifier from
its input argument, allowing it to be overwritten:

void

f (const char * str)

{

char * s = (char *)str;

s[0] = ’\0’;

}

The modification of the original contents of str is a violation of its const

property. This option will warn about the improper cast of the variable str

which allows the string to be modified.

‘-Wwrite-strings’
This option implicitly gives all string constants defined in the program a const

qualifier, causing a compile-time warning if there is an attempt to overwrite
them. The result of modifying a string constant is not defined by the ANSI/ISO
standard, and the use of writable string constants is deprecated in GCC.

‘-Wtraditional’
This option warns about parts of the code which would be interpreted dif-
ferently by an ANSI/ISO compiler and a “traditional” pre-ANSI compiler.6

When maintaining legacy software it may be necessary to investigate whether
the traditional or ANSI/ISO interpretation was intended in the original code
for warnings generated by this option.

The options above produce diagnostic warning messages, but allow the compilation to
continue and produce an object file or executable. For large programs it can be desirable to
catch all the warnings by stopping the compilation whenever a warning is generated. The
‘-Werror’ option changes the default behavior by converting warnings into errors, stopping
the compilation whenever a warning occurs.

6 The traditional form of the C language was described in the original C reference manual “The C Pro-
gramming Language (First Edition)” by Kernighan and Ritchie.

Chapter 3: Compilation options 28

3.6 Recommended warning options

The following options are a good choice for finding problems in C and C++ programs:

$ gcc -ansi -pedantic -Wall -W -Wconversion

-Wshadow -Wcast-qual -Wwrite-strings

While this list is not exhaustive, regular use of these options will catch many common
errors.

Chapter 4: Using the preprocessor 29

4 Using the preprocessor

This chapter describes the use of the GNU C preprocessor cpp, which is part of the GCC
package. The preprocessor expands macros in source files before they are compiled. It is
automatically called whenever GCC processes a C or C++ program.1

4.1 Defining macros

The following program demonstrates the most common use of the C preprocessor. It uses
the preprocessor conditional #ifdef to check whether a macro is defined:

#include <stdio.h>

int

main (void)

{

#ifdef TEST

printf ("Test mode\n");

#endif

printf ("Running...\n");

return 0;

}

When the macro is defined, the preprocessor includes the corresponding code up to the
closing #endif command. In this example, the macro which is tested is called TEST, and
the conditional part of the source code is a printf statement which prints the message
“Test mode”.

The gcc option ‘-DNAME ’ defines a preprocessor macro NAME from the command line. If
the program above is compiled with the command-line option ‘-DTEST’, the macro TEST will
be defined and the resulting executable will print both messages:

$ gcc -Wall -DTEST dtest.c

$./a.out

Test mode

Running...

If the same program is compiled without the ‘-D’ option then the “Test mode” message is
omitted from the source code after preprocessing, and the final executable does not include
the code for it:

$ gcc -Wall dtest.c

$./a.out

Running...

Macros are generally undefined, unless specified on the command line with the option ‘-D’,
or in a source file (or library header file) with #define. Some macros are automatically
defined by the compiler—these typically use a reserved namespace beginning with a double-
underscore prefix ‘__’.

The complete set of predefined macros can be listed by running the GNU preprocessor
cpp with the option ‘-dM’ on an empty file:

1 In recent versions of GCC the preprocessor is integrated into the compiler, although a separate cpp

command is also provided.

Chapter 4: Using the preprocessor 30

$ cpp -dM /dev/null

#define __i386__ 1

#define __i386 1

#define i386 1

#define __unix 1

#define __unix__ 1

#define __ELF__ 1

#define unix 1

.......

Note that this list includes a small number of system-specific macros defined by gcc which
do not use the double-underscore prefix. These non-standard macros can be disabled with
the ‘-ansi’ option of gcc.

4.2 Macros with values

In addition to being defined, a macro can also be given a value. This value is inserted into
the source code at each point where the macro occurs. The following program uses a macro
NUM, to represent a number which will be printed:

#include <stdio.h>

int

main (void)

{

printf ("Value of NUM is %d\n", NUM);

return 0;

}

Note that macros are not expanded inside strings—only the occurrence of NUM outside the
string is substituted by the preprocessor.

To define a macro with a value, the ‘-D’ command-line option can be used in the form
‘-DNAME=VALUE ’. For example, the following command line defines NUM to be 100 when
compiling the program above:

$ gcc -Wall -DNUM=100 dtestval.c

$./a.out

Value of NUM is 100

This example uses a number, but a macro can take values of any form. Whatever the value
of the macro is, it is inserted directly into the source code at the point where the macro
name occurs. For example, the following definition expands the occurrences of NUM to 2+2

during preprocessing:

$ gcc -Wall -DNUM="2+2" dtestval.c

$./a.out

Value of NUM is 4

After the preprocessor has made the substitution NUM 7→ 2+2 this is equivalent to compiling
the following program:

#include <stdio.h>

Chapter 4: Using the preprocessor 31

int

main (void)

{

printf ("Value of NUM is %d\n", 2+2);

return 0;

}

Note that it is a good idea to surround macros by parentheses whenever they are part of
an expression. For example, the following program uses parentheses to ensure the correct
precedence for the multiplication 10*NUM:

#include <stdio.h>

int

main (void)

{

printf ("Ten times NUM is %d\n", 10 * (NUM));

return 0;

}

With these parentheses, it produces the expected result when compiled with the same
command line as above:

$ gcc -Wall -DNUM="2+2" dtestmul10.c

$./a.out

Ten times NUM is 40

Without parentheses, the program would produce the value 22 from the literal form of the
expression 10*2+2 = 22, instead of the desired value 10*(2+2) = 40.

When a macro is defined with ‘-D’ alone, gcc uses a default value of 1. For example,
compiling the original test program with the option ‘-DNUM’ generates an executable which
produces the following output:

$ gcc -Wall -DNUM dtestval.c

$./a.out

Value of NUM is 1

A macro can be defined with an empty value using quotes on the command line, -DNAME="".
Such a macro is still treated as defined by conditionals such as #ifdef, but expands to
nothing.

A macro containing quotes can be defined using shell-escaped quote characters. For ex-
ample, the command-line option -DMESSAGE=’"Hello, World!"’ defines a macro MESSAGE

which expands to the sequence of characters "Hello, World!". The outer shell-quotes
’...’ protect the C-quotes of the string "Hello, World!". For an explanation of the
different types of quoting and escaping used in the shell see the “GNU Bash Reference
Manual”, [Further reading], page 89.

4.3 Preprocessing source files

It is possible to see the effect of the preprocessor on source files directly, using the ‘-E’
option of gcc. For example, the file below defines and uses a macro TEST:

#define TEST "Hello, World!"

Chapter 4: Using the preprocessor 32

const char str[] = TEST;

If this file is called ‘test.c’ the effect of the preprocessor can be seen with the following
command line:

$ gcc -E test.c

1 "test.c"

const char str[] = "Hello, World!" ;

The ‘-E’ option causes gcc to run the preprocessor, display the expanded output, and then
exit without compiling the resulting source code. The value of the macro TEST is substituted
directly into the output, producing the sequence of characters const char str[] = "Hello,

World!" ;.

The preprocessor also inserts lines recording the source file and line numbers in the form
line-number "source-file", to aid in debugging and allow the compiler to issue error
messages referring to this information. These lines do not affect the program itself.

The ability to see the preprocessed source files can be useful for examining the effect of
system header files, and finding declarations of system functions. The following program
includes the header file ‘stdio.h’ to obtain the declaration of the function printf:

#include <stdio.h>

int

main (void)

{

printf ("Hello, world!\n");

return 0;

}

It is possible to see the declarations from the included header file by preprocessing the file
with gcc -E:

$ gcc -E hello.c

On a GNU system, this produces output similar to the following:

1 "hello.c"

1 "/usr/include/stdio.h" 1 3

extern FILE *stdin;

extern FILE *stdout;

extern FILE *stderr;

extern int fprintf (FILE * __stream,

const char * __format, ...) ;

extern int printf (const char * __format, ...) ;

[... additional declarations ...]

1 "hello.c" 2

int

Chapter 4: Using the preprocessor 33

main (void)

{

printf ("Hello, world!\n");

return 0;

}

The preprocessed system header files usually generate a lot of output. This can be redirected
to a file, or saved more conveniently using the gcc ‘-save-temps’ option:

$ gcc -c -save-temps hello.c

After running this command, the preprocessed output will be available in the file ‘hello.i’.
The ‘-save-temps’ option also saves ‘.s’ assembly files and ‘.o’ object files in addition to
preprocessed ‘.i’ files.

Chapter 5: Compiling for debugging 34

5 Compiling for debugging

Normally, an executable file does not contain any references to the original program source
code, such as variable names or line-numbers—the executable file is simply the sequence
of machine code instructions produced by the compiler. This is insufficient for debugging,
since there is no easy way to find the cause of an error if the program crashes.

GCC provides the ‘-g’ debug option to store additional debugging information in object
files and executables. This debugging information allows errors to be traced back from a
specific machine instruction to the corresponding line in the original source file. The execu-
tion of a program compiled with ‘-g’ can also be followed in a debugger, such as the GNU
Debugger gdb (for more information, see “Debugging with GDB: The GNU Source-Level
Debugger”, [Further reading], page 89). Using a debugger allows the values of variables to
be examined while the program is running.

The debug compilation option works by storing the names and source code line-numbers
of functions and variables in a symbol table in the object file or executable.

5.1 Examining core files

In addition to allowing programs to be run under the debugger, an important benefit of the
‘-g’ option is the ability to examine the cause of a program crash from a “core dump”.

When a program exits abnormally (i.e. crashes) the operating system can write out a
core file (usually named ‘core’) which contains the in-memory state of the program at the
time it crashed. This file is often referred to as a core dump.1 Combined with information
from the symbol table produced by ‘-g’, the core dump can be used to find the line where
the program stopped, and the values of its variables at that point.

This is useful both during the development of software and after deployment—it allows
problems to be investigated when a program has crashed “in the field”.

Here is a simple program containing an invalid memory access bug, which we will use to
produce a core file:

int foo (int *p);

int

main (void)

{

int *p = 0; /* null pointer */

return foo (p);

}

int

foo (int *p)

{

int y = *p;

return y;

}

1 The terminology dates back to the time of magnetic core memory.

Chapter 5: Compiling for debugging 35

The program attempts to dereference a null pointer p, which is an invalid operation. On
most systems, this will cause a crash.2

In order to be able to find the cause of the crash later, we will need to compile the
program with the ‘-g’ option:

$ gcc -Wall -g null.c

Note that a null pointer will only cause a problem at run-time, so the option ‘-Wall’ does
not produce any warnings.

Running the executable file on an x86 GNU/Linux system will cause the operating
system to terminate the program abnormally:

$./a.out

Segmentation fault (core dumped)

Whenever the error message ‘core dumped’ is displayed, the operating system should pro-
duce a file called ‘core’ in the current directory.3 This core file contains a complete copy
of the pages of memory used by the program at the time it was terminated. Incidentally,
the term segmentation fault refers to the fact that the program tried to access a restricted
memory “segment” outside the area of memory which had been allocated to it.

Some systems are configured not to write core files by default, since the files can be
large and rapidly fill up the available disk space on a system. In the GNU Bash shell the
command ulimit -c controls the maximum size of core files. If the size limit is zero, no core
files are produced. The current size limit can be shown by typing the following command:

$ ulimit -c

0

If the result is zero, as shown above, then it can be increased with the following command
to allow core files of any size to be written:4

$ ulimit -c unlimited

Note that this setting only applies to the current shell. To set the limit for future sessions
the command should be placed in an appropriate login file, such as ‘.bash_profile’ for
the GNU Bash shell.

Core files can be loaded into the GNU Debugger gdb with the following command:

$ gdb EXECUTABLE-FILE CORE-FILE

Note that both the original executable file and the core file are required for debugging—it
is not possible to debug a core file without the corresponding executable. In this example,
we can load the executable and core file with the command:

$ gdb a.out core

The debugger immediately begins printing diagnostic information, and shows a listing of
the line where the program crashed (line 13):

2 Historically, a null pointer corresponded to memory location 0, which is typically restricted to the
operating system kernel. In practice this is not always how a null pointer works, but the result is usually
the same.

3 Some systems, such as FreeBSD and Solaris, can also be configured to write core files in specific direc-
tories, e.g. ‘/var/coredumps/’, using the sysctl or coreadm commands.

4 This example uses the ulimit command in the GNU Bash shell. On other systems the usage of the
ulimit command may vary, or have a different name (the tcsh shell uses the limit command instead).
The size limit for core files can also be set to a specific value in kilobytes.

Chapter 5: Compiling for debugging 36

$ gdb a.out core

Core was generated by ‘./a.out’.

Program terminated with signal 11, Segmentation fault.

Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

#0 0x080483ed in foo (p=0x0) at null.c:13

13 int y = *p;

(gdb)

The final line (gdb) is the GNU Debugger prompt—it indicates that further commands can
be entered at this point.

To investigate the cause of the crash, we display the value of the pointer p using the
debugger print command:

(gdb) print p

$1 = (int *) 0x0

This shows that p is a null pointer (0x0) of type ‘int *’, so we know that dereferencing it
with the expression *p in this line has caused the crash.

5.2 Displaying a backtrace

The debugger can also show the function calls and arguments up to the current point of
execution—this is called a stack backtrace and is displayed with the command backtrace:

(gdb) backtrace

#0 0x080483ed in foo (p=0x0) at null.c:13

#1 0x080483d9 in main () at null.c:7

In this case, the backtrace shows that the crash occurred at line 13 after the function foo

was called from main with an argument of p=0x0 at line 7 in ‘null.c’. It is possible to
move to different levels in the stack trace, and examine their variables, using the debugger
commands up and down.

5.3 Setting a breakpoint

A breakpoint stops the execution of a program and returns control to the debugger, where
its variables and memory can be examined before continuing. Breakpoints can be set for
specific functions, lines or memory locations with the break command.

To set a breakpoint on a specific function, use the command break function-name . For
example, the following command sets a breakpoint at the start of the main function in the
program above:

$ gdb a.out

(gdb) break main

Breakpoint 1 at 0x80483c6: file null.c, line 6.

The debugger will now take control of the program when the function main is called. Since
the main function is the first function to be executed in a C program the program will stop
immediately when it is run:

Chapter 5: Compiling for debugging 37

(gdb) run

Starting program: a.out

Breakpoint 1, main () at null.c:6

6 int *p = 0; /* null pointer */

(gdb)

The display shows the line that will be executed next (the line number is shown on the left).
The breakpoint stops the program before the line is executed, so at this stage the pointer p
is undefined and has not yet been set to zero.

5.4 Stepping through the program

To move forward and execute the line displayed above, use the command step:

(gdb) step

7 return foo (p);

After executing line 6, the debugger displays the next line to be executed. The pointer p

will now have been set to zero (null):

(gdb) print p

$1 = (int *) 0x0

The command step will follow the execution of the program interactively through any
functions that are called in the current line. If you want to move forward without tracing
these calls, use the command next instead.

5.5 Modifying variables

To temporarily fix the null pointer bug discovered above, we can change the value of p in
the running program using the set variable command.

Variables can be set to a specific value, or to the result of an expression, which may
include function calls. This powerful feature allows functions in a program to be tested
interactively through the debugger.

In this case we will interactively allocate some memory for the pointer p using the
function malloc, storing the value 255 in the resulting location:

(gdb) set variable p = malloc(sizeof(int))

(gdb) print p

$2 = (int *) 0x40013f98 (address allocated by malloc)
(gdb) set variable *p = 255

(gdb) print *p

$3 = 255

If we now continue stepping through the program with the new value of p the previous
segmentation fault will not occur:

(gdb) step

foo (p=0x40013f98) at null.c:13

13 int y = *p;

(gdb) step

14 return y;

Chapter 5: Compiling for debugging 38

5.6 Continuing execution

The command finish continues execution up to the end of the current function, displaying
the return value:

(gdb) finish

Run till exit from #0 0x08048400 in foo (p=0x40013f98)

at null.c:15

0x080483d9 in main () at null.c:7

7 return foo (p);

Value returned is $13 = 255

To continue execution until the program exits (or hits the next breakpoint) use the command
continue,

(gdb) continue

Continuing.

Program exited with code 0377.

Note that the exit code is shown in octal (0377 base 8 = 255 in base 10).

5.7 More information

For simplicity, the examples in this chapter demonstrate how to use gdb on the command-
line. There are more powerful ways to debug a program interactively using tools such as
Emacs gdb mode (M-x gdb), ddd or insight, graphical interfaces to gdb. Links to these
programs can be found on the publisher’s webpage for this book.5

A complete description of all the commands available in gdb can be found in the manual
“Debugging with GDB: The GNU Source-Level Debugger” (see [Further reading], page 89).

5 http://www.network-theory.co.uk/gcc/intro/

http://www.network-theory.co.uk/gcc/intro/

Chapter 6: Compiling with optimization 39

6 Compiling with optimization

GCC is an optimizing compiler. It provides a wide range of options which aim to increase
the speed, or reduce the size, of the executable files it generates.

Optimization is a complex process. For each high-level command in the source code
there are usually many possible combinations of machine instructions that can be used to
achieve the appropriate final result. The compiler must consider these possibilities and
choose among them.

In general, different code must be generated for different processors, as they use in-
compatible assembly and machine languages. Each type of processor also has its own
characteristics—some CPUs provide a large number of registers for holding intermediate
results of calculations, while others must store and fetch intermediate results from memory.
Appropriate code must be generated in each case.

Furthermore, different amounts of time are needed for different instructions, depending
on how they are ordered. GCC takes all these factors into account and tries to produce the
fastest executable for a given system when compiling with optimization.

6.1 Source-level optimization

The first form of optimization used by GCC occurs at the source-code level, and does not re-
quire any knowledge of the machine instructions. There are many source-level optimization
techniques—this section describes two common types: common subexpression elimination
and function inlining.

6.1.1 Common subexpression elimination

One method of source-level optimization which is easy to understand involves computing an
expression in the source code with fewer instructions, by reusing already-computed results.
For example, the following assignment:

x = cos(v)*(1+sin(u/2)) + sin(w)*(1-sin(u/2))

can be rewritten with a temporary variable t to eliminate an unnecessary extra evaluation
of the term sin(u/2):

t = sin(u/2)

x = cos(v)*(1+t) + sin(w)*(1-t)

This rewriting is called common subexpression elimination (CSE), and is performed auto-
matically when optimization is turned on.1 Common subexpression elimination is powerful,
because it simultaneously increases the speed and reduces the size of the code.

6.1.2 Function inlining

Another type of source-level optimization, called function inlining, increases the efficiency
of frequently-called functions.

Whenever a function is used, a certain amount of extra time is required for the CPU
to carry out the call: it must store the function arguments in the appropriate registers

1 Temporary values introduced by the compiler during common subexpression elimination are only used
internally, and do not affect real variables. The name of the temporary variable ‘t’ shown above is only
used as an illustration.

Chapter 6: Compiling with optimization 40

and memory locations, jump to the start of the function (bringing the appropriate virtual
memory pages into physical memory or the CPU cache if necessary), begin executing the
code, and then return to the original point of execution when the function call is complete.
This additional work is referred to as function-call overhead. Function inlining eliminates
this overhead by replacing calls to a function by the code of the function itself (known as
placing the code in-line).

In most cases, function-call overhead is a negligible fraction of the total run-time of a
program. It can become significant only when there are functions which contain relatively
few instructions, and these functions account for a substantial fraction of the run-time—in
this case the overhead then becomes a large proportion of the total run-time.

Inlining is always favorable if there is only one point of invocation of a function. It
is also unconditionally better if the invocation of a function requires more instructions
(memory) than moving the body of the function in-line. This is a common situation for
simple accessor functions in C++, which can benefit greatly from inlining. Moreover, inlining
may facilitate further optimizations, such as common subexpression elimination, by merging
several separate functions into a single large function.

The following function sq(x) is a typical example of a function that would benefit from
being inlined. It computes x2, the square of its argument x:

double

sq (double x)

{

return x * x;

}

This function is small, so the overhead of calling it is comparable to the time taken to execute
the single multiplication carried out by the function itself. If this function is used inside a
loop, such as the one below, then the function-call overhead would become substantial:

for (i = 0; i < 1000000; i++)

{

sum += sq (i + 0.5);

}

Optimization with inlining replaces the inner loop of the program with the body of the
function, giving the following code:

for (i = 0; i < 1000000; i++)

{

double t = (i + 0.5); /* temporary variable */

sum += t * t;

}

Eliminating the function call and performing the multiplication in-line allows the loop to
run with maximum efficiency.

GCC selects functions for inlining using a number of heuristics, such as the function
being suitably small. As an optimization, inlining is carried out only within each object
file. The inline keyword can be used to request explicitly that a specific function should
be inlined wherever possible, including its use in other files.2 The GCC Reference Manual

2 In this case, the definition of the inline function must be made available to the other files (e.g. in a
header file).

Chapter 6: Compiling with optimization 41

“Using GCC” provides full details of the inline keyword, and its use with the static and
extern qualifiers to control the linkage of explicitly inlined functions (see [Further reading],
page 89).

6.2 Speed-space tradeoffs

While some forms of optimization, such as common subexpression elimination, are able
to increase the speed and reduce the size of a program simultaneously, other types of
optimization produce faster code at the expense of increasing the size of the executable. This
choice between speed and memory is referred to as a speed-space tradeoff. Optimizations
with a speed-space tradeoff can also be used in reverse to make an executable smaller, at
the expense of making it run slower.

6.2.1 Loop unrolling

A prime example of an optimization with a speed-space tradeoff is loop unrolling. This
form of optimization increases the speed of loops by eliminating the “end of loop” condition
on each iteration. For example, the following loop from 0 to 7 tests the condition i < 8 on
each iteration:

for (i = 0; i < 8; i++)

{

y[i] = i;

}

At the end of the loop, this test will have been performed 9 times, and a large fraction of
the run time will have been spent checking it.

A more efficient way to write the same code is simply to unroll the loop and execute the
assignments directly:

y[0] = 0;

y[1] = 1;

y[2] = 2;

y[3] = 3;

y[4] = 4;

y[5] = 5;

y[6] = 6;

y[7] = 7;

This form of the code does not require any tests, and executes at maximum speed. Since
each assignment is independent, it also allows the compiler to use parallelism on processors
that support it. Loop unrolling is an optimization that increases the speed of the resulting
executable but also generally increases its size (unless the loop is very short, with only one
or two iterations, for example).

Loop unrolling is also possible when the upper bound of the loop is unknown, provided
the start and end conditions are handled correctly. For example, the same loop with an
arbitrary upper bound,

for (i = 0; i < n; i++)

{

y[i] = i;

}

Chapter 6: Compiling with optimization 42

can be rewritten by the compiler as follows:

for (i = 0; i < (n % 2); i++)

{

y[i] = i;

}

for (; i + 1 < n; i += 2) /* no initializer */

{

y[i] = i;

y[i+1] = i+1;

}

The first loop handles the case i = 0 when n is odd, and the second loop handles all the
remaining iterations. Note that the second loop does not use an initializer in the first argu-
ment of the for statement, since it continues where the first loop finishes. The assignments
in the second loop can be parallelized, and the overall number of tests is reduced by a factor
of 2 (approximately). Higher factors can be achieved by unrolling more assignments inside
the loop, at the cost of greater code size.

6.3 Scheduling

The lowest level of optimization is scheduling, in which the compiler determines the best
ordering of individual instructions. Most CPUs allow one or more new instructions to start
executing before others have finished. Many CPUs also support pipelining, where multiple
instructions execute in parallel on the same CPU.

When scheduling is enabled, instructions must be arranged so that their results become
available to later instructions at the right time, and to allow for maximum parallel execution.
Scheduling improves the speed of an executable without increasing its size, but requires
additional memory and time in the compilation process itself (due to its complexity).

6.4 Optimization levels

In order to control compilation-time and compiler memory usage, and the trade-offs between
speed and space for the resulting executable, GCC provides a range of general optimization
levels, numbered from 0–3, as well as individual options for specific types of optimization.

An optimization level is chosen with the command line option ‘-OLEVEL ’, where LEVEL

is a number from 0 to 3. The effects of the different optimization levels are described below:

‘-O0’ or no ‘-O’ option (default)
At this optimization level GCC does not perform any optimization and compiles
the source code in the most straightforward way possible. Each command
in the source code is converted directly to the corresponding instructions in
the executable file, without rearrangement. This is the best option to use
when debugging a program and is the default if no optimization level option is
specified.

‘-O1’ or ‘-O’
This level turns on the most common forms of optimization that do not require
any speed-space tradeoffs. With this option the resulting executables should be

Chapter 6: Compiling with optimization 43

smaller and faster than with ‘-O0’. The more expensive optimizations, such as
instruction scheduling, are not used at this level.

Compiling with the option ‘-O1’ can often take less time than compiling with
‘-O0’, due to the reduced amounts of data that need to be processed after simple
optimizations.

‘-O2’ This option turns on further optimizations, in addition to those used by ‘-O1’.
These additional optimizations include instruction scheduling. Only optimiza-
tions that do not require any speed-space tradeoffs are used, so the executable
should not increase in size. The compiler will take longer to compile programs
and require more memory than with ‘-O1’. This option is generally the best
choice for deployment of a program, because it provides maximum optimization
without increasing the executable size. It is the default optimization level for
releases of GNU packages.

‘-O3’ This option turns on more expensive optimizations, such as function inlining, in
addition to all the optimizations of the lower levels ‘-O2’ and ‘-O1’. The ‘-O3’
optimization level may increase the speed of the resulting executable, but can
also increase its size. Under some circumstances where these optimizations are
not favorable, this option might actually make a program slower.

‘-funroll-loops’
This option turns on loop-unrolling, and is independent of the other optimiza-
tion options. It will increase the size of an executable. Whether or not this
option produces a beneficial result has to be examined on a case-by-case basis.

‘-Os’ This option selects optimizations which reduce the size of an executable. The
aim of this option is to produce the smallest possible executable, for systems
constrained by memory or disk space. In some cases a smaller executable will
also run faster, due to better cache usage.

It is important to remember that the benefit of optimization at the highest levels must be
weighed against the cost. The cost of optimization includes greater complexity in debugging,
and increased time and memory requirements during compilation. For most purposes it is
satisfactory to use ‘-O0’ for debugging, and ‘-O2’ for development and deployment.

6.5 Examples

The following program will be used to demonstrate the effects of different optimization
levels:

#include <stdio.h>

double

powern (double d, unsigned n)

{

double x = 1.0;

unsigned j;

for (j = 1; j <= n; j++)

x *= d;

Chapter 6: Compiling with optimization 44

return x;

}

int

main (void)

{

double sum = 0.0;

unsigned i;

for (i = 1; i <= 100000000; i++)

{

sum += powern (i, i % 5);

}

printf ("sum = %g\n", sum);

return 0;

}

The main program contains a loop calling the powern function. This function computes
the n-th power of a floating point number by repeated multiplication—it has been chosen
because it is suitable for both inlining and loop-unrolling. The run-time of the program can
be measured using the time command in the GNU Bash shell.

Here are some results for the program above, compiled on a 566 MHz Intel Celeron with
16 KB L1-cache and 128 KB L2-cache, using GCC 3.3.1 on a GNU/Linux system:

$ gcc -Wall -O0 optim.c -lm

$ time ./a.out

real 0m13.388s

user 0m13.370s

sys 0m0.010s

$ gcc -Wall -O1 optim.c -lm

$ time ./a.out

real 0m10.030s

user 0m10.030s

sys 0m0.000s

$ gcc -Wall -O2 optim.c -lm

$ time ./a.out

real 0m8.388s

user 0m8.380s

sys 0m0.000s

$ gcc -Wall -O3 optim.c -lm

$ time ./a.out

real 0m6.742s

user 0m6.730s

Chapter 6: Compiling with optimization 45

sys 0m0.000s

$ gcc -Wall -O3 -funroll-loops optim.c -lm

$ time ./a.out

real 0m5.412s

user 0m5.390s

sys 0m0.000s

The relevant entry in the output for comparing the speed of the resulting executables is the
‘user’ time, which gives the actual CPU time spent running the process. The other rows,
‘real’ and ‘sys’, record the total real time for the process to run (including times where
other processes were using the CPU) and the time spent waiting for operating system calls.
Although only one run is shown for each case above, the benchmarks were executed several
times to confirm the results.

From the results it can be seen in this case that increasing the optimization level with
‘-O1’, ‘-O2’ and ‘-O3’ produces an increasing speedup, relative to the unoptimized code
compiled with ‘-O0’. The additional option ‘-funroll-loops’ produces a further speedup.
The speed of the program is more than doubled overall, when going from unoptimized code
to the highest level of optimization.

Note that for a small program such as this there can be considerable variation between
systems and compiler versions. For example, on a Mobile 2.0 GHz Intel Pentium 4M system
the trend of the results using the same version of GCC is similar except that the perfor-
mance with ‘-O2’ is slightly worse than with ‘-O1’. This illustrates an important point:
optimizations may not necessarily make a program faster in every case.

6.6 Optimization and debugging

With GCC it is possible to use optimization in combination with the debugging option ‘-g’.
Many other compilers do not allow this.

When using debugging and optimization together, the internal rearrangements carried
out by the optimizer can make it difficult to see what is going on when examining an
optimized program in the debugger. For example, temporary variables are often eliminated,
and the ordering of statements may be changed.

However, when a program crashes unexpectedly, any debugging information is better
than none—so the use of ‘-g’ is recommended for optimized programs, both for development
and deployment. The debugging option ‘-g’ is enabled by default for releases of GNU
packages, together with the optimization option ‘-O2’.

6.7 Optimization and compiler warnings

When optimization is turned on, GCC can produce additional warnings that do not appear
when compiling without optimization.

As part of the optimization process, the compiler examines the use of all variables and
their initial values—this is referred to as data-flow analysis. It forms the basis for other
optimization strategies, such as instruction scheduling. A side-effect of data-flow analysis
is that the compiler can detect the use of uninitialized variables.

The ‘-Wuninitialized’ option (which is included in ‘-Wall’) warns about variables
that are read without being initialized. It only works when the program is compiled with

Chapter 6: Compiling with optimization 46

optimization, so that data-flow analysis is enabled. The following function contains an
example of such a variable:

int

sign (int x)

{

int s;

if (x > 0)

s = 1;

else if (x < 0)

s = -1;

return s;

}

The function works correctly for most arguments, but has a bug when x is zero—in this
case the return value of the variable s will be undefined.

Compiling the program with the ‘-Wall’ option alone does not produce any warnings,
because data-flow analysis is not carried out without optimization:

$ gcc -Wall -c uninit.c

To produce a warning, the program must be compiled with ‘-Wall’ and optimization si-
multaneously. In practice, the optimization level ‘-O2’ is needed to give good warnings:

$ gcc -Wall -O2 -c uninit.c

uninit.c: In function ‘sign’:

uninit.c:4: warning: ‘s’ might be used uninitialized

in this function

This correctly detects the possibility of the variable s being used without being defined.

Note that while GCC will usually find most uninitialized variables, it does so using
heuristics which will occasionally miss some complicated cases or falsely warn about others.
In the latter situation, it is often possible to rewrite the relevant lines in a simpler way that
removes the warning and improves the readability of the source code.

Chapter 7: Compiling a C++ program 47

7 Compiling a C++ program

This chapter describes how to use GCC to compile programs written in C++, and the
command-line options specific to that language.

The GNU C++ compiler provided by GCC is a true C++ compiler—it compiles C++
source code directly into assembly language. Some other C++ “compilers” are translators
which convert C++ programs into C, and then compile the resulting C program using an
existing C compiler. A true C++ compiler, such as GCC, is able to provide better support
for error reporting, debugging and optimization.

7.1 Compiling a simple C++ program

The procedure for compiling a C++ program is the same as for a C program, but uses the
command g++ instead of gcc. Both compilers are part of the GNU Compiler Collection.

To demonstrate the use of g++, here is a version of the Hello World program written in
C++:

#include <iostream>

int

main ()

{

std::cout << "Hello, world!\n";

return 0;

}

The program can be compiled with the following command line:

$ g++ -Wall hello.cc -o hello

The C++ frontend of GCC uses many of the same the same options as the C compiler gcc.
It also supports some additional options for controlling C++ language features, which will
be described in this chapter. Note that C++ source code should be given one of the valid
C++ file extensions ‘.cc’, ‘.cpp’, ‘.cxx’ or ‘.C’ rather than the ‘.c’ extension used for C
programs.

The resulting executable can be run in exactly same way as the C version, simply by
typing its filename:

$./hello

Hello, world!

The executable produces the same output as the C version of the program, using std::cout

instead of the C printf function. All the options used in the gcc commands in previous
chapters apply to g++ without change, as do the procedures for compiling and linking files
and libraries (using g++ instead of gcc, of course). One natural difference is that the ‘-ansi’
option requests compliance with the C++ standard, instead of the C standard, when used
with g++.

Note that programs using C++ object files must always be linked with g++, in order
to supply the appropriate C++ libraries. Attempting to link a C++ object file with the C
compiler gcc will cause “undefined reference” errors for C++ standard library functions:

Chapter 7: Compiling a C++ program 48

$ g++ -Wall -c hello.cc

$ gcc hello.o (should use g++)
hello.o: In function ‘main’:

hello.o(.text+0x1b): undefined reference to ‘std::cout’

.....

hello.o(.eh_frame+0x11):

undefined reference to ‘__gxx_personality_v0’

Undefined references to internal run-time library functions, such as __gxx_personality_

v0, are also a symptom of linking C++ object files with gcc instead of g++. Linking the
same object file with g++ supplies all the necessary C++ libraries and will produce a working
executable:

$ g++ hello.o

$./a.out

Hello, world!

A point that sometimes causes confusion is that gcc will actually compile C++ source code
when it detects a C++ file extension, but cannot then link the resulting object files.

$ gcc -Wall -c hello.cc (succeeds, even for C++)
$ gcc hello.o

hello.o: In function ‘main’:

hello.o(.text+0x1b): undefined reference to ‘std::cout’

To avoid this problem, use g++ consistently for C++ programs and gcc for C programs.

7.2 C++ compilation options

Most GCC options can be used for both C and C++ programs, but there are also a few
options which are specific to each language. This section describes some of the additional
options, and enhancements to existing options, that are available in g++.

‘-Wall’ and ‘-W’
When compiling with g++, the options ‘-Wall’ and ‘-W’ include extra warnings
specific to C++ (the warnings relate to member functions and virtual classes).
The use of these options is always recommended while developing a program.

‘-fno-default-inline’
This option disables the default inlining of member functions defined in the
bodies of C++ classes. GCC normally inlines all such functions when optimiza-
tion is turned on, even if they do not explicitly use the inline keyword. Select
this option if you prefer to control inlining yourself, or want to set a breakpoint
on member functions that would otherwise be inlined (since it is not possible
to set a breakpoint on an inlined function).

‘-Weffc++’
This option warns about C++ code which breaks some of the programming
guidelines given in the books “Effective C++” and “More Effective C++” by
Scott Meyers. For example, a warning will be given if a class which uses dy-
namically allocated memory does not define a copy constructor and an assign-
ment operator. Note that the standard library header files do not follow these

Chapter 7: Compiling a C++ program 49

guidelines, so you may wish to use this option as an occasional test for possible
problems in your own code rather than compiling with it all the time.

‘-Wold-style-cast’
This option highlights any uses of C-style casts in C++ programs. The C++ lan-
guage provides the keywords static_cast, dynamic_cast, reinterpret_cast
and const_cast for handling casts and these are often preferable (although
C-style casts are still allowed).

7.3 Using the C++ standard library

An implementation of the C++ standard library is provided as a part of GCC. The following
program uses the standard library string class to reimplement the Hello World program:

#include <string>

#include <iostream>

using namespace std;

int

main ()

{

string s1 = "Hello,";

string s2 = "World!";

cout << s1 + " " + s2 << ’\n’;

return 0;

}

The program can be compiled and run using the same commands as above:

$ g++ -Wall hellostr.cc

$./a.out

Hello, World!

Note that in accordance with the C++ standard, the header files for the C++ library itself
do not use a file extension. The classes in the library are also defined in the std namespace,
so the directive using namespace std is needed to access them, unless the prefix std:: is
used throughout (as in the previous section).

7.4 Templates

Templates provide the ability to define C++ classes which support generic programming
techniques. Templates can be considered as a powerful kind of macro facility. When a
templated class or function is used with a specific class or type, such as float or int,
the corresponding template code is compiled with that type substituted in the appropriate
places.

7.4.1 Using C++ standard library templates

The C++ standard library ‘libstdc++’ supplied with GCC provides a wide range of generic
container classes such as lists and queues, in addition to generic algorithms such as sorting.
These classes were originally part of the Standard Template Library (STL), which was a
separate package, but are now included in the C++ standard library itself.

Chapter 7: Compiling a C++ program 50

The following program demonstrates the use of the template library by creating a list of
strings with the template list<string>:

#include <list>

#include <string>

#include <iostream>

using namespace std;

int

main ()

{

list<string> list;

list.push_back("Hello");

list.push_back("World");

cout << "List size = " << list.size() << ’\n’;

return 0;

}

No special options are needed to use the template classes in the standard library; the
command-line options for compiling this program are the same as before:

$ g++ -Wall string.cc

$./a.out

List size = 2

Note that the executables created by g++ using the C++ standard library will be linked to the
shared library ‘libstdc++’, which is supplied as part of the default GCC installation. There
are several versions of this library—if you distribute executables using the C++ standard
library you need to ensure that the recipient has a compatible version of ‘libstdc++’, or
link your program statically using the command-line option ‘-static’.

7.4.2 Providing your own templates

In addition to the template classes provided by the C++ standard library you can define
your own templates. The recommended way to use templates with g++ is to follow the
inclusion compilation model, where template definitions are placed in header files. This is
the method used by the C++ standard library supplied with GCC itself. The header files
can then be included with ‘#include’ in each source file where they are needed.

For example, the following template file creates a simple Buffer<T> class which repre-
sents a circular buffer holding objects of type T.

#ifndef BUFFER_H

#define BUFFER_H

template <class T>

class Buffer

{

public:

Buffer (unsigned int n);

void insert (const T & x);

Chapter 7: Compiling a C++ program 51

T get (unsigned int k) const;

private:

unsigned int i;

unsigned int size;

T *pT;

};

template <class T>

Buffer<T>::Buffer (unsigned int n)

{

i = 0;

size = n;

pT = new T[n];

};

template <class T>

void

Buffer<T>::insert (const T & x)

{

i = (i + 1) % size;

pT[i] = x;

};

template <class T>

T

Buffer<T>::get (unsigned int k) const

{

return pT[(i + (size - k)) % size];

};

#endif /* BUFFER_H */

The file contains both the declaration of the class and the definitions of the member func-
tions. This class is only given for demonstration purposes and should not be considered an
example of good programming. Note the use of include guards, which test for the presence
of the macro BUFFER_H, ensuring that the definitions in the header file are only parsed once
if the file is included multiple times in the same context.

The program below uses the templated Buffer class to create a buffer of size 10, storing
the floating point values 0.25 and 1.25 in the buffer:

#include <iostream>

#include "buffer.h"

using namespace std;

int

main ()

{

Chapter 7: Compiling a C++ program 52

Buffer<float> f(10);

f.insert (0.25);

f.insert (1.0 + f.get(0));

cout << "stored value = " << f.get(0) << ’\n’;

return 0;

}

The definitions for the template class and its functions are included in the source file for
the program with ‘#include "buffer.h"’ before they are used. The program can then be
compiled using the following command line:

$ g++ -Wall tprog.cc

$./a.out

stored value = 1.25

At the points where the template functions are used in the source file, g++ compiles the
appropriate definition from the header file and places the compiled function in the corre-
sponding object file.

If a template function is used several times in a program it will be stored in more than
one object file. The GNU Linker ensures that only one copy is placed in the final executable.
Other linkers may report “multiply defined symbol” errors when they encounter more than
one copy of a template function—a method of working with these linkers is described below.

7.4.3 Explicit template instantiation

To achieve complete control over the compilation of templates with g++ it is possible
to require explicit instantiation of each occurrence of a template, using the option
‘-fno-implicit-templates’. This method is not needed when using the GNU Linker—it
is an alternative provided for systems with linkers which cannot eliminate duplicate
definitions of template functions in object files.

In this approach, template functions are no longer compiled at the point where they are
used, as a result of the ‘-fno-implicit-templates’ option. Instead, the compiler looks
for an explicit instantiation of the template using the template keyword with a specific
type to force its compilation (this is a GNU extension to the standard behavior). These
instantiations are typically placed in a separate source file, which is then compiled to make
an object file containing all the template functions required by a program. This ensures
that each template appears in only one object file, and is compatible with linkers which
cannot eliminate duplicate definitions in object files.

For example, the following file ‘templates.cc’ contains an explicit instantiation of the
Buffer<float> class used by the program ‘tprog.cc’ given above:

#include "buffer.h"

template class Buffer<float>;

The whole program can be compiled and linked using explicit instantiation with the follow-
ing commands:

$ g++ -Wall -fno-implicit-templates -c tprog.cc

$ g++ -Wall -fno-implicit-templates -c templates.cc

$ g++ tprog.o templates.o

$./a.out

stored value = 1.25

Chapter 7: Compiling a C++ program 53

The object code for all the template functions is contained in the file ‘templates.o’.
There is no object code for template functions in ‘tprog.o’ when it is compiled with the
‘-fno-implicit-templates’ option.

If the program is modified to use additional types, then further explicit instantiations can
be added to the file ‘templates.cc’. For example, the following code adds instantiations
for Buffer objects containing double and int values:

#include "buffer.h"

template class Buffer<float>;

template class Buffer<double>;

template class Buffer<int>;

The disadvantage of explicit instantiation is that it is necessary to know which template
types are needed by the program. For a complicated program this may be difficult to
determine in advance. Any missing template instantiations can be determined at link time,
however, and added to the list of explicit instantiations, by noting which functions are
undefined.

Explicit instantiation can also be used to make libraries of precompiled template func-
tions, by creating an object file containing all the required instantiations of a template
function (as in the file ‘templates.cc’ above). For example, the object file created from
the template instantiations above contains the machine code needed for Buffer classes with
‘float’, ‘double’ and ‘int’ types, and could be distributed in a library.

7.4.4 The export keyword

At the time of writing, GCC does not support the new C++ export keyword (GCC 3.4.4).

This keyword was proposed as a way of separating the interface of templates from their
implementation. However it adds its own complexity to the linking process, which can
detract from any advantages in practice.

The export keyword is not widely used, and most other compilers do not support it
either. The inclusion compilation model described earlier is recommended as the simplest
and most portable way to use templates.

Chapter 8: Platform-specific options 54

8 Platform-specific options

GCC provides a range of platform-specific options for different types of CPUs. These options
control features such as hardware floating-point modes, and the use of special instructions
for different CPUs. They can be selected with the ‘-m’ option on the command line, and
work with all the GCC language frontends, such as gcc and g++.

The following sections describe some of the options available for common platforms. A
complete list of all platform-specific options can be found in the GCC Reference Manual,
“Using GCC” (see [Further reading], page 89). Support for new processors is added to
GCC as they become available, therefore some of the options described in this chapter may
not be found in older versions of GCC.

8.1 Intel and AMD x86 options

The features of the widely used Intel and AMD x86 families of processors (386, 486, Pentium,
etc) can be controlled with GCC platform-specific options.

On these platforms, GCC produces executable code which is compatible with all the
processors in the x86 family by default—going all the way back to the 386. However, it is
also possible to compile for a specific processor to obtain better performance.1

For example, recent versions of GCC have specific support for newer processors such as
the Pentium 4 and AMD Athlon. These can be selected with the following option for the
Pentium 4,

$ gcc -Wall -march=pentium4 hello.c

and for the Athlon:

$ gcc -Wall -march=athlon hello.c

A complete list of supported CPU types can be found in the GCC Reference Manual.

Code produced with a specific ‘-march=CPU ’ option will be faster but will not run on
other processors in the x86 family. If you plan to distribute executable files for general use
on Intel and AMD processors they should be compiled without any ‘-march’ options.

As an alternative, the ‘-mcpu=CPU ’ option provides a compromise between speed and
portability—it generates code that is tuned for a specific processor, in terms of instruction
scheduling, but does not use any instructions which are not available on other CPUs in the
x86 family.2 The resulting code will be compatible with all the CPUs, and have a speed
advantage on the CPU specified by ‘-mcpu’. The executables generated by ‘-mcpu’ cannot
achieve the same performance as ‘-march’, but may be more convenient in practice.

8.1.1 x86 extensions

GCC can take advantage of the additional instructions in the MMX, SSE, SSE2, SSE3
and 3dnow extensions of recent Intel and AMD processors. The options ‘-mmmx’, ‘-msse’,
‘-msse2’, ‘-msse3’ and ‘-m3dnow’ enable the use of these extra instructions, allowing mul-
tiple words of data to be processed in parallel. The resulting executables will only run on

1 Also referred to as “targeting” a specific processor.
2 In recent versions of GCC this option has been renamed to ‘-mtune’. The older form ‘-mcpu’ will continue

to work.

Chapter 8: Platform-specific options 55

processors supporting the appropriate extensions—on other systems they will crash with
an Illegal instruction error (or similar).3

The option ‘-mfpmath=sse’ instructs GCC to use the SSE extensions for floating-point
arithmetic where possible. For this option to take effect, the SSE or SSE2 extensions must
first be enabled with ‘-msse’ or ‘-msse2’.

Note that the plain SSE extensions only support single precision operations—double
precision arithmetic is part of SSE2. Since most C and C++ programs declare floating-point
variables as double rather than float, the combined options -msse2 -mfpmath=sse are
usually needed. On 64-bit processors these options are enabled by default.

8.1.2 x86 64-bit processors

AMD has enhanced the 32-bit x86 instruction set to a 64-bit instruction set called x86-64,
which is implemented in their AMD64 processors.4 On AMD64 systems GCC generates
64-bit code by default. The option ‘-m32’ allows 32-bit code to be generated instead.

The AMD64 processor has several different memory models for programs running in
64-bit mode. The default model is the small code model, which allows code and data up to
2 GB in size. The medium code model allows unlimited data sizes and can be selected with
‘-mcmodel=medium’. There is also a large code model, which supports an unlimited code
size in addition to unlimited data size. It is not currently implemented in GCC since the
medium code model is sufficient for all practical purposes—executables with sizes greater
than 2 GB are not encountered in practice.

A special kernel code model ‘-mcmodel=kernel’ is provided for system-level code, such
as the Linux kernel. An important point to note is that by default on the AMD64 there is
a 128-byte area of memory allocated below the stack pointer for temporary data, referred
to as the “red-zone”, which is not supported by the Linux kernel. Compilation of the Linux
kernel on the AMD64 requires the options ‘-mcmodel=kernel -mno-red-zone’.

8.2 DEC Alpha options

The DEC Alpha processor has default settings which maximize floating-point performance,
at the expense of full support for IEEE arithmetic features.

Support for infinity arithmetic and gradual underflow (denormalized numbers) is not en-
abled in the default configuration on the DEC Alpha processor. Operations which produce
infinities or underflows will generate floating-point exceptions (also known as traps), and
cause the program to terminate, unless the operating system catches and handles the excep-
tions (which is, in general, inefficient). The IEEE standard specifies that these operations
should produce special results to represent the quantities in the IEEE numeric format.

In most cases the DEC Alpha default behavior is acceptable, since the majority of
programs do not produce infinities or underflows. For applications which require these
features, GCC provides the option ‘-mieee’ to enable full support for IEEE arithmetic.

To demonstrate the difference between the two cases the following program divides 1 by
0:

3 On GNU/Linux systems, the command cat /proc/cpuinfo will display information about the CPU.
4 Intel has added support for this instruction set as the “Intel 64-bit enhancements” on their Xeon CPUs.

Chapter 8: Platform-specific options 56

#include <stdio.h>

int

main (void)

{

double x = 1.0, y = 0.0;

printf ("x/y = %g\n", x / y);

return 0;

}

In IEEE arithmetic the result of 1/0 is inf (Infinity). If the program is compiled for the
Alpha processor with the default settings it generates an exception, which terminates the
program:

$ gcc -Wall alpha.c

$./a.out

Floating point exception (on an Alpha processor)

Using the ‘-mieee’ option ensures full IEEE compliance – the division 1/0 correctly produces
the result inf and the program continues executing successfully:

$ gcc -Wall -mieee alpha.c

$./a.out

x/y = inf

Note that programs which generate floating-point exceptions run more slowly when compiled
with ‘-mieee’, because the exceptions are handled in software rather than hardware.

8.3 SPARC options

On the SPARC range of processors the ‘-mcpu=CPU ’ option generates processor-specific
code. The valid options for CPU are v7, v8 (SuperSPARC), Sparclite, Sparclet and
v9 (UltraSPARC). Code produced with a specific ‘-mcpu’ option will not run on other
processors in the SPARC family, except where supported by the backwards-compatibility
of the processor itself.

On 64-bit UltraSPARC systems the options ‘-m32’ and ‘-m64’ control code generation
for 32-bit or 64-bit environments. The 32-bit environment selected by ‘-m32’ uses int, long
and pointer types with a size of 32 bits. The 64-bit environment selected by ‘-m64’ uses a
32-bit int type and 64-bit long and pointer types.

8.4 POWER/PowerPC options

On systems using the POWER/PowerPC family of processors the option ‘-mcpu=CPU ’ selects
code generation for specific CPU models. The possible values of CPU include ‘power’,
‘power2’, ‘powerpc’, ‘powerpc64’ and ‘common’, in addition to other more specific model
numbers. Code generated with the option ‘-mcpu=common’ will run on any of the processors.
The option ‘-maltivec’ enables use of the Altivec vector processing instructions, if the
appropriate hardware support is available.

The POWER/PowerPC processors include a combined “multiply and add” instruction
a ∗ x + b, which performs the two operations simultaneously for speed—this is referred
to as a fused multiply and add, and is used by GCC by default. Due to differences in

Chapter 8: Platform-specific options 57

the way intermediate values are rounded, the result of a fused instruction may not be
exactly the same as performing the two operations separately. In cases where strict IEEE
arithmetic is required, the use of the combined instructions can be disabled with the option
‘-mno-fused-madd’.

On AIX systems, the option ‘-mminimal-toc’ decreases the number of entries GCC puts
in the global table of contents (TOC) in executables, to avoid “TOC overflow” errors at
link time. The option ‘-mxl-call’ makes the linking of object files from GCC compatible
with those from IBM’s XL compilers. For applications using POSIX threads, AIX always
requires the option ‘-pthread’ when compiling, even when the program will only run in
single-threaded mode.

8.5 Multi-architecture support

A number of platforms can execute code for more than one architecture. For example,
64-bit platforms such as AMD64, MIPS64, Sparc64, and PowerPC64 support the execution
of both 32-bit and 64-bit code. Similarly, ARM processors support both ARM code and a
more compact code called “Thumb”. GCC can be built to support multiple architectures
on these platforms. By default, the compiler will generate 64-bit object files, but giving the
‘-m32’ option will generate a 32-bit object file for the corresponding architecture.5

Note that support for multiple architectures depends on the corresponding libraries being
available. On 64-bit platforms supporting both 64 and 32-bit executables, the 64-bit libraries
are often placed in ‘lib64’ directories instead of ‘lib’ directories, e.g. in ‘/usr/lib64’ and
‘/lib64’. The 32-bit libraries are then found in the default ‘lib’ directories as on other
platforms. This allows both a 32-bit and a 64-bit library with the same name to exist on
the same system. Other systems, such as the IA64/Itanium, use the directories ‘/usr/lib’
and ‘/lib’ for 64-bit libraries. GCC knows about these paths and uses the appropriate
path when compiling 64-bit or 32-bit code.

8.6 Floating-point issues

The IEEE-754 standard defines the bit-level behavior of floating-point arithmetic operations
on all modern processors. This allows numerical programs to be ported between different
platforms with identical results, in principle. In practice, there are often minor variations
caused by differences in the order of operations (depending on the compiler and optimization
level) but these are generally not significant.

However, more noticeable discrepancies can be seen when porting numerical programs
between x86 systems and other platforms, because the the x87 floating point unit (FPU)
on x86 processors computes results using extended precision internally (the values being
converted to double precision only when they are stored to memory). In contrast, pro-
cessors such as SPARC, PA-RISC, Alpha, MIPS and POWER/PowerPC work with native
double-precision values throughout.6 The differences between these implementations lead
to changes in rounding and underflow/overflow behavior, because intermediate values have

5 The options ‘-maix64’ and ‘-maix32’ are used on AIX.
6 Motorola 68k processors also use extended precision registers, like the x86.

Chapter 8: Platform-specific options 58

a greater relative precision and exponent range when computed in extended precision.7 In
particular, comparisons involving extended precision values may fail where the equivalent
double precision values would compare equal.

To avoid these incompatibilities, the x87 FPU also offers a hardware double-precision
rounding mode. In this mode the results of each extended-precision floating-point operation
are rounded to double precision in the floating-point registers by the FPU. It is important
to note that the rounding only affects the precision, not the exponent range, so the result
is a hybrid double-precision format with an extended range of exponents.

On BSD systems such as FreeBSD, NetBSD and OpenBSD, the hardware double-
precision rounding mode is the default, giving the greatest compatibility with native
double precision platforms. On x86 GNU/Linux systems the default mode is extended
precision (with the aim of providing increased accuracy). To enable the double-precision
rounding mode it is necessary to override the default setting on per-process basis using
the fldcw “floating-point load control-word” machine instruction.8 A simple function
which can be called to execute this instruction is shown below. It uses the GCC extension
keyword asm to insert the specified instruction in the assembly language output:

void

set_fpu (unsigned int mode)

{

asm ("fldcw %0" : : "m" (*&mode));

}

The appropriate mode setting for double-precision rounding is 0x27F. The mode value also
controls the floating-point exception handling behavior and rounding-direction (see the Intel
and AMD processor reference manuals for details).

On x86 GNU/Linux, the function above can be called at the start of any program to
disable excess precision. This will then reproduce the results of native double-precision
processors, in the absence of underflows and overflows.

The following program demonstrates the different rounding modes:

#include <stdio.h>

void

set_fpu (unsigned int mode)

{

asm ("fldcw %0" : : "m" (*&mode));

}

int

main (void)

{

double a = 3.0, b = 7.0, c;

7 For quantities held in the x87 extended-precision registers the relative precision is 5.42× 10−20 and the
exponent range is 10±4932. Standard double precision values have a relative precision of 2.22 × 10−16

and an exponent range of 10±308.
8 The operating system saves and restores the control word when switching between processes, so that

each process maintains its own setting.

Chapter 8: Platform-specific options 59

#ifdef DOUBLE

set_fpu (0x27F); /* use double-precision rounding */

#endif

c = a / b;

if (c == a / b) {

printf ("comparison succeeds\n");

} else {

printf ("unexpected result\n");

}

return 0;

}

On x86 GNU/Linux systems the comparison c == a / b can produce an unexpected result
if c is taken from memory (double precision) while a / b is computed in extended precision,
because the fraction 3/7 has different representations in double and extended precision.

$ gcc -Wall fptest.c

$./a.out

unexpected result

Setting the hardware rounding mode to double precision prevents this from happening:

$ gcc -Wall -DDOUBLE fptest.c

$./a.out

comparison succeeds

Note that the floating-point control word affects the whole environment of the process,
including any C Library functions that are called. One consequence of this is that long

double arithmetic is effectively reduced to double precision, since it relies on extended
precision operations.

The floating point control word only affects the behavior of the x87 FPU. Floating point
operations computed with SSE and SSE2 instructions are always carried out in native
double precision. Thus, the combined options

$ gcc -Wall -msse2 -mfpmath=sse ...

are often sufficient to remove the effects of extended-precision. However, some operations
(such as transcendental functions) are not available in the SSE/SSE2 extensions and will
still be computed on the x87 FPU.

8.7 Portability of signed and unsigned types

The C and C++ standards allows the character type char to be signed or unsigned, depend-
ing on the platform and compiler. Most systems, including x86 GNU/Linux and Microsoft
Windows, use signed char, but those based on PowerPC and arm processors typically
use unsigned char.9 This can lead to unexpected results when porting programs between
platforms which have different defaults for the type of char.

The following code demonstrates the difference between platforms with signed and un-
signed char types:

9 MacOS X (Darwin) on PowerPC uses signed char, for consistency with other Darwin architectures.

Chapter 8: Platform-specific options 60

#include <stdio.h>

int

main (void)

{

char c = 255;

if (c > 128) {

printf ("char is unsigned (c = %d)\n", c);

} else {

printf ("char is signed (c = %d)\n", c);

}

return 0;

}

With an unsigned char, the variable c takes the value 255, but with a signed char it
becomes −1.

The correct way to manipulate char variables in C is through the portable functions
declared in ‘ctype.h’, such as isalpha, isdigit and isblank, rather than by their numer-
ical values. The behavior of non-portable conditional expressions such as c > ’a’ depends
on the signedness of the char type. If the signed or unsigned version of char is explicitly
required at certain points in a program, it can be specified using the declarations signed

char or unsigned char.

For existing programs which assume that char is signed or unsigned, GCC provides the
options ‘-fsigned-char’ and ‘-funsigned-char’ to set the default type of char. Using
these options, the example code above compiles cleanly when char is unsigned:

$ gcc -Wall -funsigned-char signed.c

$./a.out

char is unsigned (c = 255)

However, when char is signed the value 255 wraps around to −1, giving a warning:

$ gcc -Wall -fsigned-char signed.c

signed.c: In function ‘main’:

signed.c:7: warning: comparison is always false due to

limited range of data type

$./a.out

char is signed (c = -1)

The warning message “comparison is always true/false due to limited range of data type” is
one symptom of code which assumes a definition of char which is different from the actual
type.

The most common problem with code written assuming signed char types occurs with
the functions getc, fgetc and getchar (which read a character from a file). They have
a return type of int, not char, and this allows them to use the special value −1 (defined
as EOF) to indicate an end-of-file error. Unfortunately, many programs have been written
which incorrectly store this return value straight into a char variable. Here is a typical
example:

#include <stdio.h>

Chapter 8: Platform-specific options 61

int

main (void)

{

char c;

while ((c = getchar()) != EOF) /* not portable */

{

printf ("read c = ’%c’\n", c);

}

return 0;

}

This only works on platforms which default to a signed char type.10 On platforms which
use an unsigned char the same code will fail, because the value −1 becomes 255 when
stored in an unsigned char. This usually causes an infinite loop because the end of the
file cannot be recognized.11 To be portable, the program should test the return value as an
integer before coercing it to a char, as follows:

#include <stdio.h>

int

main (void)

{

int i;

while ((i = getchar()) != EOF)

{

unsigned char c = i;

printf ("read c = ’%c’\n", c);

}

return 0;

}

The same considerations described in this section apply to the definitions of bitfields in
structs, which can be signed or unsigned by default. In GCC, the default type of bitfields
can be controlled using the options ‘-fsigned-bitfields’ and ‘-funsigned-bitfields’.

10 There is also a subtle error even on platforms with signed char—the ascii character 255 is spuriously
interpreted as an end of file condition.

11 If displayed, character code 255 often appears as ÿ.

Chapter 9: Troubleshooting 62

9 Troubleshooting

GCC provides several help and diagnostic options to assist in troubleshooting problems
with the compilation process. All the options described in this chapter work with both gcc

and g++.

9.1 Help for command-line options

To obtain a brief reminder of various command-line options, GCC provides a help option
which displays a summary of the top-level GCC command-line options:

$ gcc --help

To display a complete list of options for gcc and its associated programs, such as the GNU
Linker and GNU Assembler, use the help option above with the verbose (‘-v’) option:

$ gcc -v --help

The complete list of options produced by this command is extremely long—you may wish
to page through it using the more command, or redirect the output to a file for reference:

$ gcc -v --help 2>&1 | more

9.2 Version numbers

You can find the version number of gcc using the version option:

$ gcc --version

gcc (GCC) 3.3.1

The version number is important when investigating compilation problems, since older
versions of GCC may be missing some features that a program uses. The version number has
the form major-version.minor-version or major-version.minor-version.micro-version, where
the additional third “micro” version number (as shown above) is used for subsequent bug-fix
releases in a release series.

More details about the version can be found using ‘-v’:

$ gcc -v

Reading specs from /usr/lib/gcc-lib/i686/3.3.1/specs

Configured with: ../configure --prefix=/usr

Thread model: posix

gcc version 3.3.1

This includes information on the build flags of the compiler itself and the installed config-
uration file, ‘specs’.

9.3 Verbose compilation

The ‘-v’ option can also be used to display detailed information about the exact sequence
of commands used to compile and link a program. Here is an example which shows the
verbose compilation of the Hello World program:

$ gcc -v -Wall hello.c

Reading specs from /usr/lib/gcc-lib/i686/3.3.1/specs

Configured with: ../configure --prefix=/usr

Thread model: posix

Chapter 9: Troubleshooting 63

gcc version 3.3.1

/usr/lib/gcc-lib/i686/3.3.1/cc1 -quiet -v -D__GNUC__=3

-D__GNUC_MINOR__=3 -D__GNUC_PATCHLEVEL__=1

hello.c -quiet -dumpbase hello.c -auxbase hello -Wall

-version -o /tmp/cceCee26.s

GNU C version 3.3.1 (i686-pc-linux-gnu)

compiled by GNU C version 3.3.1 (i686-pc-linux-gnu)

GGC heuristics: --param ggc-min-expand=51

--param ggc-min-heapsize=40036

ignoring nonexistent directory "/usr/i686/include"

#include "..." search starts here:

#include <...> search starts here:

/usr/local/include

/usr/include

/usr/lib/gcc-lib/i686/3.3.1/include

/usr/include

End of search list.

as -V -Qy -o /tmp/ccQynbTm.o /tmp/cceCee26.s

GNU assembler version 2.12.90.0.1 (i386-linux)

using BFD version 2.12.90.0.1 20020307 Debian/GNU

Linux

/usr/lib/gcc-lib/i686/3.3.1/collect2

--eh-frame-hdr -m elf_i386 -dynamic-linker

/lib/ld-linux.so.2 /usr/lib/crt1.o /usr/lib/crti.o

/usr/lib/gcc-lib/i686/3.3.1/crtbegin.o

-L/usr/lib/gcc-lib/i686/3.3.1

-L/usr/lib/gcc-lib/i686/3.3.1/../../.. /tmp/ccQynbTm.o

-lgcc -lgcc_eh -lc -lgcc -lgcc_eh

/usr/lib/gcc-lib/i686/3.3.1/crtend.o

/usr/lib/crtn.o

The output produced by ‘-v’ can be useful whenever there is a problem with the compilation
process itself. It displays the full directory paths used to search for header files and libraries,
the predefined preprocessor symbols, and the object files and libraries used for linking.

9.4 Stopping a program in an infinite loop

A program which goes into an infinite loop or “hangs” can be difficult to debug. On
most systems a foreground process can be stopped by hitting Control-C, which sends it
an interrupt signal (sigint). However, this does not help in debugging the problem—the
sigint signal terminates the process without producing a core dump. A more sophisticated
approach is to attach to the running process with a debugger and inspect it interactively.

For example, here is a simple program with an infinite loop:

int

main (void)

{

usigned int i = 0;

while (1) { i++; };

Chapter 9: Troubleshooting 64

return 0;

}

In order to attach to the program and debug it, the code should be compiled with the
debugging option ‘-g’:

$ gcc -Wall -g loop.c

$./a.out

(program hangs)

Once the executable is running we need to find its process id (pid). This can be done from
another session with the command ps x:

$ ps x

PID TTY STAT TIME COMMAND

...

891 pts/1 R 0:11 ./a.out

In this case the process id is 891, and we can now attach to it with gdb. The debugger
should be started in the directory containing the executable and its source code:1

$ gdb a.out

(gdb) attach 891

Attaching to program: a.out, process 891

Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

0x080483d4 in main () at loop.c:5

5 while (1) { i++; };

(gdb)

The output shows the line that was about to execute at the point when the debugger
attached to the process. The attached program is paused but still “live”—it can be examined
interactively and continued or terminated (with the kill command) if necessary:

(gdb) print i

$1 = 1213315528

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb)

If you want to stop a process immediately and create a core dump, the shell command kill

-3 pid (where pid is the process id) will send it a sigquit signal. The sigquit signal does
trigger a core dump, unlike sigint. Note that if core dumps were disabled when the process
was started, no core file will be produced (see Section 5.1 [Examining core files], page 34).

9.5 Preventing excessive memory usage

Sometimes a programming error will cause a process to allocate huge amounts of memory,
consuming all the ram on a system. To prevent this, the GNU Bash command ulimit -v

limit can be used to restrict the amount of virtual memory available to each process. The

1 Alternatively, the appropriate paths can be set up in gdb using the file and directory commands.

Chapter 9: Troubleshooting 65

limit is measured in kilobytes and applies to new processes started in the current shell. For
example,

$ ulimit -v 4096

will limit subsequent processes to 4 megabytes of virtual memory (4096k). By default the
limit cannot be increased in the same session once it has been applied, so it is best to start a
separate shell for reduced ulimit operations. Alternatively, you can set a soft limit (which
can be undone) with the options ‘-S -v’.

In addition to preventing run-away processes, limiting the amount of memory a program
is allowed to allocate also provides a way to test how robustly out of memory conditions
are handled. An artificially low limit can be used to simulate running out of memory—a
well-written program should not crash in this case.

The ulimit command supports other options including ‘-p’, which restricts the number
of child processes that can be created, and ‘-t’, which places a limit on the number of cpu
seconds that a process can run for. The complete list of settings can be shown with the
command ulimit -a. To display more information about the ulimit command, type help

ulimit at the Bash prompt.

Chapter 10: Compiler-related tools 66

10 Compiler-related tools

This chapter describes a number of tools which are useful in combination with GCC. These
include the GNU archiver ar, for creating libraries, and the GNU profiling and coverage
testing programs, gprof and gcov.

10.1 Creating a library with the GNU archiver

The GNU archiver ar combines a collection of object files into a single archive file, also
known as a library. An archive file is simply a convenient way of distributing a large
number of related object files together (as described earlier in Section 2.7 [Linking with
external libraries], page 11).

To demonstrate the use of the GNU archiver we will create a small library ‘libhello.a’
containing two functions hello and bye.

The first object file will be generated from the source code for the hello function, in
the file ‘hello_fn.c’ seen earlier:

#include <stdio.h>

#include "hello.h"

void

hello (const char * name)

{

printf ("Hello, %s!\n", name);

}

The second object file will be generated from the source file ‘bye_fn.c’, which contains the
new function bye:

#include <stdio.h>

#include "hello.h"

void

bye (void)

{

printf ("Goodbye!\n");

}

Both functions use the header file ‘hello.h’, now with a prototype for the function bye():

void hello (const char * name);

void bye (void);

The source code can be compiled to the object files ‘hello_fn.o’ and ‘bye_fn.o’ using the
commands:

$ gcc -Wall -c hello_fn.c

$ gcc -Wall -c bye_fn.c

These object files can be combined into a static library using the following command line:

$ ar cr libhello.a hello_fn.o bye_fn.o

Chapter 10: Compiler-related tools 67

The option ‘cr’ stands for “create and replace”.1 If the library does not exist, it is first
created. If the library already exists, any original files in it with the same names are replaced
by the new files specified on the command line. The first argument ‘libhello.a’ is the
name of the library. The remaining arguments are the names of the object files to be copied
into the library.

The archiver ar also provides a “table of contents” option ‘t’ to list the object files in
an existing library:

$ ar t libhello.a

hello_fn.o

bye_fn.o

Note that when a library is distributed, the header files for the public functions and variables
it provides should also be made available, so that the end-user can include them and obtain
the correct prototypes.

We can now write a program using the functions in the newly created library:

#include "hello.h"

int

main (void)

{

hello ("everyone");

bye ();

return 0;

}

This file can be compiled with the following command line, as described in Section 2.7
[Linking with external libraries], page 11, assuming the library ‘libhello.a’ is stored in
the current directory:

$ gcc -Wall main.c libhello.a -o hello

The main program is linked against the object files found in the library file ‘libhello.a’
to produce the final executable.

The short-cut library linking option ‘-l’ can also be used to link the program, without
needing to specify the full filename of the library explicitly:

$ gcc -Wall -L. main.c -lhello -o hello

The option ‘-L.’ is needed to add the current directory to the library search path. The
resulting executable can be run as usual:

$./hello

Hello, everyone!

Goodbye!

It displays the output from both the hello and bye functions defined in the library.

1 Note that ar does not require a prefix ‘-’ for its options.

Chapter 10: Compiler-related tools 68

10.2 Using the profiler gprof

The GNU profiler gprof is a useful tool for measuring the performance of a program—it
records the number of calls to each function and the amount of time spent there, on a per-
function basis. Functions which consume a large fraction of the run-time can be identified
easily from the output of gprof. Efforts to speed up a program should concentrate first on
those functions which dominate the total run-time.

We will use gprof to examine the performance of a small numerical program which com-
putes the lengths of sequences occurring in the unsolved Collatz conjecture in mathematics.2

The Collatz conjecture involves sequences defined by the rule:

xn+1 ←
{
xn/2 if xn is even
3xn + 1 if xn is odd

The sequence is iterated from an initial value x0 until it terminates with the value 1.
According to the conjecture, all sequences do terminate eventually—the program below
displays the longest sequences as x0 increases. The source file ‘collatz.c’ contains three
functions: main, nseq and step:

#include <stdio.h>

/* Computes the length of Collatz sequences */

unsigned int

step (unsigned int x)

{

if (x % 2 == 0)

{

return (x / 2);

}

else

{

return (3 * x + 1);

}

}

unsigned int

nseq (unsigned int x0)

{

unsigned int i = 1, x;

if (x0 == 1 || x0 == 0)

return i;

x = step (x0);

while (x != 1 && x != 0)

{

x = step (x);

i++;

}

return i;

}

2 American Mathematical Monthly, Volume 92 (1985), 3–23

Chapter 10: Compiler-related tools 69

int

main (void)

{

unsigned int i, m = 0, im = 0;

for (i = 1; i < 500000; i++)

{

unsigned int k = nseq (i);

if (k > m)

{

m = k;

im = i;

printf ("sequence length = %u for %u\n", m, im);

}

}

return 0;

}

To use profiling, the program must be compiled and linked with the ‘-pg’ profiling option:

$ gcc -Wall -c -pg collatz.c

$ gcc -Wall -pg collatz.o

This creates an instrumented executable which contains additional instructions that record
the time spent in each function.

If the program consists of more than one source file then the ‘-pg’ option should be used
when compiling each source file, and used again when linking the object files to create the
final executable (as shown above). Forgetting to link with the option ‘-pg’ is a common
error, which prevents profiling from recording any useful information.

The executable must be run to create the profiling data:

$./a.out

(normal program output is displayed)

While running the instrumented executable, profiling data is silently written to a file
‘gmon.out’ in the current directory. It can be analyzed with gprof by giving the name
of the executable as an argument:

$ gprof a.out

Flat profile:

Each sample counts as 0.01 seconds.

% cumul. self self total

time seconds seconds calls us/call us/call name

68.59 2.14 2.14 62135400 0.03 0.03 step

31.09 3.11 0.97 499999 1.94 6.22 nseq

0.32 3.12 0.01 main

The first column of the data shows that the program spends most of its time (almost 70%)
in the function step, and 30% in nseq. Consequently efforts to decrease the run-time of
the program should concentrate on the former. In comparison, the time spent within the
main function itself is completely negligible (less than 1%).

The other columns in the output provide information on the total number of function
calls made, and the time spent in each function. Additional output breaking down the

Chapter 10: Compiler-related tools 70

run-time further is also produced by gprof but not shown here. Full details can be found
in the manual “GNU gprof—The GNU Profiler”, by Jay Fenlason and Richard Stallman.

10.3 Coverage testing with gcov

The GNU coverage testing tool gcov analyses the number of times each line of a program
is executed during a run. This makes it possible to find areas of the code which are not
used, or which are not exercised in testing. When combined with profiling information from
gprof the information from coverage testing allows efforts to speed up a program to be
concentrated on specific lines of the source code.

We will use the example program below to demonstrate gcov. This program loops overs
the integers 1 to 9 and tests their divisibility with the modulus (%) operator.

#include <stdio.h>

int

main (void)

{

int i;

for (i = 1; i < 10; i++)

{

if (i % 3 == 0)

printf ("%d is divisible by 3\n", i);

if (i % 11 == 0)

printf ("%d is divisible by 11\n", i);

}

return 0;

}

To enable coverage testing the program must be compiled with the following options:

$ gcc -Wall -fprofile-arcs -ftest-coverage cov.c

This creates an instrumented executable which contains additional instructions that record
the number of times each line of the program is executed. The option ‘-ftest-coverage’
adds instructions for counting the number of times individual lines are executed, while
‘-fprofile-arcs’ incorporates instrumentation code for each branch of the program.
Branch instrumentation records how frequently different paths are taken through ‘if’
statements and other conditionals. The executable must then be run to create the coverage
data:

$./a.out

3 is divisible by 3

6 is divisible by 3

9 is divisible by 3

The data from the run is written to several files with the extensions ‘.bb’ ‘.bbg’ and ‘.da’
respectively in the current directory. This data can be analyzed using the gcov command
and the name of a source file:

Chapter 10: Compiler-related tools 71

$ gcov cov.c

88.89% of 9 source lines executed in file cov.c

Creating cov.c.gcov

The gcov command produces an annotated version of the original source file, with the file
extension ‘.gcov’, containing counts of the number of times each line was executed:

#include <stdio.h>

int

main (void)

{

1 int i;

10 for (i = 1; i < 10; i++)

{

9 if (i % 3 == 0)

3 printf ("%d is divisible by 3\n", i);

9 if (i % 11 == 0)

printf ("%d is divisible by 11\n", i);

9 }

1 return 0;

1 }

The line counts can be seen in the first column of the output. Lines which were not executed
are marked with hashes ‘######’. The command ‘grep ’######’ *.gcov’ can be used to
find parts of a program which have not been used.

Chapter 11: How the compiler works 72

11 How the compiler works

This chapter describes in more detail how GCC transforms source files to an executable file.
Compilation is a multi-stage process involving several tools, including the GNU Compiler
itself (through the gcc or g++ frontends), the GNU Assembler as, and the GNU Linker ld.
The complete set of tools used in the compilation process is referred to as a toolchain.

11.1 An overview of the compilation process

The sequence of commands executed by a single invocation of GCC consists of the following
stages:

• preprocessing (to expand macros)

• compilation (from source code to assembly language)

• assembly (from assembly language to machine code)

• linking (to create the final executable)

As an example, we will examine these compilation stages individually using the Hello World
program ‘hello.c’:

#include <stdio.h>

int

main (void)

{

printf ("Hello, world!\n");

return 0;

}

Note that it is not necessary to use any of the individual commands described in this section
to compile a program. All the commands are executed automatically and transparently by
GCC internally, and can be seen using the ‘-v’ option described earlier (see Section 9.3
[Verbose compilation], page 62). The purpose of this chapter is to provide an understanding
of how the compiler works.

Although the Hello World program is very simple it uses external header files and li-
braries, and so exercises all the major steps of the compilation process.

11.2 The preprocessor

The first stage of the compilation process is the use of the preprocessor to expand macros
and included header files. To perform this stage, GCC executes the following command:1

$ cpp hello.c > hello.i

The result is a file ‘hello.i’ which contains the source code with all macros expanded.
By convention, preprocessed files are given the file extension ‘.i’ for C programs and
‘.ii’ for C++ programs. In practice, the preprocessed file is not saved to disk unless the
‘-save-temps’ option is used.

1 As mentioned earlier, the preprocessor is integrated into the compiler in recent versions of GCC. Con-
ceptually, the compilation process is the same as running the preprocessor as separate application.

Chapter 11: How the compiler works 73

11.3 The compiler

The next stage of the process is the actual compilation of preprocessed source code to
assembly language, for a specific processor. The command-line option ‘-S’ instructs gcc to
convert the preprocessed C source code to assembly language without creating an object
file:

$ gcc -Wall -S hello.i

The resulting assembly language is stored in the file ‘hello.s’. Here is what the Hello
World assembly language for an Intel x86 (i686) processor looks like:

$ cat hello.s

.file "hello.c"

.section .rodata

.LC0:

.string "Hello, world!\n"

.text

.globl main

.type main, @function

main:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

movl $0, %eax

subl %eax, %esp

movl $.LC0, (%esp)

call printf

movl $0, %eax

leave

ret

.size main, .-main

.ident "GCC: (GNU) 3.3.1"

Note that the assembly language contains a call to the external function printf.

11.4 The assembler

The purpose of the assembler is to convert assembly language into machine code and gen-
erate an object file. When there are calls to external functions in the assembly source file,
the assembler leaves the addresses of the external functions undefined, to be filled in later
by the linker. The assembler can be invoked with the following command line:

$ as hello.s -o hello.o

As with GCC, the output file is specified with the ‘-o’ option. The resulting file ‘hello.o’
contains the machine instructions for the Hello World program, with an undefined reference
to printf.

Chapter 11: How the compiler works 74

11.5 The linker

The final stage of compilation is the linking of object files to create an executable. In
practice, an executable requires many external functions from system and C run-time (crt)
libraries. Consequently, the actual link commands used internally by GCC are complicated.
For example, the full command for linking the Hello World program is:

$ ld -dynamic-linker /lib/ld-linux.so.2 /usr/lib/crt1.o /usr/lib/crti.o

/usr/lib/gcc/i486-linux-gnu/4.3/crtbegin.o -L/usr/lib/gcc/i486-linux-gnu/4.3

hello.o -lgcc -lgcc_eh -lc /usr/lib/gcc/i486-linux-gnu/4.3/crtend.o

/usr/lib/crtn.o

Fortunately there is never any need to type the command above directly—the entire linking
process is handled transparently by gcc when invoked as follows:

$ gcc hello.o

This links the object file ‘hello.o’ to the C standard library, and produces an executable
file ‘a.out’:

$./a.out

Hello, world!

An object file for a C++ program can be linked to the C++ standard library in the same
way with a single g++ command.

Chapter 12: Examining compiled files 75

12 Examining compiled files

This chapter describes several useful tools for examining the contents of executable files and
object files.

12.1 Identifying files

When a source file has been compiled to an object file or executable the options used to
compile it are no longer obvious. The file command looks at the contents of an object file
or executable and determines some of its characteristics, such as whether it was compiled
with dynamic or static linking.

For example, here is the result of the file command for a typical executable:

$ file a.out

a.out: ELF 32-bit LSB executable, Intel 80386,

version 1 (SYSV), dynamically linked (uses shared

libs), not stripped

The output shows that the executable file is dynamically linked, and compiled for the Intel
386 and compatible processors. A full explanation of the output is shown below:

ELF The internal format of the executable file (ELF stands for “Executable and
Linking Format”, other formats such as COFF “Common Object File Format”
are used on some older operating systems (e.g. MS-DOS)).

32-bit The word size (for some platforms this would be 64-bit).

LSB Compiled for a platform with least significant byte first word-ordering, such as
Intel and AMD x86 processors (the alternative MSB most significant byte first
is used by other processors, such as the Motorola 680x0)1. Some processors
such as Itanium and MIPS support both LSB and MSB orderings.

Intel 80386

The processor the executable file was compiled for.

version 1 (SYSV)

This is the version of the internal format of the file.

dynamically linked

The executable uses shared libraries (statically linked indicates programs
linked statically, for example using the ‘-static’ option)

not stripped

The executable contains a symbol table (this can be removed with the strip

command).

The file command can also be used on object files, where it gives similar output. The
POSIX standard2 for Unix systems defines the behavior of the file command.

1 The MSB and LSB orderings are also known as big-endian and little-endian respectively (the terms
originate from Jonathan Swift’s satire “Gulliver’s Travels”, 1727).

2 POSIX.1 (2003 edition), IEEE Std 1003.1-2003.

Chapter 12: Examining compiled files 76

12.2 Examining the symbol table

As described earlier in the discussion of debugging, executables and object files can contain
a symbol table (see Chapter 5 [Compiling for debugging], page 34). This table stores the
location of functions and variables by name, and can be displayed with the nm command:

$ nm a.out

08048334 t Letext

08049498 ? _DYNAMIC

08049570 ? _GLOBAL_OFFSET_TABLE_

........

080483f0 T main

08049590 b object.11

0804948c d p.3

U printf@GLIBC_2.0

Among the contents of the symbol table, the output shows that the start of the main

function has the hexadecimal offset 080483f0. Most of the symbols are for internal use by
the compiler and operating system. A ‘T’ in the second column indicates a function that
is defined in the object file, while a ‘U’ indicates a function which is undefined (and should
be resolved by linking against another object file). A complete explanation of the output
of nm can be found in the GNU Binutils manual.

The most common use of the nm command is to check whether a library contains the
definition of a specific function, by looking for a ‘T’ entry in the second column against the
function name.

12.3 Finding dynamically linked libraries

When a program has been compiled using shared libraries it needs to load those libraries
dynamically at run-time in order to call external functions. The command ldd examines
an executable and displays a list of the shared libraries that it needs. These libraries are
referred to as the shared library dependencies of the executable.

For example, the following commands demonstrate how to find the shared library de-
pendencies of the Hello World program:

$ gcc -Wall hello.c

$ ldd a.out

libc.so.6 => /lib/libc.so.6 (0x40020000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

The output shows that the Hello World program depends on the C library libc (shared
library version 6) and the dynamic loader library ld-linux (shared library version 2).

If the program uses external libraries, such as the math library, these are also displayed.
For example, the calc program (which uses the sqrt function) generates the following
output:

$ gcc -Wall calc.c -lm -o calc

$ ldd calc

libm.so.6 => /lib/libm.so.6 (0x40020000)

libc.so.6 => /lib/libc.so.6 (0x40041000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Chapter 12: Examining compiled files 77

The first line shows that this program depends on the math library libm (shared library
version 6), in addition to the C library and dynamic loader library.

The ldd command can also be used to examine shared libraries themselves, in order to
follow a chain of shared library dependencies.

Chapter 13: Common error messages 78

13 Common error messages

This chapter describes the most frequent error and warning messages produced by gcc and
g++. Each case is accompanied by a description of the causes, an example and suggestions
of possible solutions.

13.1 Preprocessor error messages

No such file or directory

This error occurs if GCC cannot find a requested file on its search path. The file
may have been specified on the command-line, or with a preprocessor #include
statement. Either the filename has been spelled incorrectly or the directory for
the file needs to be added to the include path or link path.

Example:

#include <stdoi.h> /* incorrect */

int

main (void)

{

printf ("Hello World!\n");

return 0;

}

The program above tries to include the non-existent file ‘stdoi.h’ giving the
error ‘stdoi.h: No such file or directory’. The correct filename should be
‘stdio.h’.

macro or ’#include’ recursion too deep

#include nested too deeply

This error occurs if the preprocessor encounters too many nested ‘#include’
directives. It is usually caused by two or more files trying to include each other,
leading to an infinite recursion.

Example:

/* foo.h */

#include "bar.h"

...

/* bar.h */

#include "foo.h"

...

The solution to this problem is to ensure that files do not mutually include
each other, or to use “include guards” (see Section 7.4.2 [Providing your own
templates], page 50 for an example).

invalid preprocessing directive #...

This error indicates that the preprocessor encountered an unrecognized # com-
mand.

Example:

Chapter 13: Common error messages 79

#if FOO

int x = 1;

#elsif BAR /* should be #elif */

int x = 2;

#else

int x = 3;

#endif

The preprocessor syntax requires #elif for the “else if” condition in #if blocks,
rather than #elseif. In the example above an invalid directive error occurs
at the incorrect usage #elseif, but only when FOO is defined (otherwise the
preprocessor ignores everything up to the #else statement).

warning: This file includes at least one deprecated or antiquated header.

This warning is generated for C++ programs which include old-style library
header files, such as ‘iostream.h’, instead of the modern C++ library headers
without the ‘.h’ extension. The old headers import their functions into the
top-level global namespace, instead of using the std:: namespace. Note that
old-style header files are still supported, so this message is only a warning and
existing programs will continue to compile. The message is actually generated
by a #warning directive in the old header files, and not by the preprocessor
itself.

Example:

#include <iostream.h> /* old style */

int

main (void)

{

cout << "Hello World!\n";

return 0;

}

This program uses an old-style header file ‘iostream.h’. It could be updated
to use #include <iostream> and std::cout instead.

13.2 Compiler error messages

‘variable’ undeclared (first use in this function)

In C and C++ variables must be declared before they can be used. This error
message indicates that the compiler has encountered a variable name which does
not have a corresponding declaration. It can be caused by a missing declaration,
or a typing error in the name. Variable names are case-sensitive, so foo and
Foo represent different variables. To keep the output short, only the first use
of an undeclared variable is reported.

Example:

int

main (void)

{

int i;

Chapter 13: Common error messages 80

j = 0; /* undeclared */

return j;

}

The variable j is not declared and will trigger the error ‘j’ undeclared.

parse error before ‘...’

syntax error

These error messages occur when the compiler encounters unexpected input, i.e.
sequences of characters which do not follow the syntax of the language. The
error messages can be triggered by a missing close bracket, brace or semicolon
preceding the line of the error, or an invalid keyword.

Example:

#include <stdio.h>

int

main (void)

{

printf ("Hello ") /* missing semicolon */

printf ("World!\n");

return 0;

}

There is a missing semicolon after the first call to printf, giving a parse error.

parse error at end of input

This error occurs if the compiler encounters the end of a file unexpectedly, such
as when it has parsed an unbalanced number of opening and closing braces. It
is often caused by a missing closing brace somewhere.

Example:

#include <stdio.h>

int

main (void)

{

if (1) {

printf ("Hello World!\n");

return 0; /* no closing brace */

}

An additional closing brace is needed in this program to prevent the error parse
error at end of input.

warning: implicit declaration of function ‘...’

This warning is generated when a function is used without a prototype being
declared. It can be caused by failing to include a header file, or otherwise
forgetting to provide a function prototype.

Example:

int

main (void)

Chapter 13: Common error messages 81

{

printf ("Hello World!\n"); /* no header */

return 0;

}

The system header file ‘stdio.h’ is not included, so the prototype for printf

is not declared. The program needs an initial line #include <stdio.h>.

unterminated string or character constant

This error is caused by an opening string or character quote which does not
have a corresponding closing quote. Quotes must occur in matching pairs, either
single quotes ’a’ for characters or double quotes "aaa" for strings.

Example:

#include <stdio.h>

int

main (void)

{

printf ("Hello World!\n); /* no closing quote */

return 0;

}

The opening quote for the string in this program does not have a corresponding
closing quote, so the compiler will read the rest of the file as part of the string.

character constant too long

In C and C++ character codes are written using single quotes, e.g. ’a’ gives the
ASCII code for the letter a (67), and ’\n’ gives the ASCII code for newline (10).
This error occurs if single quotes are used to enclose more than one character.

Example:

#include <stdio.h>

int

main (void)

{

printf (’Hello World!\n’); /* wrong quotes */

return 0;

}

The program above confuses single-quotes and double-quotes. A sequence of
characters should be written with double quotes, e.g. "Hello World!". This
same problem occurs in the following C++ program,

#include <iostream>

int

main (void)

{

std::cout << ’Hello World!\n’; // wrong quotes

return 0;

Chapter 13: Common error messages 82

}

This error can also occur if the forward slash and backslash are confused in an
escape sequence, e.g. using ’/n’ instead of ’\n’. The sequence /n consists of
two separate characters, ‘/’ and ‘n’.

Note that according to the C standard there is no limit on the length of a
character constant, but the value of a character constant that contains more
than one character is implementation-defined. Recent versions of GCC provide
support multi-byte character constants, and instead of an error the warnings
multiple-character character constant or warning: character constant

too long for its type are generated in this case.

warning: initialization makes integer from pointer without a cast

This error indicates a misuse of a pointer in an integer context. Technically,
it is possible to convert between integer and pointer types, but this is rarely
needed outside system-level applications. More often, this warning is the result
of using a pointer without dereferencing it (e.g. writing int i = p instead of
int i = *p).

This warning can also occur with char and char * types, since char is an
integer type.

Example:

int

main (void)

{

char c = "\n"; /* incorrect */

return 0;

}

The variable c has type char, while the string "\n" evaluates to a const char

* pointer (to a 2-byte region of memory containing the ASCII value for newline
followed by a zero byte ’\0’, since strings are null-terminated). The ASCII
code for newline can be found using char c = ’\n’;

Similar errors can occur with misuse of the macro NULL,

#include <stdlib.h>

int

main (void)

{

int i = NULL; /* incorrect */

return 0;

}

In C, the macro NULL is defined as ((void *)0) in ‘stdlib.h’ and should only
be used in a pointer context.

dereferencing pointer to incomplete type

This error occurs when a program attempts to access the elements of struct
through a pointer without the layout of the struct being declared first. In C
and C++ it is possible to declare pointers to structs before declaring their struct

Chapter 13: Common error messages 83

layout, provided the pointers are not dereferenced—this is known as forward
declaration.

Example:

struct btree * data;

int

main (void)

{

data->size = 0; /* incomplete type */

return 0;

}

This program has a forward declaration of the btree struct data. However,
the definition of the struct is needed before the pointer can be dereferenced to
access individual members.

warning: unknown escape sequence ‘...’

This error is caused by an incorrect use of the escape character in a string.
Valid escape sequences are:

\n newline \t tab
\b backspace \r carriage return
\f form feed \v vertical tab
\a alert (bell)

The combinations \\, \’, \" and \? can be used for individual characters. Es-
cape sequences can also use octal codes \0–\377 and hexadecimal codes \0x00–
\0xFF.

Example:

#include <stdio.h>

int

main (void)

{

printf ("HELLO WORLD!\N");

return 0;

}

The escape sequence \N in the program above is invalid—the correct escape
sequence for a newline is \n.

warning: suggest parentheses around assignment used as truth value

This warning highlights a potentially serious error, using the assignment op-
erator ‘=’ instead of the comparison operator ‘==’ in the test of a conditional
statement or other logical expression. While the assignment operator can be
used as part of a logical value, this is rarely the intended behavior.

Example:

#include <stdio.h>

int

Chapter 13: Common error messages 84

main (void)

{

int i = 0;

if (i = 1) { /* = should be == */

printf ("unexpected result\n");

}

return 0;

}

The test above should be written as if (i == 1), otherwise the variable i will
be set to 1 by the evaluation of the if statement itself. The operator ‘=’ both
assigns and returns the value of its right-hand side, causing the variable i to be
modified and the unexpected branch taken. Similar unexpected results occur
with if (i = 0) instead of if (i == 0), except that in this case the body of the
if statement would never be executed.

This warning is suppressed if the assignment is enclosed in additional paren-
theses to indicate that it is being used legitimately.

warning: control reaches end of non-void function

A function which has been declared with a return type, such as int or double,
should always have a return statement returning a value of the corresponding
type at all possible end points—otherwise its return value is not well-defined.
Functions declared void do not need return statements.

Example:

#include <stdio.h>

int

display (const char * str)

{

printf ("%s\n", str);

}

The program above reaches the end of the display function, which has a return
type of int, without a return statement. An additional line such as return

0; is needed.

When using gcc the main function of a C program must return a value of type
int (the exit status of the program). In C++ the return statement can be
omitted from the main function—the return value of the C++ main function
defaults to 0 if unspecified.

warning: unused variable ‘...’

warning: unused parameter ‘...’

These warnings indicate that a variable has been declared as a local variable or
in the parameters of a function, but has not been used anywhere. An unused
variable can be the result of a programming error, such as accidentally using
the name of a different variable in place of the intended one.

Example:

int

Chapter 13: Common error messages 85

foo (int k, char * p)

{

int i, j;

j = k;

return j;

}

In this program the variable i and the parameter p are never used. Note that
unused variables are reported by ‘-Wall’, while unused parameters are only
shown with ‘-Wall -W’.

warning: passing arg of ... as ... due to prototype

This warning occurs when a function is called with an argument of a different
type from that specified in the prototype. The option ‘-Wconversion’ is needed
to enable this warning. See the description of ‘-Wconversion’ in Section 3.5
[Additional warning options], page 25 for an example.

warning: assignment of read-only location

warning: cast discards qualifiers from pointer target type

warning: assignment discards qualifiers ...

warning: initialization discards qualifiers ...

warning: return discards qualifiers ...

These warnings occur when a pointer is used incorrectly, violating a type qual-
ifier such as const. Data accessed through a pointer marked as const should
not be modified, and the pointer itself can only be assigned to other pointers
that are also marked const.

Example:

char *

f (const char *s)

{

s = ’\0’; / assigns to read-only data */

return s; /* discards const */

}

This program attempts to modify constant data, and to discard the const

property of the argument s in the return value.

initializer element is not a constant

In C, global variables can only be initialized with constants, such as numeric
values, NULL or fixed strings. This error occurs if a non-constant value is used.

Example:

#include <stdio.h>

FILE *stream = stdout; /* not constant */

int i = 10;

int j = 2 * i; /* not constant */

int

main (void)

Chapter 13: Common error messages 86

{

fprintf (stream, "Hello World!\n");

return 0;

}

This program attempts to initialize two variables from other variables. In par-
ticular, the stream stdout is not required to be a constant by the C standard
(although on some systems it is a constant). Note that non-constant initializers
are allowed in C++.

13.3 Linker error messages

file not recognized: File format not recognized

GCC uses the extension of a file, such as ‘.c’ or ‘.cc’, to determine its content.
If the extension is missing GCC cannot recognize the file type and will give this
error.

Example:

#include <stdio.h>

int

main (void)

{

printf ("Hello World!\n");

return 0;

}

If the program above is saved in a file ‘hello’ without any extension then
compiling it will give the error:

$ gcc -Wall hello

hello: file not recognized: File format not

recognized

collect2: ld returned 1 exit status

The solution is to rename the file to the correct extension, in this case ‘hello.c’.

undefined reference to ‘foo’

collect2: ld returned 1 exit status

This error occurs when a program uses a function or variable which is not
defined in any of the object files or libraries supplied to the linker. It can be
caused by a missing library or the use of an incorrect name. In the error message
above, the program ‘collect2’ is part of the linker.

Example:

int foo(void);

int

main (void)

{

foo();

return 0;

Chapter 13: Common error messages 87

}

If this program is compiled without linking to a library or object file containing
the function foo() there will be an undefined reference error.

/usr/lib/crt1.o(.text+0x18): undefined reference to ‘main’

This error is a special case of the error above, when the missing function is main.
In C and C++, every program must have a main function (where execution
starts). When compiling an individual source file without a main function,
use the option ‘-c’ (see Section 2.4.1 [Creating object files from source files],
page 8).

13.4 Runtime error messages

error while loading shared libraries:

cannot open shared object file: No such file or directory

The program uses shared libraries, but the necessary shared library files cannot
be found by the dynamic linker when the program starts. The search path
for shared libraries is controlled by the environment variable LD_LIBRARY_PATH

(see Section 3.2 [Shared libraries and static libraries], page 18).

Segmentation fault

Bus error These runtime messages indicate a memory access error.

Common causes include:

• dereferencing a null pointer or uninitialized pointer

• out-of-bounds array access

• incorrect use of malloc, free and related functions

• use of scanf with invalid arguments

There is a subtle difference between segmentation faults and bus errors. A
segmentation fault occurs when a process tries to access memory protected by
the operating system. A bus error occurs when valid memory is accessed in an
incorrect way (for example, trying to read an unaligned value on architectures
where values must be aligned with 4-byte offsets).

floating point exception

This runtime error is caused by an arithmetic exception, such as division by
zero, overflow, underflow or an invalid operation (e.g. taking the square root
of −1). The operating system determines which conditions produce this error.
On GNU systems, the functions feenableexcept and fedisableexcept can
be used to trap or mask each type of exception.

Illegal instruction

This error is produced by the operating system when an illegal machine instruc-
tion is encountered. It occurs when code has been compiled for one specific
architecture and run on another.

Chapter 14: Getting help 88

14 Getting help

If you encounter a problem not covered by this introduction, there are several reference
manuals which describe GCC and language-related topics in more detail (see [Further read-
ing], page 89). These manuals contain answers to common questions, and careful study of
them will usually yield a solution.

Alternatively, there are many companies and consultants who offer commercial support
for programming matters related to GCC on an hourly or ongoing basis. For businesses
this can be a cost-effective way to obtain high-quality support.

A directory of free software support companies and their current rates can be found on
the GNU Project website.1 With free software, commercial support is available in a free
market—service companies compete in quality and price, and users are not tied to any
particular one. In contrast, support for proprietary software is usually only available from
the original vendor.

A higher-level of commercial support for GCC is available from companies involved in
the development of the GNU compiler toolchain itself. A listing of these companies can be
found in the “Development Companies” section of the publisher’s webpage for this book.2

These companies can provide services such as extending GCC to generate code for new
CPUs or fixing bugs in the compiler.

1 http://www.gnu.org/prep/service.html
2 http://www.network-theory.co.uk/gcc/intro/

http://www.gnu.org/prep/service.html
http://www.network-theory.co.uk/gcc/intro/

Chapter 14: Further reading 89

Further reading

The definitive guide to GCC is the official reference manual, “Using GCC”, published by
GNU Press:

Using GCC (for GCC version 3.3.1) by Richard M. Stallman and the GCC
Developer Community (Published by GNU Press, ISBN 1-882114-39-6)

This manual is essential for anyone working with GCC because it describes every option in
detail. Note that the manual is updated when new releases of GCC become available, so
the ISBN number may change in the future.

If you are new to programming with GCC you will also want to learn how to use the
GNU Debugger GDB, and how to compile large programs easily with GNU Make. These
tools are described in the following manuals:

Debugging with GDB: The GNU Source-Level Debugger by Richard M. Stall-
man, Roland Pesch, Stan Shebs, et al. (Published by GNU Press, ISBN 1-
882114-88-4)

GNU Make: A Program for Directing Recompilation by Richard M. Stallman
and Roland McGrath (Published by GNU Press, ISBN 1-882114-82-5)

For effective C programming it is also essential to have a good knowledge of the C standard
library. The following manual documents all the functions in the GNU C Library:

The GNU C Library Reference Manual by Sandra Loosemore with Richard M.
Stallman, et al (2 vols) (Published by GNU Press, ISBN 1-882114-22-1 and
1-882114-24-8)

Be sure to check the website http://www.gnupress.org/ for the latest printed editions of
manuals published by GNU Press. The manuals can be purchased online using a credit card
at the FSF website1 in addition to being available for order through most bookstores using
the ISBNs. Manuals published by GNU Press raise funds for the Free Software Foundation
and the GNU Project.

Information about shell commands, environment variables and shell-quoting rules can
be found in the following book:

The GNU Bash Reference Manual by Chet Ramey and Brian Fox (Published
by Network Theory Ltd, ISBN 0-9541617-7-7)

Other GNU Manuals mentioned in this book (such as GNU gprof—The GNU Profiler and
The GNU Binutils Manual) were not available in print at the time this book went to press.
Links to online copies can be found at the publisher’s webpage for this book.2

The official GNU Project webpage for GCC can be found on the GNU website at
http://www.gnu.org/software/gcc/. This includes a list of frequently asked questions,
as well as the GCC bug tracking database and a lot of other useful information about GCC.

There are many books about the C and C++ languages themselves. Two of the standard
references are:

The C Programming Language (ANSI edition) Brian W. Kernighan, Dennis
Ritchie (ISBN 0-13110362-8)

1 http://order.fsf.org/
2 http://www.network-theory.co.uk/gcc/intro/

http://www.gnupress.org/
http://www.network-theory.co.uk/bash/manual/
http://www.gnu.org/software/gcc/
http://order.fsf.org/
http://www.network-theory.co.uk/gcc/intro/

Chapter 14: Further reading 90

The C++ Programming Language (3rd edition) Bjarne Stroustrup (ISBN 0-
20188954-4)

Anyone using the C and C++ languages in a professional context should obtain a copy of
the official language standards, which are also available as printed books:

The C Standard: Incorporating Technical Corrigendum 1 (Published by Wiley,
ISBN 0-470-84573-2)

The C++ Standard (Published by Wiley, ISBN 0-470-84674-7)

For reference, the C standard number is ISO/IEC 9899:1990, for the original C standard
published in 1990 and implemented by GCC. A revised C standard ISO/IEC 9899:1999
(known as C99) was published in 1999, and this is mostly (but not yet fully) supported by
GCC. The C++ standard is ISO/IEC 14882.

The floating-point arithmetic standard IEEE-754 is important for any programs involv-
ing numerical computations. The standard is available commercially from the IEEE, and
is also described in the following book:

Numerical Computing with IEEE Floating Point Arithmetic by Michael Over-
ton (Published by SIAM, ISBN 0-89871-482-6).

The book includes many examples to illustrate the rationale for the standard.

Chapter 14: Acknowledgements 91

Acknowledgements

Many people have contributed to this book, and it is important to record their names here:

Thanks to Gerald Pfeifer, for his careful reviewing and numerous suggestions for im-
proving the book.

Thanks to Andreas Jaeger, for information on AMD64 and multi-architecture support,
and many helpful comments.

Thanks to David Edelsohn, for information on the POWER/PowerPC series of proces-
sors.

Thanks to Jamie Lokier, for research.

Thanks to Martin Leisner, Mario Pernici, Stephen Compall and Nigel Lowry, for helpful
corrections.

Thanks to Gerard Jungman, for useful comments.

Thanks to Steven Rubin, for generating the chip layout for the cover with Electric.

And most importantly, thanks to Richard Stallman, founder of the GNU Project, for
writing GCC and making it free software.

Chapter 14: Other books from the publisher 92

Other books from the publisher

Network Theory publishes books about free software under free documentation licenses.
Our current catalogue includes the following titles:

• Comparing and Merging Files with GNU diff and patch by David MacKenzie, Paul
Eggert, and Richard Stallman (ISBN 0-9541617-5-0) $19.95 (£12.95)

• Version Management with CVS by Per Cederqvist et al. (ISBN 0-9541617-1-8) $29.95
(£19.95)

• GNU Bash Reference Manual by Chet Ramey and Brian Fox (ISBN 0-9541617-7-7)
$29.95 (£19.95)

• An Introduction to R by W.N. Venables, D.M. Smith and the R Development Core
Team (ISBN 0-9541617-4-2) $19.95 (£12.95)

• GNU Octave Manual by John W. Eaton (ISBN 0-9541617-2-6) $29.99 (£19.99)

• GNU Scientific Library Reference Manual—Second Edition by M. Galassi, J. Davies,
J. Theiler, B. Gough, G. Jungman, M. Booth, F. Rossi (ISBN 0-9541617-3-4) $39.99
(£24.99)

• An Introduction to Python by Guido van Rossum and Fred L. Drake, Jr. (ISBN
0-9541617-6-9) $19.95 (£12.95)

• Python Language Reference Manual by Guido van Rossum and Fred L. Drake, Jr.
(ISBN 0-9541617-8-5) $19.95 (£12.95)

• The R Reference Manual—Base Package (Volume 1) by the R Development Core Team
(ISBN 0-9546120-0-0) $69.95 (£39.95)

• The R Reference Manual—Base Package (Volume 2) by the R Development Core Team
(ISBN 0-9546120-1-9) $69.95 (£39.95)

All titles are available for order from bookstores worldwide.

Sales of the manuals fund the development of more free software and documentation.

For details, visit the website http://www.network-theory.co.uk/

http://www.network-theory.co.uk/diff/manual/
http://www.network-theory.co.uk/cvs/manual/
http://www.network-theory.co.uk/bash/manual/
http://www.network-theory.co.uk/R/manual/
http://www.network-theory.co.uk/octave/manual/
http://www.network-theory.co.uk/gsl/manual/
http://www.network-theory.co.uk/python/manual/
http://www.network-theory.co.uk/python/language/
http://www.network-theory.co.uk/R/base/
http://www.network-theory.co.uk/R/base/
http://www.network-theory.co.uk/

Chapter 14: Free software organizations 93

Free software organizations

The GNU Compiler Collection is part of the GNU Project, launched in 1984 to develop a
complete Unix-like operating system which is free software: the GNU system.

The Free Software Foundation (FSF) is a tax-exempt charity that raises funds for con-
tinuing work on the GNU Project. It is dedicated to promoting the right to use, study, copy,
modify, and redistribute computer programs. One of the best ways to help the development
of free software is to become an associate member of the Free Software Foundation, and
pay regular dues to support their efforts.

Associate members of the Free Software Foundation receive many benefits, including
regular newsletters, admission to the FSF annual meeting, and discounts on books
and CDROMs published by GNU Press. Membership dues are also tax deductible
in the USA. For more information on becoming a member, visit the FSF website at
http://www.fsf.org/.

The Free Software Foundation Europe (FSFE) is a sister organisation of the Free Soft-
ware Foundation. The FSFE is active in promoting free software at all levels in Europe.
For an annual membership fee, individuals can join FSFE and support its work. Mem-
bers receive a personalised GPG-compatible membership smartcard, allowing secure digi-
tal authentication of email and files, and gain access to the “FSFE Fellowship”, an elec-
tronic community for software freedom. For more information, visit the FSFE website at
http://www.fsfe.org/.

The Foundation for a Free Information Infrastructure (FFII) is another important or-
ganization in Europe. FFII is not specific to free software, but works to defend the rights
of all programmers and computer users against monopolies in the field of computing, such
as patents on software. For more information about FFII, or to support their work with a
donation, visit their website at http://www.ffii.org/.

http://www.fsf.org/
http://www.fsfe.org/
http://www.ffii.org/

Chapter 14: GNU Free Documentation License 94

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document free in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.
You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright
law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the
above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain
zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,
in the notice that says that the Document is released under this License. A Front-Cover Text may be at most
5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose spec-
ification is available to the general public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup, Texinfo input format,
LaTEX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not

Chapter 14: GNU Free Documentation License 95

have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s
title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or
“History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only
as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document).
You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

Chapter 14: GNU Free Documentation License 96

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based
on. These may be placed in the “History” section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original publisher of the version it refers
to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant
Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-
Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in
its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming
one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections
Entitled “Dedications”. You must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works

Chapter 14: GNU Free Documentation License 97

permit. When the Document is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version of
this License and the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft)
by the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify

this document under the terms of the GNU Free

Documentation License, Version 1.2 or any later version

published by the Free Software Foundation; with no

Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in

the section entitled ‘‘GNU Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with
this:

with the Invariant Sections being list their

titles, with the Front-Cover Texts being list, and

with the Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

http://www.gnu.org/copyleft/

Chapter 14: Index 98

Index

#
#define, preprocessor directive 29
#elif, preprocessor directive 79
#else, preprocessor directive 79
#if, preprocessor directive . 24
#ifdef, preprocessor directive 29
#include, preprocessor directive 7
#warning, preprocessor directive 79

$
$, shell prompt . 3

-
‘--help’ option, display command-line options

. 62
‘--version’ option, display version number 62
‘-ansi’ option, disable language extensions 20
‘-ansi’ option, used with g++ 47
‘-c’ option, compile to object file 8
‘-D’ option, define macro . 29
‘-dM’ option, list predefined macros 29
‘-E’ option, preprocess source files 31
‘-fno-default-inline’ option 48
‘-fno-implicit-templates’ option, disable

implicit instantiation . 52
‘-fprofile-arcs’ option, instrument branches

. 70
‘-fsigned-bitfields’ option 61
‘-fsigned-char’ option . 60
‘-ftest-coverage’ option, record coverage 70
‘-funroll-loops’ option, optimization by loop

unrolling . 43
‘-funsigned-bitfields’ option 61
‘-funsigned-char’ option . 60
‘-g’ option, enable debugging 34
‘-I’ option, include path . 15
‘-L’ option, library search path 15
‘-l’ option, linking with libraries 12
‘-lm’ option, link with math library 12
‘-m’ option, platform-specific settings 54
‘-m32’ and ‘-m64’ options, compile for 32 or 64-bit

environment . 56
‘-maltivec’ option, enables use of Altivec

processor on PowerPC 56
‘-march’ option, compile for specific CPU 54
‘-mcmodel’ option, for AMD64 55
‘-mcpu’ option, compile for specific CPU 56
‘-mfpmath’ option, for floating-point arithmetic

. 55
‘-mieee’ option, floating-point support on DEC

Alpha . 55
‘-mminimal-toc’ option, on AIX 57

‘-mno-fused-madd’ option, on PowerPC 56
‘-msse’ and related options 54
‘-mtune’ option . 54
‘-mxl-call’ option, compatibility with IBM XL

compilers on AIX . 57
‘-o’ option, set output filename 5
‘-O0’ option, optimization level zero 42
‘-O1’ option, optimization level one 42
‘-O2’ option, optimization level two 43
‘-O3’ option, optimization level three 43
‘-Os’ option, optimization for size 43
‘-pedantic’ option, conform to the ANSI standard

(with ‘-ansi’) . 20
‘-pg’ option, enable profiling 69
‘-pthread’ option, on AIX . 57
‘-rpath’ option, set run-time shared library search

path . 19
‘-S’ option, create assembly code 73
‘-save-temps’ option, keeps intermediate files . . 33
‘-static’ option, force static linking 20
‘-std’ option, select specific language standard

. 20, 23
‘-v’ option, verbose compilation 62
‘-W’ option, enable additional warnings 25
‘-Wall’ option, enable common warnings 5
‘-Wcast-qual’ option, warn about casts removing

qualifiers . 27
‘-Wcomment’ option, warn about nested comments

. 23
‘-Wconversion’ option, warn about type

conversions. 25
‘-Weffc++’ option . 48
‘-Werror’ option, convert warnings to errors . . . 27
‘-Wformat’ option, warn about incorrect format

strings . 24
‘-Wimplicit’ option, warn about missing

declarations . 24
‘-Wold-style-cast’ option 49
‘-Wreturn-type’ option, warn about incorrect

return types . 24
‘-Wshadow’ option, warn about shadowed variables

. 26
‘-Wtraditional’ option, warn about traditional C

. 27
‘-Wuninitialized’ option, warn about

uninitialized variables . 45
‘-Wunused’ option, unused variable warning 24
‘-Wwrite-strings’ option, warning for modified

string constants . 27

.

.a, archive file extension . 11

.c, C source file extension . 5

.cc, C++ file extension . 47

Chapter 14: Index 99

.cpp, C++ file extension . 47

.cxx, C++ file extension . 47

.h, header file extension . 7

.i, preprocessed file extension for C 72

.ii, preprocessed file extension for C++ 72

.o, object file extension . 8

.s, assembly file extension . 73

.so, shared object file extension 19

/
‘/tmp’ directory, temporary files 12

__gxx_personality_v0, undefined reference error
. 48

_GNU_SOURCE macro, enables extensions to GNU C
Library . 22

6
64-bit platforms, additional library directories . . 15
64-bit processor-specific options, AMD64 and Intel

. 55

A
a, archive file extension. 11
a.out, default executable filename 5
ADA, gnat compiler . 2
additional warning options 25
AIX, compatibility with IBM XL compilers 57
AIX, platform-specific options 56
AIX, TOC overflow error . 57
Alpha, platform-specific options 55
Altivec, on PowerPC . 56
AMD x86, platform-specific options 54
AMD64, 64-bit processor specific options 55
‘ansi’ option, disable language extensions 20
‘ansi’ option, used with g++ 47
ANSI standards for C/C++ languages, available as

books . 90
ANSI/ISO C, compared with GNU C extensions

. 20
ANSI/ISO C, controlled with ‘-ansi’ option . . . 21
ANSI/ISO C, pedantic diagnostics option 22
antiquated header in C++ . 79
ar, GNU archiver . 11, 66
archive file, .a extension . 11
archive file, explanation of . 11
archiver, ar . 72
arithmetic, floating-point . 57
ARM, multi-architecture support 57
arrays, variable-size . 22
asm extension keyword . 21, 58
assembler, as . 72

assembler, converting assembly language to
machine code . 73

assignment discards qualifiers 85
assignment of read-only location 85
Athlon, platform-specific options 54
attach, debug running program 63

B
backtrace, debugger command 36
backtrace, displaying . 36
bash profile file . 35
bash profile file, login settings 17, 20
benchmarking, with time command 44
big-endian, word-ordering . 75
binary file, also called executable file 5
Binutils, GNU Binary Tools 76
bitfields, portability of signed vs unsigned 61
bits, 32 vs 64 on UltraSPARC 56
books, further reading . 89
branches, instrumenting for coverage testing . . . 70
break, command in gdb . 36
breakpoints, defined . 36
BSD extensions, GNU C Library 22
buffer, template example . 50
bug, example of . 6, 14, 35
bus error . 87

C
C include path . 17
C language, dialects of . 20
C language, further reading 89
C library, standard . 11, 90
C math library . 11
‘c’ option, compile to object file 8
C programs, recompiling after modification 9
C source file, .c extension . 5
C standard library . 11
C++ include path . 17
C++, compiling a simple program with g++ 47
C++, creating libraries with explicit instantiation

. 53
C++, file extensions . 47
C++, g++ as a true compiler 47
C++, g++ compiler . 2
C++, instantiation of templates 50
C++, namespace std . 49
C++, standard library . 49, 50
C++, standard library templates 49
C++, templates . 49
c, C source file extension . 5
C, compiling with gcc . 5
C, gcc compiler . 2
C/C++ languages, standards in printed form . . . 90
C/C++, risks of using 3, 6, 14, 46
C_INCLUDE_PATH . 17
c89/c99, selected with ‘-std’ 23

Chapter 14: Index 100

cannot find library error 15, 16
cannot open shared object file 18, 87
cast discards qualifiers from pointer target type

. 85
casts, used to avoid conversion warnings 26
cc, C++ file extension . 47
CC, make variable . 10
CFLAGS, make variable . 10
char, portability of signed vs unsigned 59
character constant too long 81, 82
circular buffer, template example. 50
COFF format . 75
Collatz sequence . 68
collect2: ld returned 1 exit status 86
combined multiply and add instruction 56
command, in makefile . 10
command-line help option . 62
‘comment’ warning option, warn about nested

comments . 23
comments, nested . 23
commercial support . 88
common error messages . 78
common errors, not included with ‘-Wall’. 25
common subexpression elimination, optimization

. 39
comparison of expression always true/false warning

. 25
compilation, for debugging 34
compilation, internal stages of 72
compilation, model for templates 50
compilation, options . 15
compilation, stopping on warning 27
compile to object file, ‘-c’ option 8
compiled files, examining . 75
compiler, converting source code to assembly code

. 73
compiler, error messages . 79
compiler, how it works internally 72
compiler-related tools . 66
compiling C programs with gcc 5
compiling C++ programs with g++ 47
compiling files independently 8
compiling multiple files . 7
compiling with optimization 39
configuration files for GCC 62
const, warning about overriding by casts 27
constant strings, compile-time warnings 27
continue, command in gdb 38
control reaches end of non-void function 84
control-C, interrupt . 63
conventions, used in manual 3
conversions between types, warning of 25
core file, examining . 34, 35
core file, not produced . 35
coverage testing, with gcov 70
CPLUS_INCLUDE_PATH . 17
cpp, C preprocessor . 29
cpp, C++ file extension . 47

CPPFLAGS, make variable . 10
‘cr’ option, create/replace archive files 66
crashes, saved in core file . 34
creating executable files from object files 9
creating object files from source files 8
cxx, C++ file extension . 47
CXX, make variable . 10
CXXFLAGS, make variable . 10

D
‘D’ option, define macro . 29
data-flow analysis . 45
DBM file, created with gdbm 15
debugging, compilation flags 34
debugging, with gdb . 34
debugging, with optimization 45
DEC Alpha, platform-specific options 55
declaration, in header file . 7
declaration, missing . 13
default directories, linking and header files 15
default executable filename, a.out 5
default value, of macro defined with ‘-D’ 31
defining macros . 29
denormalized numbers, on DEC Alpha 55
dependencies, of shared libraries 76
dependency, in makefile . 10
deployment, options for. 34, 43, 45
deprecated header in C++. 79
dereferencing pointer to incomplete type 82
dereferencing, null pointer . 35
dialects of C language . 20
different type arg, format warning 6
disk space, reduced usage by shared libraries . . . 19
displaying a backtrace . 36
division by zero . 55
DLL (dynamically linked library), see shared

libraries. 19
‘dM’ option, list predefined macros 29
dollar sign $, shell prompt . 3
double precision . 57
dynamic loader . 19
dynamically linked libraries, examining with ldd

. 76
dynamically linked library, see shared libraries . . 19

E
‘E’ option, preprocess source files 31
‘effc++’ warning option . 48
EGCS (Experimental GNU Compiler Suite) 2
ELF format . 75
elimination, of common subexpressions 39
Emacs, gdb mode . 38
embedded systems, cross-compilation for 2
empty macro, compared with undefined macro

. 31
empty return, incorrect use of 24

Chapter 14: Index 101

enable profiling, ‘-pg’ option 69
endianness, word-ordering . 75
enhancements, to GCC . 88
environment variables . 4, 19
environment variables, extending an existing path

. 20
environment variables, for default search paths

. 17
environment variables, setting permanently 19
error messages, common examples 78
error while loading shared libraries. 18, 87
error, undefined reference due to library link order

. 13
examining compiled files . 75
examining core files . 34
examples, conventions used in. 3
exception handling, floating-point 58
executable file . 5
executable, creating from object files by linking . . 9
executable, default filename a.out 5
executable, examining with file command 75
executable, running . 5
executable, symbol table stored in 34
exit code, displayed in gdb . 38
explicit instantiation of templates 52
export keyword, not supported in GCC 53
extended precision, x86 processors 57
extended search paths, for include and link

directories . 18
extension, .a archive file . 11
extension, .c source file . 5
extension, .C, C++ file . 47
extension, .cc, C++ file . 47
extension, .cpp, C++ file. 47
extension, .cxx, C++ file. 47
extension, .h header file . 7
extension, .i preprocessed file 72
extension, .ii preprocessed file 72
extension, .o object file . 8
extension, .s assembly file . 73
extension, .so shared object file 19
external libraries, linking with 11

F
feature test macros, GNU C Library 22
features, of GCC . 2
file command, for identifying files 75
file extension, .a archive file 11
file extension, .c source file . 5
file extension, .C, C++ file . 47
file extension, .cc, C++ file 47
file extension, .cpp, C++ file 47
file extension, .cxx, C++ file 47
file extension, .h header file. 7
file extension, .i preprocessed file 72
file extension, .ii preprocessed file 72
file extension, .o object file . 8

file extension, .s assembly file 73
file extension, .so shared object file 19
file format not recognized . 86
file includes at least one deprecated or antiquated

header . 79
file not recognized . 86
finish, command in gdb . 38
fldcw set floating point mode 58
floating point arithmetic, with SSE extensions . . 55
floating point exception . 87
floating point exception handling 58
floating point exception, on DEC Alpha 56
floating point, portability problems 57
‘fno-default-inline’ option 48
‘fno-implicit-templates’ option, disable implicit

instantiation . 52
format strings, incorrect usage warning 24
format, different type arg warning 6
Fortran, g77 compiler . 2
‘fpmath’ option, for floating-point arithmetic . . . 55
‘fprofile-arcs’ option, instrument branches . . 70
Free Software Foundation (FSF) 2
FreeBSD, floating-point arithmetic 58
‘ftest-coverage’ option, record coverage 70
function inlining, example of optimization 39
function-call overhead . 40
‘funroll-loops’ option, optimization by loop

unrolling . 43
fused multiply and add instruction 56

G
‘g’ option, enable debugging 34
g++, compiling C++ programs 47
g++, GNU C++ Compiler . 2
g77, Fortran compiler . 2
gcc, GNU C Compiler . 2
gcc, simple example . 5
gcc, used inconsistently with g++ 48
gcj, GNU Compiler for Java 2
gcov, GNU coverage testing tool 70
gdb . 34
gdb, debugging core file with 35
gdb, Emacs mode . 38
gdb, graphical interface . 38
gdbm, GNU DBM library . 15
generic programming, in C++ 49
getting help . 88
gmon.out, data file for gprof 69
gnat, GNU ADA compiler . 2
GNU archiver, ar . 11
GNU C extensions, compared with ANSI/ISO C

. 20
GNU C Library Reference Manual 89
GNU C Library, feature test macros 22
GNU Compilers, major features 2
GNU Compilers, Reference Manual. 89
GNU debugger, gdb . 34

Chapter 14: Index 102

GNU GDB Manual . 89
GNU Make . 10
GNU Make Manual . 89
GNU Press, manuals . 89
GNU Project, history of . 2
GNU/Linux, floating-point arithmetic 58
GNU_SOURCE macro (_GNU_SOURCE), enables

extensions to GNU C Library. 22
gnu89/gnu99, selected with ‘-std’ 23
gprof, GNU Profiler . 68
gradual underflow, on DEC Alpha 55
gxx_personality_v0, undefined reference error

. 48

H
h, header file extension . 7
header file, .h extension . 7
header file, declarations in . 7
header file, default directories 15
header file, include path—extending with ‘-I’ . . 15
header file, missing. 13
header file, missing header causes implicit

declaration . 14
header file, not compiled . 8
header file, not found . 15
header file, with include guards 51
header file, without .h extension for C++ 49
Hello World program, in C . 5
Hello World program, in C++ 47
help options . 62
history, of GCC . 2

I
‘I’ option, include path . 15
i, preprocessed file extension for C 72
IBM XL compilers, compatibility on AIX 57
identifying files, with file command 75
IEEE arithmetic . 57
IEEE arithmetic standard, printed form 90
IEEE options, on DEC Alpha 55
IEEE-754 standard . 90
ii, preprocessed file extension for C++ 72
illegal instruction error 54, 87
implicit declaration of function 14, 24, 80
implicit rules, in makefile . 10
include guards, in header file 51
include nested too deeply . 78
include path, extending with ‘-I’. 15
include path, setting with environment variables

. 17
inclusion compilation model, in C++ 50
independent compilation of files 8
Inf, infinity, on DEC Alpha 55
infinite loop, stopping . 63
initialization discards qualifiers 85

initialization makes integer from pointer without a
cast . 82

initializer element is not a constant 85
inlining, example of optimization 39
Insight, graphical interface for gdb 38
instantiation, explicit vs implicit in C++ 52
instantiation, of templates in C++ 50
instruction scheduling, optimization 42
instrumented executable, for coverage testing . . 70
instrumented executable, for profiling 69
Intel x86, platform-specific options 54
intermediate files, keeping . 33
invalid preprocessing directive 78
ISO C++, controlled with ‘-ansi’ option 47
ISO C, compared with GNU C extensions 20
ISO C, controlled with ‘-ansi’ option 21
ISO standards for C/C++ languages, available as

books . 90
iso9899:1990/iso9899:1999, selected with ‘-std’

. 23
Itanium, multi-architecture support 57

J
Java, compared with C/C++ 3
Java, gcj compiler . 2

K
K&R dialect of C, warnings of different behavior

. 27
kernel mode, on AMD64 . 55
Kernighan and Ritchie, The C Programming

Language . 89
key-value pairs, stored with GDBM 15
keywords, additional in GNU C 21

L
‘L’ option, library search path. 15
‘l’ option, linking with libraries 12
language standards, selecting with ‘-std’ 23
ld returned 1 exit status . 86
ld.so.conf, loader configuration file 20
ld: cannot find library error 15
LD_LIBRARY_PATH, shared library load path 19
ldd, dynamical loader . 76
levels of optimization . 42
libraries, creating with ar . 66
libraries, creating with explicit instantiation in C++

. 53
libraries, error while loading shared library 18
libraries, extending search path with ‘-L’ 15
libraries, finding shared library dependencies . . . 76
libraries, link error due to undefined reference . . 12
libraries, link order . 13
libraries, linking with . 11, 12
libraries, on 64-bit platforms 15

Chapter 14: Index 103

libraries, stored in archive files 11
library header files, using . 13
library, C math library . 11
library, C standard library . 11
library, C++ standard library 49
libstdc++, C++ standard library 50
line numbers, recorded in preprocessed files 32
link error, cannot find library 15
link order, from left to right 13
link order, of libraries . 13
link path, setting with environment variable . . . 17
linker, error messages . 86
linker, GNU compared with other linkers 52
linker, initial description . 9
linker, ld . 72, 74
linking, creating executable files from object files

. 9
linking, default directories . 15
linking, dynamic (shared libraries) 19
linking, explanation of. 8
linking, undefined reference error due to library

link order . 13
linking, updated object files 9
linking, with external libraries 11
linking, with library using ‘-l’ 12
linkr error, cannot find library 15
Linux kernel, floating-point 58
Lisp, compared with C/C++ 3
little-endian, word-ordering 75
loader configuration file, ld.so.conf 20
loader function . 19
login file, setting environment variables in 19
long double arithmetic . 59
loop unrolling, optimization 41, 43
LSB, least significant byte . 75

M
‘m’ option, platform-specific settings 54
‘m32’ and ‘m64’ options, compile for 32 or 64-bit

environment . 56
machine code . 5
machine instruction, asm keyword 58
machine-specific options . 54
macro or ’#include’ recursion too deep 78
macros, default value of . 31
macros, defined with value . 30
macros, defining in preprocessor 29
macros, predefined . 29
major features, of GCC . 2
major version number, of GCC 62
makefile, example of . 10
‘maltivec’ option, enables use of Altivec processor

on PowerPC . 56
manuals, for GNU software 89
‘march’ option, compile for specific CPU 54
math library . 11
math library, linking with ‘-lm’ 12

‘mcmodel’ option, for AMD64 55
‘mcpu’ option, compile for specific CPU 56
memory usage, limiting . 64
‘mfpmath’ option, for floating-point arithmetic . . 55
‘mieee’ option, floating-point support on DEC

Alpha . 55
minor version number, of GCC 62
MIPS64, multi-architecture support 57
missing header file, causes implicit declaration . . 14
missing header files . 13
missing prototypes warning 24
‘mminimal-toc’ option, on AIX 57
MMX extensions. 54
‘mno-fused-madd’ option, on PowerPC 56
modified source files, recompiling 9
Motorola 680x0, floating-point arithmetic 57
Motorola 680x0, word-order 75
MSB, most significant byte 75
‘msse’ and related options . 54
‘mtune’ option . 54
multi-architecture support, discussion of 57
multiple directories, on include and link paths . . 18
multiple files, compiling . 7
multiple-character character constant 82
multiply and add instruction 56
multiply-defined symbol error, with C++ 52
‘mxl-call’ option, compatibility with IBM XL

compilers on AIX . 57

N
namespace std in C++ . 49
namespace, reserved prefix for preprocessor 29
NaN, not a number, on DEC Alpha 55
native double-precision processors 57
nested comments, warning of 23
NetBSD, floating-point arithmetic 58
next, command in gdb . 37
nm command . 76
No such file or directory 78, 87
No such file or directory, header file not found

. 15, 16
‘no-default-inline’ option 48
null pointer . 35, 87
numerical differences . 57

O
‘O’ option, optimization level 42
‘o’ option, set output filename 5
o, object file extension . 8
object file, .o extension . 8
object file, creating from source using option ‘-c’

. 8
object file, examining with file command 75
object file, explanation of . 8
object files, linking to create executable file 9
object files, relinking . 9

Chapter 14: Index 104

object files, temporary . 12
Objective-C . 2
old-style C++ header files . 79
‘old-style-cast’ warning option 49
OpenBSD, floating-point arithmetic 58
optimization for size, ‘-Os’ . 43
optimization, and compiler warnings 45
optimization, common subexpression elimination

. 39
optimization, compiling with ‘-O’ 42
optimization, example of . 43
optimization, explanation of 39
optimization, levels of . 42
optimization, loop unrolling 41, 43
optimization, speed-space tradeoffs 41
optimization, with debugging 45
options, compilation . 15
options, platform-specific . 54
ordering of libraries . 13
output file option, ‘-o’ . 5
overflow error, for TOC on AIX 57
overflow, floating-point arithmetic 58
overhead, from function call 40

P
parse error . 80
parse error at end of input . 80
parse error due to language extensions 21
passing arg of function as another type to

prototype . 85
patch level, of GCC . 62
paths, extending environment variable 20
paths, search . 15
‘pedantic’ option . 20, 22
Pentium, platform-specific options 54
‘pg’ option, enable profiling 69
pipelining, explanation of . 42
platform-specific options . 54
POSIX extensions, GNU C Library 22
PowerPC and POWER, platform-specific options

. 56
PowerPC64, multi-architecture support 57
precedence, when using preprocessor 31
predefined macros . 29
preprocessed files, keeping . 33
preprocessing source files, ‘-E’ option 31
preprocessor macros, default value of 31
preprocessor, cpp . 72
preprocessor, error messages 78
preprocessor, first stage of compilation 72
preprocessor, using . 29
print debugger command . 36
printf, example of error in format 6
printf, incorrect usage warning 24
process id, finding . 64
profile file, setting environment variables in 19
profiling, with gprof . 68

program crashes, saved in core file 34
prototypes, missing . 24
‘pthread’ option, on AIX . 57

Q
qualifiers, warning about overriding by casts . . . 27
quotes, for defining empty macro 31

R
recompiling modified source files 9
red-zone, on AMD64 . 55
reference books . 89
reference, undefined due to missing library 12
relinking updated object files 9
return discards qualifiers . 85
return type, invalid . 24
Richard Stallman, principal author of GCC 2
risks, examples of . 3, 6
rounding, floating-point arithmetic 58
‘rpath’ option, set run-time shared library search

path . 19
rules, in makefile. 10
run-time, measuring with time command 44
running an executable file, C. 5
running an executable file, C++ 47
runtime error messages . 87

S
‘S’ option, create assembly code 73
s, assembly file extension . 73
‘save-temps’ option, keeps intermediate files . . . 33
scanf, incorrect usage warning 24, 87
scheduling, stage of optimization 42
Scheme, compared with C/C++ 3
search paths . 15
search paths, example . 15
search paths, extended . 18
segmentation fault . 35, 87
selecting specific language standards, with ‘-std’

. 23
separator, in makefiles . 10
set, command in gdb . 37
shadowing of variables . 26
shared libraries . 18
shared libraries, advantages of 19
shared libraries, dependencies 76
shared libraries, error while loading 18
shared libraries, examining with ldd. 76
shared libraries, setting load path 19
shared object file, .so extension 19
shell prompt . 3
shell quoting . 31, 89
shell variables. 4, 17, 19
shell variables, setting permanently 19
SIGINT signal . 63

Chapter 14: Index 105

signed bitfield option . 61
signed char option . 59
signed integer, casting . 26
signed variable converted to unsigned, warning of

. 25
SIGQUIT signal . 64
simple C program, compiling 5
simple C++ program, compiling 47
size, optimization for, ‘-Os’ 43
Smalltalk, compared with C/C++ 3
so, shared object file extension 19
soft underflow, on DEC Alpha 55
source code . 5
source files, recompiling . 9
source-level optimization . 39
space vs speed, tradeoff in optimization 41
SPARC, platform-specific options 56
Sparc64, multi-architecture support 57
specs directory, compiler configuration files 62
speed-space tradeoffs, in optimization 41
sqrt, example of linking with 11
SSE extensions . 54
SSE/SSE2 precision . 59
stack backtrace, displaying 36
stages of compilation, used internally 72
standard library, C. 11
standard library, C++ . 49
Standard Template Library (STL) 49
standards, C, C++ and IEEE arithmetic 90
static libraries . 18
static linking, forcing with ‘-static’ 20
‘static’ option, force static linking 20
std namespace in C++ . 49
‘std’ option, select specific language standard

. 20, 23
step, command in gdb . 37
stopping execution, with breakpoints in gdb 36
strict ANSI/ISO C, ‘-pedantic’ option 22
strip command . 75
subexpression elimination, optimization 39
suggest parentheses around assignment used as

truth value . 83
Sun SPARC, platform-specific options 56
support, commercial . 88
SVID extensions, GNU C Library 22
symbol table . 34
symbol table, examining with nm 76
syntax error . 80
system libraries . 11
system libraries, location of 11, 15, 57
system-specific predefined macros 30
SYSV, System V executable format 75

T
‘t’ option, archive table of contents 67
tab, in makefiles . 10
table of contents, in ar archive 67

table of contents, overflow error on AIX 57
target, in makefile . 10
tcsh, limit command . 35
templates, explicit instantiation 52
templates, export keyword 53
templates, in C++ . 49
templates, inclusion compilation model 50
temporary files, keeping . 33
temporary files, written to ‘/tmp’. 12
termination, abnormal (core dumped). 34
threads, on AIX . 57
Thumb, alternative code format on ARM 57
time command, measuring run-time 44
TOC overflow error, on AIX 57
tools, compiler-related . 66
tradeoffs, between speed and space in optimization

. 41
Traditional C (K&R), warnings of different

behavior . 27
translators, from C++ to C, compared with g++

. 47
troubleshooting options . 62
‘tune’ machine-specific option 54
type conversions, warning of 25
typeof, GNU C extension keyword 21

U
ulimit command . 35, 64
UltraSPARC, 32-bit mode vs 64-bit mode, 56
undeclared identifier error for C library, when

using ‘-ansi’ option . 22
undeclared variable . 79
undefined macro, compared with empty macro

. 31
undefined reference error 12, 13, 86
undefined reference error for

__gxx_personality_v0 48
undefined reference to ’main’ 87
undefined reference to C++ function, due to linking

with gcc . 47
underflow, floating-point arithmetic 58
underflow, on DEC Alpha . 55
uninitialized pointer . 87
uninitialized variable, warning of 46
unix, GNU C extension keyword 21
unknown escape sequence . 83
unoptimized code (‘-O0’) . 42
unrolling, of loops (optimization) 41, 43
unsigned bitfield option . 61
unsigned char option . 59
unsigned integer, casting . 26
unsigned variable converted to signed, warning of

. 25
unterminated string or character constant 81
unused parameter warning . 84
unused variable warning 24, 84
updated object files, relinking 9

Chapter 14: Index 106

updated source files, recompiling 9
Using GCC (Reference Manual) 89

V
‘v’ option, verbose compilation 62
value, of macro . 30
variable shadowing . 26
variable, warning of uninitialized use 46
variable-size arrays . 22
variables, in make . 10
vax, GNU C extension keyword 21
verbose compilation, ‘-v’ option 62
verbose help option . 62
version number of GCC, displaying 62
virtual memory usage, limiting 64
void return, incorrect use of 24

W
‘W’ option, enable additional warnings 25
‘Wall’ option, enable common warnings 5
warning option, ‘-W’ additional warnings 25
warning options, ‘-Wall’ . 5
warning options, additional 25
warning options, in detail . 23
warning, format with different type arg 6
warnings, additional with ‘-W’ 25
warnings, and optimization 45
warnings, promoting to errors 27
‘Wcast-qual’ option, warn about casts removing

qualifiers . 27
‘Wcomment’ option, warn about nested comments

. 23

‘Wconversion’ option, warn about type conversions
. 25

‘Weffc++’ option . 48
‘Werror’ option, convert warnings to errors 27
‘Wimplicit’ option, warn about missing

declarations . 24
‘Wold-style-cast’ option . 49
word-ordering, endianness . 75
word-size, determined from executable file 75
word-size, on UltraSPARC 56
‘Wreturn-type’ option, warn about incorrect

return types . 24
writable string constants, disabling 27
‘Wshadow’ option, warn about shadowed variables

. 26
‘Wtraditional’ option, warn about traditional C

. 27
‘Wuninitialized’ option, warn about uninitialized

variables . 45
‘Wunused’ option, unused variable warning 24
‘Wwrite-strings’ option, warning for modified

string constants . 27

X
x86, floating-point arithmetic 57
x86, platform-specific options 54
XL compilers, compatibility on AIX 57
XOPEN extensions, GNU C Library 22

Z
zero, division by . 55
zero, from underflow on DEC Alpha 55

	Foreword
	Introduction
	A brief history of GCC
	Major features of GCC
	Programming in C and C++
	Conventions used in this manual

	Compiling a C program
	Compiling a simple C program
	Finding errors in a simple program
	Compiling multiple source files
	Compiling files independently
	Creating object files from source files
	Creating executables from object files

	Recompiling and relinking
	A simple makefile
	Linking with external libraries
	Link order of libraries

	Using library header files

	Compilation options
	Setting search paths
	Search path example
	Environment variables
	Extended search paths

	Shared libraries and static libraries
	C language standards
	ANSI/ISO
	Strict ANSI/ISO
	Selecting specific standards

	Warning options in -Wall
	Additional warning options
	Recommended warning options

	Using the preprocessor
	Defining macros
	Macros with values
	Preprocessing source files

	Compiling for debugging
	Examining core files
	Displaying a backtrace
	Setting a breakpoint
	Stepping through the program
	Modifying variables
	Continuing execution
	More information

	Compiling with optimization
	Source-level optimization
	Common subexpression elimination
	Function inlining

	Speed-space tradeoffs
	Loop unrolling

	Scheduling
	Optimization levels
	Examples
	Optimization and debugging
	Optimization and compiler warnings

	Compiling a C++ program
	Compiling a simple C++ program
	C++ compilation options
	Using the C++ standard library
	Templates
	Using C++ standard library templates
	Providing your own templates
	Explicit template instantiation
	The export keyword

	Platform-specific options
	Intel and AMD x86 options
	x86 extensions
	x86 64-bit processors

	DEC Alpha options
	SPARC options
	POWER/PowerPC options
	Multi-architecture support
	Floating-point issues
	Portability of signed and unsigned types

	Troubleshooting
	Help for command-line options
	Version numbers
	Verbose compilation
	Stopping a program in an infinite loop
	Preventing excessive memory usage

	Compiler-related tools
	Creating a library with the GNU archiver
	Using the profiler gprof
	Coverage testing with gcov

	How the compiler works
	An overview of the compilation process
	The preprocessor
	The compiler
	The assembler
	The linker

	Examining compiled files
	Identifying files
	Examining the symbol table
	Finding dynamically linked libraries

	Common error messages
	Preprocessor error messages
	Compiler error messages
	Linker error messages
	Runtime error messages

	Getting help
	Further reading
	Acknowledgements
	Other books from the publisher
	Free software organizations
	GNU Free Documentation License
	Index

